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Abstract

Estimation of 3D human pose from monocular image has
gained considerable attention, as a key step to several human-
centric applications. However, generalizability of human pose
estimation models developed using supervision on large-scale
in-studio datasets remains questionable, as these models often
perform unsatisfactorily on unseen in-the-wild environments.
Though weakly-supervised models have been proposed to ad-
dress this shortcoming, performance of such models relies on
availability of paired supervision on some related task, such
as 2D pose or multi-view image pairs. In contrast, we pro-
pose a novel kinematic-structure-preserved unsupervised 3D
pose estimation framework, which is not restrained by any
paired or unpaired weak supervisions. Our pose estimation
framework relies on a minimal set of prior knowledge that
defines the underlying kinematic 3D structure, such as skele-
tal joint connectivity information with bone-length ratios in
a fixed canonical scale. The proposed model employs three
consecutive differentiable transformations namely forward-
kinematics, camera-projection and spatial-map transforma-
tion. This design not only acts as a suitable bottleneck stim-
ulating effective pose disentanglement, but also yields inter-
pretable latent pose representations avoiding training of an
explicit latent embedding to pose mapper. Furthermore, de-
void of unstable adversarial setup, we re-utilize the decoder
to formalize an energy-based loss, which enables us to learn
from in-the-wild videos, beyond laboratory settings. Compre-
hensive experiments demonstrate our state-of-the-art unsu-
pervised and weakly-supervised pose estimation performance
on both Human3.6M and MPI-INF-3DHP datasets. Qualita-
tive results on unseen environments further establish our su-
perior generalization ability.

1 Introduction

Building general intelligent systems, capable of understand-
ing the inherent 3D structure and pose of non-rigid humans
from monocular RGB images remains an illusive goal in
the vision community. In recent years, researchers aim to
solve this problem by leveraging the advances in two key
aspects, i.e. a) improved architecture design (Newell, Yang,
and Deng 2016; Chu et al. 2017) and b) increasing collection
of diverse annotated samples to fuel the supervised learning
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Table 1: Characteristic comparison of our approach against
prior unsupervised and weakly-supervised human 3D pose
estimation works, in terms of access to direct (paired) or in-
direct (unpaired) supervision levels (MV: Multi-View). Note
that, in the proposed framework the latent pose represen-
tation itself, is the 3D pose coordinates, thereby avoiding
training of a separate latent to 3D pose mapper (last column).

Unpaired sup.

Methods Paired sup. (adv. learning) | Sup. for latent

2D MV Cam. 2D to 3D

pose pair extrin. | pose  pose | pose mapping
(Rhodin et al. 2018) No  Yes Yes No No Yes
(kocabas et al. 2019) | Yes  Yes No No No No
(Chen et al. 2019b) Yes  Yes No No No Yes
(Wandt et al. 2019) Yes No No No Yes No
(Chen et al. 2019a) Yes No No Yes No No
Ours (unsup.) No No No No No No

paradigm (Mehta et al. 2017b). However, obtaining 3D pose
ground-truth for non-rigid human-bodies is a highly incon-
venient process. Available motion capture systems, such as
body-worn sensors (IMUs) or multi-camera structure-from-
motion (SFM), require careful pre-calibration, and hence
usually done in a pre-setup laboratory environment (Ionescu
et al. 2013; Zhang et al. 2017). This often restricts diversity
in the collected dataset, which in turn hampers generaliza-
tion of the supervised models trained on such data. For in-
stance, the widely used Human3.6M (Ionescu et al. 2013)
dataset captures 3D pose using 4 fixed cameras (i.e. only 4
backgrounds scenes), 11 actors (i.e. limited apparel varia-
tions), and 17 action categories (i.e. limited pose diversity).
A model trained on this dataset delivers impressive results
when tested on samples from the same dataset, but does not
generalize to an unknown deployed environment, thereby
yielding non-transferability issue.

To deal with this problem, researchers have started ex-
ploring innovative techniques to reduce dependency on an-
notated real samples. Aiming to enhance appearance di-
versity on known 3D pose samples (CMU-MoCap), syn-
thetic datasets have been proposed, by compositing a di-
verse set of human template foregrounds with random back-
grounds (Varol et al. 2017). However, models trained on
such samples do not generalize to a new motion (e.g. a par-
ticular dance form), apparel, or environment much differ-
ent from the training samples, as a result of large domain



shift. Following a different direction, several recent works
propose weakly-supervised approaches (Zhou et al. 2017),
where they consider access to a large-scale dataset with
paired supervision on some related-tasks other than the task
in focus (i.e. 3D pose estimation). Particularly, they access
multiple cues for weak supervision, such as, a) paired 2D
ground-truth, b) unpaired 3D ground-truth (3D pose without
the corresponding image), ¢) multi-view image pair (Rhodin
et al. 2018), d) camera parameters in a multi-view setup etc.
(see Table 1 for a detailed analysis).

While accessing such weak paired-supervisions, the gen-
eral approach is to formalize a self-supervised consistency
loop, such as 2D—3D—2D (Tung et al. 2017), view-
1—3D—view-2 (Kocabas, Karagoz, and Akbas 2019), etc.
However, the limitations of domain-shift still persist as a re-
sult of using annotated data (e.g. 2D ground-truth or multi-
view camera extrinsic). To this end, without accessing such
paired samples, (Jakab et al. 2019) proposed to leverage un-
paired samples to model the natural distribution of the ex-
pected representations (i.e. 2D or 3D pose) using adversarial
learning. Obtaining such samples, however, requires access
to a 2D or 3D pose dataset and hence the learning process is
still biased towards the action categories presented in that
dataset. One can not expect to have access to any of the
above discussed paired or unpaired weak supervisory sig-
nals for an unknown deployed environment (e.g. frames of a
dance-show where the actor is wearing a rare traditional cos-
tume). This motivates us to formalize a fully-unsupervised
framework for monocular 3D pose estimation, where the
pose representation can be adapted to the deployed environ-
ment by accessing only the RGB video frames devoid of
dependency on any explicit supervisory signal.

Our contributions. We propose a novel unsupervised
3D pose estimation framework, relying on a carefully de-
signed kinematic structure preservation pipeline. Here, we
constrain the latent pose embedding to form an interpretable
3D pose representation, thus avoiding the need for an ex-
plicit latent to 3D pose mapper. Several recent approaches
aim to learn a prior characterizing kinematically plausible
3D human poses using available MoCap datasets (Kundu
et al. 2019). In contrast, we plan to utilize minimal kine-
matic prior information, by adhering to the restrictions to
not use any external unpaired supervision. This involves, a)
access to the knowledge of hierarchical limb connectivity,
b) a vector of allowed bone length ratios, and c) a set of
20 synthetically rendered images with diverse background
and pose (i.e. a minimal dataset with paired supervision to
standardize the model towards the intended 2D or 3D pose
conventions). The aforementioned prior information is very
minimal in comparison to the pose-conditioned limits for-
malized by (Akhter et al. 2015) in terms of both dataset size
and parameters associated to define the constraints.

In the absence of multi-view or depth information, we in-
fer 3D structure, directly from the video samples, for the
unsupervised 3D pose estimation task. One can easily seg-
ment moving objects from a video, in absence of any back-
ground (BG) motion. However, this is only applicable to in-
studio static camera feeds. Aiming to work on in-the-wild
YouTube videos , we formalize separate unsupervised learn-
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ing schemes for videos with both static and dynamic BG.
In absence of background motion, we form pairs of video
frames with a rough estimate of the corresponding BG im-
age, following a training scheme to disentangle foreground-
apparel and the associated 3D pose. However, in the pres-
ence of BG motion, we lack in forming such consistent pairs,
and thus devise a novel energy-based loss on the disentan-
gled pose and appearance representations. In summary,

e We formalize a novel collection of three differentiable
transformations, which not only acts as a bottleneck stim-
ulating effective pose disentanglement but also yields in-
terpretable latent pose representations avoiding training of
an explicit latent-to-pose mapper.

The proposed energy-based loss, not only enables us to
learn from in-the-wild videos, but also improves gener-
alizability of the model as a result of training on diverse
scenarios, without ignoring any individual image sample.

We demonstrate state-of-the-art unsupervised and
weakly-supervised 3D pose estimation performance on
both Human3.6M and MPI-INF-3DHP datasets.

2 Related Works

3D human pose estimation. There is a plethora of fully-
supervised 3D pose estimations works (Fang et al. 2018;
Mehta et al. 2017a; 2017b), where the performance is bench-
marked on the same dataset, which is used for training. Such
approaches do not generalize on minimal domain shifts be-
yond the laboratory environment. In absence of large-scale
diverse outdoor datasets with 3D pose annotations, datasets
with 2D pose annotations are used as a weak supervisory
signal for transfer learning using various 2D to 3D lifting
techniques (Tung et al. 2017; Chen et al. 2017; Ramakrishna
et al. 2012). However, these approaches still rely on avail-
ability of 2D pose annotations. Avoiding this, (Kocabas et
al. 2019; Rhodin et al. 2018) proposed to use multi-view cor-
respondence acquired by synchronized cameras. But in such
approaches (Rhodin et al. 2018), the latent pose representa-
tion remains un-interpretable and abstract, thereby requiring
a substantially large amount of 3D supervision to explicitly
train a latent-to-pose mapping mapper. We avoid training of
such explicit mapping, by casting the latent representation,
itself as 3D pose coordinates. This is realized as a result of
formalizing the geometry-aware bottleneck.
Geometry-aware representations. To capture intrinsic
structure of objects, the general approach is to disentangle
individual factors of variations, such as appearance, camera
viewpoint and other pose related cues, by leveraging inter-
instance correspondence. In literature, we find unsupervised
land-mark detection techniques (Zhang et al. 2018), that aim
to utilize a relative transformation between a pair of in-
stances of the same object, targeting the 2D pose estimation
task. To obtain such pairs, these approaches rely on either
of the following two directions, viz. a) frames from a video
with an acceptable time-difference (Jakab et al. 2018), or b)
synthetically simulated 2D transformations (Rocco, Arand-
jelovic, and Sivic 2017). However, such techniques fail to
capture the 3D structure of the object in the absence of multi-
view information. The problem becomes more challenging



for deformable 3D skeletal structures as found in diverse hu-
man poses. Recently (Jakab et al. 2018) proposed an un-
supervised 2D landmark estimation method to disentangle
pose from appearance using a conditional image generation
framework. However, the predicted 2D landmarks do not
match with the standard human pose key-points, hence are
highly un-interpretable with some landmarks even lying on
the background. Such outputs can not be used for a conse-
quent task requiring a structurally consistent 2D pose input.

Formalizing structural constraints in 2D is highly ill-
posed, considering images as projections of the actual 3D
world. Acknowledging this, we plan to estimate 3D pose
separately with camera parameters followed by a camera-
projection to obtain the 2D landmarks. As a result of this
inverse-graphics formalization, we have the liberty to im-
pose structural constraints directly on the 3D skeletal repre-
sentation, where the bone-length and other kinematic con-
straints can be imposed seamlessly using consistent rules as
compared to the corresponding 2D representation. A care-
ful realization of 3D structural constraints not only helps us
to obtain interpretable 2D landmarks but also reduces the
inherent uncertainty associated with the process of lifting a
monocular 2D image to its 3D pose (Chen et al. 2019a), in
absence of any additional supervision such as multi-view or
depth cues.

3 Approach

Our aim is to learn a mapping function, that can map an RGB
image of human to its 3D pose by accessing minimal kine-
matic prior information. Motivated by (Rhodin et al. 2018),
we plan to cast it as an unsupervised disentanglement of
three different factors i.e., a) foreground (FG) appearance, b)
background (BG) appearance, and c) kinematic pose. How-
ever, unlike (Rhodin et al. 2018) in absence of multi-view
pairs, we have access to simple monocular video streams of
human actions consisting of both static and dynamic BG.

3.1 Architecture

As shown in Fig. 1A, we employ two encoder networks each
with a different architecture, F'p and E 4 to extract the local-
kinematic parameters vy, (see below) and FG-appearance, f,
respectively from a given RGB image. Additionally, E'p also
outputs 6 camera parameters, denoted by ¢, to obtain coor-
dinates of the camera-projected 2D landmarks, psp.

One of the major challenges in learning factorized rep-
resentations (Denton and others 2017) is to realize purity
among the representations. More concretely, the appearance
representation should not embed any pose related informa-
tion and vice-versa. To achieve this, we enforce a bottleneck
on the pose representation by imposing kinematic-structure
based constraints (in 3D) followed by an inverse-graphics
formalization for 3D to 2D re-projection. This introduces
three pre-defined transformations i.e., a) Forward kinematic
transformation, 7y, and b) Camera projection transforma-
tion 7, and ¢) Spatial-map transformation 7.

a) Forward kinematic transformation, 7¢, Most of the
prior 3D pose estimation approaches (Chen et al. 2019a;
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Rhodin et al. 2018) aim to either directly regress joint lo-
cations in 3D or depth associated with the available 2D
landmarks. Such approaches do not guarantee validity of
the kinematic structure, thus requiring additional loss terms
in the optimization pipeline to explicitly impose kinematic
constraints such as bone-length and limb-connectivity in-
formation (Habibie et al. 2019). In contrast, we formalize
a view-invariant local-kinematic representation of the 3D
skeleton based on the knowledge of skeleton joint connec-
tivity. We define a canonical rule (see Fig. 1B), by fixing
the neck and pelvis joint (along z-axis, with pelvis at the
origin) and restricting the trunk to hip-line (line segment
connecting the two hip joints) angle, to rotate only about
x-axis on the YZ-plane(i.e. 1-DOF) in the canonical coordi-
nate system C' (i.e. Cartesian system defined at the pelvis as
origin). Our network regresses one pelvis to hip-line angle
and 13 unit-vectors (all 3-DOF), which are defined at their
respective parent-relative local coordinate systems, L*(),
where Pa(j) denotes the parent joint of j in the skeletal
kinematic tree. Thus, v, € R* (i.e. 1+13%3). These pre-
dictions are then passed on to the forward-kinematic trans-
formation to obtain the 3D joint coordinates p3p in C, i.e.
Ttk © v — psp wWhere psp € R37, with J being the to-
tal number of skeleton joints. First, positions of the 3 root
joints, péj[)) for 7 as left-hip, right-hip and neck, are ob-
tained using the above defined canonical rule after applying

the estimate of the trunk to hip-line angle, U](CO). Let len™)
store the length of the line-segment (in a fixed canonical
unit) connecting a joint j with Pa(j). Then, p:(fj% for rest
of the joints is realized using the following recursive equa-

tion, péjf, = py;“(j)) + len(j)ul(j). See Fig. 1B (dotted box)

for a more clear picture.

b) Camera-projection transformation, 7. As p3p is de-
signed to be view-invariant, we rely on estimates of the cam-
era extrinsics ¢ (3 angles, each predicted as 2 parameters, the
sin and cos component), which is used to rotate and trans-
late the camera in the canonical coordinate system C|, to
obtain 2D landmarks of the skeleton (i.e. using the rotation
and translation matrices, R, and 7 respectively). Note that,
these 2D landmarks are expected to register with the cor-
responding joint locations in the input image. Thus, the 2D

landmarks are obtained as, péj[)) = P(R.* pgj[)) +1T,), where

P denotes a fixed perspective camera transformation.

¢) Spatial-map transformation, 7,, After obtaining co-
ordinates of the 2D landmarks psp € R27, we aim to ef-
fectively aggregate it with the spatial appearance-embedding
fa- Thus, we devise a transformation procedure 7,,, to trans-
form the vectorized 2D coordinates into spatial-maps de-
noted by fop € RIXWXCh \which are of consistent reso-
lution to f,, i.e. Trn @ p2p — fop. To effectively encode
both joint locations and their connectivity information, we
propose to generate two sets of spatial maps namely, a) heat-
map, fhm and b) afﬁnity—map» fam (i'e~7 f2D : (fhm7 fam))~
Note that, the transformations to obtain these spatial maps
must be fully differentiable to allow the disentaglement of
pose using the cross-pose image-reconstruction loss, com-
puted at the decoder output (discussed in Sec. 3.3a). Keeping
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Figure 1: A. Illustration of the proposed framework indicating output notation of individual modules. B. An overview of the
three differentiable transformations, with step-wise progression of forward kinematics using local-kinematic parameters, vy.

this in mind, we implement a novel computational pipeline
by formalizing translated and rotated Gaussians to represent
both joint positions (i.e. fr.,) and skeleton-limb connectiv-
ity (i.e. fqm). We use a constant variance o along both spa-
tial directions to realize the heat-maps for each joint j, as
i (0) = xp(=05[u — p5y|[*/02), where u : [ug, )
denotes the spatial-index in a H x W lattice (see Fig. 2A).
We formalize the following steps to obtain the affinity
maps based on the connectivity of joints in the skeletal
kinematic tree (see Fig. 2A). For each limb (line-segment),
L01) and pl(“), we first compute loca-
tion of its mid-point, u® : [, u{P] and slope 61). Fol-
lowing this, we perform an affine transformation to obtain,
u' = Ry *(u—p®), where Ry is the 2D rotation matrix.

Let, ag) and ag(,l

[ with endpoints p7,

) denote variance of a Gaussian along both

spatial directions representing the limb [. We fix aél) from
prior knowledge of the limb width, whereas, ag(gl) is com-
puted as « * len(l) in the 2D euclidean space. Finally, the

affinity map is obtained as,
Fiom(u) = exp(=0.5][u;, /o ]|”

Tk, Te and T, (collectively denoted as 7j) are de-
signed using perfectly differentiable operations, thus allow-
ing back-propagation of gradients from the loss functions
defined at the decoder output. As shown in Fig. 1A, the de-
coder takes in a tuple of spatial-pose-map representation and
appearance (fop and f, respectively, concatenated along the
channel dimension) to reconstruct an RGB image. To effec-
tively disentangle BG information in f,, we fuse the back-
ground image B; towards the end of decoder architecture,
inline with (Rhodin et al. 2018).

—0.5]uy /o }|?)

3.2 Access to minimal prior knowledge

One of the key objectives of this work is to solve the unsu-
pervised pose estimation problem with minimal access to
prior knowledge whose acquisition often requires manual
annotation or a data collection setup such as CMU-MoCap.
Adhering to this we restrict the proposed framework from
accessing any paired or unpaired data samples as shown in
Table 1. Here, we list the specific prior information that has
been considered in the proposed framework,
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Kinematic skeletal structure (i.e. the joint connectivity
information) with bone-length ratios in a fixed canoni-
cal scale. Note that, we do not consider access to the
kinematic angle limits for the limb joints, as such angles
are highly pose dependent particularly for diverse human
skeleton structures (Akhter and Black 2015).

A set of 20 synthetically rendered SMPL models with di-
verse 3D poses and FG appearance (Varol et al. 2017). We
have direct paired supervision loss (denoted by Ly .or)
on these samples to standardize the model towards the in-
tended 2D or 3D pose conventions.

3.3 Unsupervised training procedure

In contrast to (Jakab et al. 2018), we aim to disentangle fore-
ground (FG) and background (BG) appearances, along with
the disentanglement of pose. In a generalized setup, we also
aim to learn from in-the-wild YouTube videos in contrast to
in-studio datasets, avoiding dataset-bias.

Separating paired and unpaired samples. For an effi-
cient disentanglement, we aim to form image tuples of the
form (I, Iy, By). Here, I and I; are video frames, which
have identical FG-appearance with a nonidentical kinematic-
pose (pairs formed between frames beyond a certain time-
difference). As each video-clip captures action of an indi-
vidual in a certain apparel, FG-appearance remains identi-
cal among frames from the same video. Here, B; denotes
an estimate of BG image without the human subject cor-
responding to the image [;, which is obtained as the me-
dian of pixel intensities across a time-window including the
frame ;. However, such an estimate of B; is possible only
for scenarios with no camera movement beyond a certain
time window to capture enough background evidence (i.e.
static background with a moving human subject).

Given an in-the-wild dataset of videos, we classify tem-
poral clips of a certain duration (>5 seconds) into two
groups based on the amount of BG motion in that clip.
This is obtained by measuring the pixel-wise L2 loss among
the frames in a clip, considering human action covers
only 10-20% of pixels in the full video frame. Following
this, we realize two disjoint datasets denoted by D,

(9,17, BN, and Dy = {17, V)L as
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Figure 2: A. Illustration of the steps to obtain the spatial heat-map and affinity-map from the projected 2D coordinates. B. An
overview of the proposed data-flow pipeline enabling energy-based loss formalization targeting unpaired samples from D,,,,,.

sets of tuples with extractable BG pair (paired) and un-
extractable BG pair (unpaired), respectively.

a) Training objective for paired samples, D,, As shown
in Fig. 1A, given a source and target image (i.e. Iy and
I;), we aim to transfer the pose of I; (i.e. fop) to the FG-
appearance extracted from I (i.e. f,) and background from

B, to reconstruct I;. Here, the FG and BG appearance infor-
mation can not leak through pose representation because of
the low dimensional bottleneck i.e. pop € R?/. Moreover,
consecutive predefined matrix and spatial-transformation
operations further restrict the framework from leaking ap-
pearance information through the pose branch even as low-
magnitude signals. Note that, the BG of I, may not regis-
ter with the BG of I;, when the person moves in the 3D
world (even in a fixed camera scenario) as these images
are outputs of an off-the shelf person-detector. As a re-
sult of this BG disparity and explicit presence of the clean
spatially-registered background B;, D; catches the BG in-
formation directly from B;, thereby forcing f, to solely
model FG-appearance from the apparel-consistent source,
I,. Besides this, we also expect to maintain perceptual con-

sistency between I; and ft through the encoder networks,
keeping in mind the later energy-based formalization (next
section). Thus, all the network parameters are optimized
for the paired samples using the following loss function,

Lp = |I; - ft|A+ Al‘PgD - 132DA| + ol fa — fa\ Here,
P2p = Tr 0o Ep(I;) and f, = EA(Iy).

b) Training objective for unpaired samples, D, Al-
though, we find a good amount of YouTube videos where
human motion (e.g. dance videos) is captured on a tripod
mounted static camera, such videos are mostly limited to in-
door environments. However, a diverse set of human actions
are captured in outdoor settings (e.g. sports related activi-
ties), which usually involves camera motion or dynamic BG.
Aiming to learn a general pose representation, instead of ig-
noring the frames from video-clips with dynamic BG, we
plan to formalize a novel direction to adapt the parameters
of E'p and E 4 even for such diverse scenarios.

We hypothesize that the decoder D; expects the pose
and FG-appearance representation in a particular form, sat-
isfying the corresponding input distributions, P(f2p) and
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P(f.). Here, a reliable estimate of P(fop) and P(f,) can
be achieved solely on samples from D), in presence of paired
supervision, avoiding mode-collapse. More concretely, the
parameters of D should not be optimized on samples from
Dounp (as shown in Fig. 2B with a lock sign). Following this,
one can treat D analogous to a critic, which outputs a reli-
able prediction (an image of human with pose from I;, FG-
appearance from I, and BG from B;) only when its inputs
fop and f, satisfy the expected distributions- P(f2p) and
P(f.) respectively. We plan to leverage this analogy to ef-
fectively use the frozen D; network as an energy function
to realize simultaneous adaptation of E'p and E 4 for the un-
paired samples from Dy, .

We denote B, to represent a random background im-
age. As shown in Fig. 2B, here I; = D;(fap, fa, Br),
in absence of access to a paired image to enforce a di-
rect pixel-wise loss. Thus, the parameters of Ep and E4
are optimized for the unpaired samples using the following
loss function, Lynp = |pap — Pop| + Ao|fa — fal, Where
T Y oTo0EpoT(I)and f, = Ea(I,). Here,
—! represents a differentiable spatial transforma-
tion (such as image flip or in-plane rotation) and its inverse,
respectively. We employ this to maintain a consistent rep-
resentation across spatial-transformations. Note that, for the
flip-operation of pyp, we also exchange the indices of the
joints associated with the left side to right and vice-versa.

We train on three different loss functions, viz. Lpyior, Lp,
and Lyyp at separate iterations, each with different opti-
mizer. Here, £,,,.;or denotes the supervised loss directly on
psp and pop for the synthetically rendered images on ran-
domly selected backgrounds, as discussed before.

4 Experiments

In this section, we describe experimental details followed by
a thorough analysis of the framework for bench-marking on
two widely used datasets, Human3.6M and MPI-INF-3DHP.

We use Resnet-50 (till res4f) with ImageNet-pretrained
parameters as the base pose encoder F'p, whereas the ap-
pearance encoder is designed separately using 10 Convolu-
tions. E'p later divides into two parallel branches of fully-
connected layers dedicated for vy, and c respectively. We use
J = 17 for all our experiments as shown in Fig. 1. The



Table 2: Results on Human3.6M following the standard protocol-II setup. Here, Sup. (2nd column) denotes the amount of
supervision accessed by the respective approaches. Accordingly, the table is divided into 4 row-groups, a) row 1-5 use full 3D
pose sup., b) row 6-10 use full 2D pose as weak sup. ¢) row 11-12: unsupervised approaches, and d) row 13: Ours(semi-sup.).
We outperform prior approaches in both weakly supervised and unsupervised settings (highlighted as boldface).

Protocol-IT [ Sup. [ Direct. Disc.  Eat  Greet Phone Photo Pose Purch.  Sit SitD  Smoke Wait  Walk  WalkD  WalkT | Avg.(])
(Akhter et al. 2015) Full-3D 199.2  177.6 161.8 197.8 1762 186.5 1954 1673 160.7 1737 1778 1819 198.6 1762 1927 181.1
(Zhou et al. 2016) Full-3D 99.7 958 879 116.8 1083 107.3 935 953 109.1 1375 106.0 1022 1104 1065 1152 106.7
(Bogo et al. 2016) Full-3D 62.0 602 678 765 921 77.0 730 753 1003 1373 834 713 79.7 86.8 87.7 823
(Moreno et al. 2017) Full-3D 66.1 617 845 737 652 672 609 673 1035 746 92.6 69.6  78.0 715 732 74.0
(Martinez et al. 2017) Full-3D 44.8 520 444 505 617 594 451 419 663  77.6 54.0 588 359 49.0 40.7 52.1
(Wu et al. 2016) Full-2D 78.6 90.8 925 894 1089 1124 77.1 106.7 1274 1390 1034 914 79.1 - - 98.4
(Tung et al. 2017) Full-2D 77.6 91.4 899 880 1073 110.1 759 1075 1242 1378 1022 903  78.6 97.2
(Chen et al. 2019a) Full-2D - - - - - - - - - - - - - - - 68.0
(Wandt et al. 2019) Full-2D 53.0 583 596 665 728 710 567 69.6 783 952 66.6 585 632 575 49.9 65.1
Ours (weakly-sup.) Full-2D 56.0 532 563 636 741 715 534 679 758 90.8 64.2 569 614 56.3 49.7 63.8
(Rhodin et al. 2018) Multi-view - - - - - - - - - - - - - - - 98.2
Ours (unsup.) No sup. 80.2 813 86.0 867 941 834 875 842 1012 1109  86.0 87.8 869 94.3 90.9 89.4
Ours (semi-sup.) 5%-3D 46.6 545 50.1 464 813 424 411 56.4 86.7 829 49.0 477 641 482 44.3 56.1

Table 3: Results for the MPI-INF-3DHP dataset. Here,
Trainset (2nd column) denotes access to 3DHP trainset im-
ages before evaluation. Sup. (3rd column) denotes supervi-
sion level on 3DHP image-pose pairs. 4 row-groups, a) row
1-2: Fully supervised, b) row 3-7: Weakly supervised, ¢) row
8-10: Unsupervised, d) row 11: Semi-supervised.

No. Method [ Trainset Sup. [ PCK(f) AUC(]) MPIPE (])
1. (Mehta et al. 2017c) +3DHP  Full-3D 76.6 40.4 124.7
2. (Rogez et al. 2017) +3DHP  Full-3D 59.6 27.6 158.4
3. (Zhou et al. 2017) +3DHP  Full-2D 69.2 325 137.1
4. (Kanazawa et al. 2018) | +3DHP  Full-2D 77.1 40.7 113.2
S. (Yang et al. 2018) +3DHP  Full-2D 69.0 32.0 -
6. (Chen et al. 2019a) +3DHP  Full-2D 71.7 36.3 -
7. Ours (weakly-sup.) +3DHP  Full-2D 80.2 44.8 97.1
8. (Chen et al. 2019a) -3DHP - 64.3 31.6 -
9. Ours (unsup.) -3DHP - 76.5 39.8 115.3
10.  Ours (unsup.) +3DHP  No sup. 79.2 434 99.2
11. Ours (semi-sup.) +3DHP  5%-3D 81.9 52.6 89.8

channel-wise aggregation of f,,, (16-channels) and f,,
(17-channels) is passed through two convolutional layers to
obtain f5p (128-maps), which is then concatenated with f,
(512-maps) to form the input for D; (each with 14 x 14 spa-
tial dimension). Our experiments use different AdaGrad op-
timizers (learning rate: 0.001) for each individual loss com-
ponents in alternate training iterations, thereby avoiding any
hyper-parameter tuning. We perform several augmentations
(color jittering, mirroring, and in-plane rotation) of the 20
synthetic samples, which are used to provide a direct super-
vised loss at the intermediate pose representations.

Datasets. The base-model is trained on a mixture of
two datasets, i.e. Human3.6M and an in-house collection
of YouTube videos (also referred as YTube). In contrast to
the in-studio H3.6M dataset, YTube contains human sub-
jects in diverse apparel and BG scenes performing varied
forms of motion (usually dance forms such as western, mod-
ern, contemporary etc.). Note that all samples from H3.6M
contribute to the paired dataset D,, whereas ~40% sam-
ples in YTube contributed to D, and rest to D, based
on the associated BG motion criteria. However, as we do
not have ground-truth 3D pose for the samples from YTube
(in-the-wild dataset), we use MPI-INF-3DHP (also referred
as 3DHP) to quantitatively benchmark generalization of the
proposed pose estimation framework.
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a) Evaluation on Human3.6M. We evaluate our frame-
work on protocol-II, after performing scaling and rigid
alignment of the poses inline with the prior arts (Chen et
al. 2019a; Rhodin et al. 2018). We train three different
variants of the proposed framework i.e. a) Ours(unsup.),
b) Ours(semi-sup.), and c) Ours(weakly-sup.) as reported
in Table 2. After training the base-model on the mixed
YTube+H3.6M dataset, we finetune it on the static H3.6M
dataset by employing Lpior and £, (without using any
multi-view or pose supervision) and denote this model as
Ours(unsup.). This model is further trained with full su-
pervision on the 2D pose landmarks simultaneously with
Lyrior and L), to obtain Ours(weakly-sup.). Finally, we also
train Ours(unsup.) with supervision on 5% 3D of the en-
tire trainset simultaneously with £,,;,- and £, (to avoid
over-fitting) and denote it as Ours(semi-sup.). As shown
in Table 2, Ours(unsup.) clearly outperforms the prior-
art (Rhodin et al. 2018) with a significant margin (89.4
vs. 98.2) even without leveraging multi-view supervision.
Moreover, Ours(weakly-sup.) demonstrates state-of-the-art
performance against prior weakly supervised approaches.

b) Evaluation on MPI-INF-3DHP. We aim to realize a
higher level of generalization as a consequence of leverag-
ing rich kinematic prior information. The proposed frame-
work outputs 3D pose, which is bounded by the kinematic
plausibility constraints even for unseen apparel, BG and
action categories. This characteristic is clearly observed
while evaluating performance of our framework on unseen
3DHP dataset. We take Ours(weakly-sup.) model trained on
YTube+H3.6M dataset to obtain 3D pose predictions on un-
seen 3DHP testset (9th row in Table 3). We clearly outper-
form the prior work (Chen et al. 2019a) by a significant mar-
gin in a fully-unseen setting (8th and 9th row with -3DHP in
Table 3). Furthermore, our weakly supervised model (with
100% 2D pose supervision) achieves state-of-the-art perfor-
mance against prior approaches at equal supervision levels.

¢) Ablation study. In the proposed framework, our ma-
jor contribution is attributed to the design of differentiable
transformations and an innovative way to facilitate the us-
age of unpaired samples even in presence of BG motion.
Though effectiveness of camera-projection has been studied
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Figure 3: Qualitative results, showing disentanglement of Pose (ID’d as P1 and P2), FG (ID’d as Al and A2) and BG (ID’d as
B1, B2, and B3). Images in first column (of each panel) define the IDs which are later used for novel image synthesis.

A. Results of H36M dataset (in-studio)
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Figure 4: Qualitative results. Note that, results on LSP is obtained in an unseen setting (i.e. not even unpaired unsup. training).
The pink box highlights the failure cases, specifically in presence of self-occlusion as a result of joint-position ambiguity.

Table 4: Results on ablations of the proposed framework. It
clearly highlights importance of Ty, 7., and use of Dy,
in the unsupervised training pipeline. Notice the improve-
ment in 3DPCK on the unseen 3DHP testset as a result of
incorporating D, in the unsupervised training pipeline.

Method Training set MPJPE on  3DPCK on
(unsup.) YTube+H3.6M H36M MPI-3DHP
Ours w/o Ty, D, 134.8 47.9
Ours w/o T, D, 101.8 61.7
Ours(unsup.) D, 91.1 66.3
Ours(unsup.) Dy, U Dy 89.4 71.2

in certain prior works (Chen et al. 2019a), use of forward-
kinematic transformation 7y, and affinity map in the spatial-
map transformation 7, is employed for the first time in
such a learning framework. Therefore, we evaluate impor-
tance of both 7y, and 7, by separately bypassing these
modules through neural network transformations. Results in
Table 4 clearly highlight effectiveness of these carefully de-
signed transformations for the unsupervised 3D pose esti-
mation task.

d) Qualitative results. Fig. 3 depicts qualitative results
derived from Qurs(unsup.) on in-studio H3.6M and in-the-
wild YTube dataset. It highlights effectiveness of unsuper-
vised disentanglement through separation or cross-transfer

of apparel, pose, camera-view and BG, for novel image syn-
thesis. Though, our focus is to disentangle 3D pose infor-
mation, separation of apparel and pose transfer is achieved
as a byproduct of the proposed learning framework. In
Fig. 4 we show results on the 3D pose estimation task ob-
tained from Ours(weakly-sup.) model. Though we train our
model on H3.6M, 3DHP and YTube datasets, results on LSP
dataset (Johnson and Everingham 2010) are obtained with-
out training on the corresponding train-set, i.e. in a fully-
unseen setting. Reliable pose estimation on such diverse un-
seen images highlights generalization of the learned repre-
sentations thereby overcoming the problem of dataset-bias.

5 Conclusion

We present an unsupervised 3D human pose estimation
framework, which relies on a minimal set of prior knowl-
edge regarding the underlying kinematic 3D structure. The
proposed local-kinematic model indirectly endorses a kine-
matic plausibility bound on the predicted poses, thereby lim-
iting the model from delivering implausible pose outcomes.
Furthermore, our framework is capable of leveraging knowl-
edge from video frames even in presence of background mo-
tion, thus yielding superior generalization to unseen environ-
ments. In future, we would like to extend such frameworks
for predicting 3D mesh, by characterizing the prior knowl-
edge on human shape, alongside pose and appearance.
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