
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Semantics-Aligned Representation Learning for Person Re-Identification

Xin Jin,1∗ Cuiling Lan,2† Wenjun Zeng,2 Guoqiang Wei,1 Zhibo Chen1†
University of Science and Technology of China1 Microsoft Research Asia2

{jinxustc, wgq7441}@mail.ustc.edu.cn, {culan, wezeng}@microsoft.com, chenzhibo@ustc.edu.cn

Abstract

Person re-identification (reID) aims to match person images
to retrieve the ones with the same identity. This is a chal-
lenging task, as the images to be matched are generally se-
mantically misaligned due to the diversity of human poses
and capture viewpoints, incompleteness of the visible bodies
(due to occlusion), etc. In this paper, we propose a frame-
work that drives the reID network to learn semantics-aligned
feature representation through delicate supervision designs.
Specifically, we build a Semantics Aligning Network (SAN)
which consists of a base network as encoder (SA-Enc) for re-
ID, and a decoder (SA-Dec) for reconstructing/regressing the
densely semantics aligned full texture image. We jointly train
the SAN under the supervisions of person re-identification
and aligned texture generation. Moreover, at the decoder, be-
sides the reconstruction loss, we add Triplet ReID constraints
over the feature maps as the perceptual losses. The decoder
is discarded in the inference and thus our scheme is com-
putationally efficient. Ablation studies demonstrate the effec-
tiveness of our design. We achieve the state-of-the-art perfor-
mances on the benchmark datasets CUHK03, Market1501,
MSMT17, and the partial person reID dataset Partial REID.

1 Introduction

Person re-identification (reID) aims to identify/match per-
sons in different places, times, or camera views. There are
large variations in terms of the human poses, capturing
view points, incompleteness of the bodies (due to occlu-
sion). These result in semantics misalignment across 2D
images which makes reID challenging (Shen et al. 2015;
Varior et al. 2016; Subramaniam, Chatterjee, and Mittal
2016; Su et al. 2017; Zheng et al. 2017; Zhang et al. 2017;
Yao et al. 2017; Li et al. 2017; Zhao et al. 2017; Wei et
al. 2017; Zheng, Zheng, and Yang 2018; Ge et al. 2018;
Suh et al. 2018; Qian et al. 2018; Zhang et al. 2019).

Semantics misalignment can be interpreted from two as-
pects. (1) Spatial semantics misalignment: the same spatial
position across images may correspond to different seman-
tics of human body or even different objects. As the example
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Figure 1: Challenges in person reID: (a) Spatial mis-
alignment; (b) Inconsistency of the visible body re-
gions/semantics.

in Figure 1 (a) shows, the spatial position A which corre-
sponds to person leg in the first image corresponds to person
abdomen in the second image. (2) Inconsistency of visible
body regions/semantics: since a person is captured through
a 2D projection, only a portion of the 3D surface of a per-
son is visible/projected in an image. The visible body re-
gions/semantics across images are not consistent. As shown
in Figure 1(b), front side of a person is visible in one image
and invisible in another one.

Alignment: Deep learning methods can deal with such
diversities and misalignment to some extent but it is not
enough. In recent years, many approaches explicitly exploit
human pose/landmark information to achieve coarse align-
ment and they have demonstrated their superiority for per-
son reID (Su et al. 2017; Zheng et al. 2017; Yao et al.
2017; Li et al. 2017; Zhao et al. 2017; Wei et al. 2017;
Suh et al. 2018). During the inference, these part detection
sub-networks are usually required which increases the com-
putational complexity. Besides, the body-part alignment is
coarse and there is still spatial misalignment within the parts
(Zhang et al. 2019). To achieve fine-granularity spatial align-
ment, based on estimated dense semantics (Güler, Neverova,
and Kokkinos 2018), Zhang et al. warp the input person im-
age to a canonical UV coordinate system to have densely
semantics aligned images as inputs for reID (Zhang et al.
2019). However, the invisible body regions result in many
holes in the warped images and thus the inconsistency of
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Figure 2: Illustration of the proposed Semantics Aligning
Network (SAN), which consists of a base network as en-
coder (SA-Enc) and a decoder sub-network (SA-Dec). The
reID feature vector f is obtained by average pooling the fea-
ture map fe4 of the SA-Enc, followed by the reID losses of
LID and LTriplet. To encourage the encoder learning se-
mantically aligned features, the SA-Dec is followed which
regresses the densely semantically aligned full texture image
with the pseudo groundtruth supervision LRec.. The pseudo
groundtruth generation is described in Sec. 3.1 without
shown here. At the decoder, Triplet ReID constraints LTR

are added as the high level perceptual metric. We use
ResNet-50 with four residual blocks as our SA-Enc. In in-
ference, the SA-Dec is discarded.

visible body regions across images. How to better solve the
dense semantics misalignment is still an open problem.

Our work: We intend to fully address the semantics mis-
alignment problems in both aspects. We achieve this by
proposing a simple yet powerful Semantics Aligning Net-
work (SAN). Figure 2 shows the overall framework of the
SAN, which introduces an aligned texture generation sub-
task, with densely semantics aligned texture image (see ex-
amples in Figure 3) as supervision. Specifically, SAN con-
sists of a base network as encoder (SA-Enc), and a decoder
sub-network (SA-Dec). The SA-Enc can be any baseline
network used for person reID (e.g. ResNet-50 (He et al.
2016)), which outputs a feature map fe4 of size h × w × c.
The reID feature vector f ∈ R

c is then obtained by average
pooling the feature map fe4, followed by the reID losses.
To encourage the SA-Enc to learn semantically aligned fea-
tures, the SA-Dec is introduced and used to regress/generate
the densely semantically aligned full texture image (also re-
ferred to as texture image for short) with pseudo groundtruth
supervision. We exploit a synthesized dataset for learning
pseudo groundtruth texture image generation. This frame-
work enjoys the benefit of dense semantics alignment but
without increasing the complexity of inference since the de-
coder SA-Dec is discarded in inference.

Our main contributions are summarized as follows.
• We propose a simple yet powerful framework for solv-

ing the misalignment challenge in person reID without
increasing computational cost in inference.

• A semantics alignment constraint is delicately introduced
by empowering the encoded feature map with aligned full
texture generation capability.

• At the SA-Dec, besides the reconstruction loss, we pro-
pose Triplet ReID constraints over the feature maps as the

perceptual metric.

• There is no groundtruth aligned texture image for the per-
son reID datasets. We address this by generating pseudo
groundtruth texture images by leveraging synthesized
data with person image and aligned texture image pairs
(see Figure 3).

Our method achieves the state-of-the-art performance on
the benchmark datasets CUHK03 (Li et al. 2014), Market-
1501 (Zheng, Shen, and others 2015), MSMT17 (Wei,
Zhang, and others 2018), Partial REID (Zheng et al. 2015).

2 Related Work

Person reID based on deep neural networks has made great
progress in recent years. Due to the variations in poses,
viewpoints, incompleteness of the visible bodies (due to oc-
clusion), etc., across the images, semantics misalignment is
still one of the key challenges.

Alignment with Pose/Part Cues for ReID: To address
the spatial semantics misalignment, most of the previous ap-
proaches make use of external cues such as pose/part (Li et
al. 2017; Yao et al. 2017; Zhao et al. 2017; Kalayeh et al.
2018; Zheng et al. 2017; Su et al. 2017; Suh et al. 2018).
Human landmark (pose) information can help align body
regions across images. Zhao et al. (Zhao et al. 2017) pro-
pose a human body region guided Splindle Net, where a
body region proposal sub-network (trained with the human
pose dataset) is used to extract the body regions, e.g., head-
shoulder, arm region. The semantic features from different
body regions are separately captured thus the body part fea-
tures can be aligned across images. Kalayeh et al. (Kalayeh
et al. 2018) integrate a human semantic parsing branch in
their network for generating probability maps associated to
different semantic regions of human body, e.g., head, upper-
body. Based on the probability maps, the features from dif-
ferent semantic regions of human body are aggregated sep-
arately to have part aligned features. Qian et al. (Qian et al.
2018) propose to make use of GAN model to synthesize re-
alistic person images of eight canonical poses for matching.
However, these approaches usually require pose/part detec-
tion or image generation sub-networks, and extra computa-
tional cost in inference. Moreover, the alignment based on
pose is coarse without considering the finer grained align-
ment within a part across images.

Zhang et al. (Zhang et al. 2019) exploit the dense seman-
tics from DensePose (Alp Güler, Neverova, and Kokkinos
2018) rather than the coarse pose for reID. Their network
consists of two streams in training: a main stream takes the
original image as input while the other stream learns fea-
tures from the warped images for regularizing the feature
learning of the main stream. However, the invisible body
regions result in many holes in the warped images and in-
consistency of visible body regions across images, which
could hurt the learning efficiency. Moreover, there is a lack
of more direct constraints to enforce the alignment. The de-
sign of efficient frameworks for dense semantics alignment
is still under-explored. In this paper, we propose an elegant
framework which adds direct constraints to encourage dense
semantics alignment in feature learning.
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Figure 3: Examples of texture images (first row) and
the corresponding synthesized person images with differ-
ent poses, viewpoints, and backgrounds (second row). A
texture image represents the full texture of the 3D hu-
man surface in a surface-based canonical coordinate sys-
tem (UV space). Each position (u,v) corresponds to a
unique semantic identity. For person images of different per-
sons/poses/viewpoints (in the second row), their correspond-
ing texture images are densely semantically aligned.

Semantics Aligned Human Texture: A human body
could be represented by a 3D mesh (e.g. Skinned Multi-
Person Linear Model, SMPL (Loper et al. 2015)) and a tex-
ture image (Varol et al. 2017; Hormann, Lévy, and Sheffer
2007) as illustrated in Figure 4. Each position on the 3D
body surface has a semantic identity (identified by a 2D
coordinate (u,v) in the canonical UV space) and a texture
representation (e.g. RGB pixel value) (Güler, Neverova, and
Kokkinos 2018; Güler et al. 2017). A texture image on the
UV coordinate system (i.e., surface-based coordinate sys-
tem) represents the aligned full texture of the 3D surface
of the person. Note that the texture images across different
persons are densely semantically aligned (see Figure 3). In
(Güler, Neverova, and Kokkinos 2018), a dataset with la-
beled dense semantics (i.e. DensePose) is established and a
CNN-based system is designed to estimate DensePose from
person images. Neverova et al. (Neverova, Alp Guler, and
Kokkinos 2018) and Wang et al. (Wang et al. 2019) lever-
age the aligned texture image to synthesize person image of
another pose or view. Yao et al. (Yao et al. 2019) propose to
regress the 3D human body ((x,y,z) coordinates in 3D space)
in the semantics aligned UV space, with the RGB person im-
age as the input to the CNN.

Different from all these works, we leverage the densely
semantically aligned full texture image to address the mis-
alignment problem in person reID. We use them as direct
supervisions to drive the reID network to learn semantics
aligned features.

3 The Semantics Aligning Network (SAN)

To address the cross image misalignment challenge caused
by human pose, capturing viewpoint variations, and the in-
completeness of the body surface (due to the occlusion when
projecting 3D person to 2D person image), we propose a
Semantics Aligning Network (SAN) for robust person reID,
in which densely semantically aligned full texture images
are taken as supervision to drive the learning of semantics
aligned features.

The proposed framework is shown in Figure 2. It consists
of a base network as encoder (SA-Enc) for reID, and a de-

Texture image 3D mesh Background Rendered image Person image

Crop&
Resize

Render

Figure 4: Illustration of the generation of synthesized person
image to form a (person image, texture image) pair. Given a
texture image, a 3D mesh, a background image, and render-
ing parameters, we can obtain a 2D person image through
the rendering.

coder sub-network (SA-Dec) (see Sec. 3.2) for generating
densely semantically aligned full texture image with super-
vision. This encourages the reID network to learn semantics
aligned feature representation. Since there is no groundtruth
texture image of 3D human surface for the reID datasets, we
use our synthesized data based on (Varol et al. 2017) to train
SAN (with reID supervisions removed) which is then used
to generate pseudo groundtruth texture images for the reID
datasets (see Sec. 3.1).

The reID feature vector f is obtained by average pooling
the last layer feature map fe4 of the SA-Enc, followed by
the reID losses. The SA-Dec is added after the last layer of
the SA-Enc to regress densely semantically aligned texture
image, with the (pseudo) groundtruth texture supervision.
In the SA-Dec, Triplet ReID constraints are further incorpo-
rated at different layers/blocks as the high level perceptual
metric to encourage identity preserving reconstruction. Dur-
ing inference, the SA-Dec is discarded.

3.1 Densely Semantically Aligned Texture Image

Background: The person texture image in the surface-based
coordinate system (UV space) is widely used in the graph-
ics field (Hormann, Lévy, and Sheffer 2007). Texture images
for different persons/viewpoints/poses are densely semanti-
cally aligned, as illustrated in Figure 3. Each position (u,v)
corresponds to a unique semantic identity on the texture im-
age, e.g., the pixel on the right bottom of the texture image
corresponds to some semantics of a hand. Besides, a tex-
ture image contains all the texture of the full 3D surface of
a person. In contrast, only a part of the surface texture is
visible/projected on a 2D person image.

Motivation: We intend to leverage such aligned texture
images to drive the reID network to learn semantics aligned
features. For different input person images, the correspond-
ing texture images are well semantics aligned. First, for the
same spatial positions on different texture images, the se-
mantics are the same. Second, for person images with dif-
ferent visible semantics/regions, their texture images are se-
mantics consistent/aligned since each one contains the full
texture/information of the 3D person surface.

Pseudo groundtruth Texture Images Generation: For
the images in the reID datasets, however, there are no
groundtruth aligned full texture images. We propose to train
the SAN using our synthesized data to enable the gener-
ation of a pseudo groundtruth texture image for each im-
age in the reID datasets. We can leverage a CNN-based net-
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work to generate pseudo groundtruth texture images. In this
work, we reuse the proposed SAN (with the reID supervi-
sions removed) as the network (see Figure 2), which we re-
fer to as SAN-PG (Semantics Aligning Network for Pseudo
Groundtruth Generation) for differentiation. Given an input
person image, the SAN-PG outputs predicted texture image
as the pseudo groundtruth.

To train the SAN-PG, we synthesize a Paired-Image-
Texture dataset (PIT dataset), based on SURREAL dataset
(Varol et al. 2017), for the purpose of providing the image
pairs, i.e., the person image and its texture image. The tex-
ture image stores the RGB texture of the full person 3D sur-
face. As illustrated in Figure 4, given a texture image, a 3D
mesh/shape, and a background image, a 2D projection of a
3D person can be obtained by rendering (Varol et al. 2017).
We can control the pose and body form of the person, and
projection viewpoint, through changing the parameters of
3D mesh/shape model (i.e. SMPL (Loper et al. 2015)) and
the rendering parameters. Note that we do not include iden-
tity information in the PIT dataset.

To generate the PIT dataset with paired person images and
texture images, in particular, we use 929 (451 for female and
478 for male) raster-scanned texture maps provided by the
SURREAL dataset (Varol et al. 2017) to generate the per-
son image and texture image pairs. These texture images are
aligned with the SMPL default two-dimensional UV coordi-
nate space (UV space). The same uv coordinate value corre-
sponds to the same semantics. We generate 9,290 different
meshes of diverse poses/shapes/viewpoints, by using SMPL
body model (Loper et al. 2015) parameters inferred by HMR
(Kanazawa et al. 2018) from the person images of the COCO
dataset (Lin et al. 2014). For each texture map, we assign
10 different meshes and render these 3D meshes with the
texture image by Neural Render (Kato, Ushiku, and Harada
2018). Then we obtain in total 9,290 different synthesized
(person image, texture image) pairs. To simulate real-world
scenes, the background images for rendering are randomly
sampled from COCO dataset (Lin et al. 2014). Each syn-
thetic person image is centered on a person with resolution
256×128. The resolution of the texture images is 256×256.

Discussion: The texture images which we use for super-
visions have three major advantages. 1) They are spatially
aligned in terms of the dense semantics of a person sur-
face and thus can guide the reID network to learn semantics
aligned representation. 2) A texture image containing the full
3D surface of a person can guide the reID network to learn
more comprehensive representation of a person. 3) They
represent the textures of the human body surface and thus
naturally eliminate the interference of diverse background
scenes.

There are also some limitations of the current pseudo
groundtruth texture image generation process. 1) There is
a domain gap between synthetic 2D images (in the PIT
dataset) and real-world captured images where the synthetic
person is not very realistic. 2) The number of texture im-
ages provided by SURREAL (Varol et al. 2017) is not large
(i.e. 929 in total) which may constraint the diversity of the
data in our synthesized dataset. 3) On SURREAL, all faces
in the texture image are replaced by an average face of either

man or woman (Lin et al. 2014). We leave it as future work
to address these limitations. Even with such limitations, our
scheme achieves significant performance improvement over
the baseline on person reID.

3.2 SAN and Optimization

As illustrated in Figure 2, the SAN consists of an encoder
SA-Enc for person reID, and a decoder SA-Dec which en-
forces constraints over the encoder by requiring the en-
coded features to be able to predict/regress the semantically
aligned full texture images.

SA-Enc: We can use any baseline network used in person
reID (e.g. ResNet-50 (Sun et al. 2018; Zhang et al. 2017;
2019)) as the SA-Enc. In this work, we similarly use
ResNet-50 and it consists of four residual blocks. The output
feature map of the fourth block fe4 ∈ R

h×w×c is spatially
average pooled to get the feature vector (f ∈ R

c), which is
the reID feature for matching.

For the purpose of reID, on the feature vector f, we add
the widely-used identification loss (ID Loss) LID, i.e., the
cross entropy loss for identification classification, and the
ranking loss of triplet loss with batch hard mining (Hermans,
Beyer, and Leibe 2017) (Triplet Loss) LTriplet as the loss
functions in training.

SA-Dec: To encourage the encoder features to learn se-
mantics aligned features, we add a decoder SA-Dec af-
ter the fourth block (fe4) of the encoder to regress the
densely semantically aligned texture images, supervised by
the (pseudo) groundtruth texture images. A reconstruction
loss LRec. is introduced to minimize L1 differences between
the generated texture image and its corresponding (pseudo)
groundtruth texture image.

Triplet ReID constraints at SA-Dec: Besides the
capability of reconstructing the texture images opti-
mized/measured by the L1 distance, we also expect the fea-
tures in the decoder inherit the capability of distinguishing
different identities. Wang et al. (Wang et al. 2019) use reID
network as the perceptual supervision to generate person im-
age, which judges whether the generated person image and
the real image have the same identity. Different from (Wang
et al. 2019), in considering that the features at each layer
of the decoder are spatially semantically aligned across im-
ages, we measure the feature distance for each spatial po-
sition rather than on the final globally pooled feature. We
introduce Triplet ReID constraints to minimize the L2 dif-
ferences between the features of the same identity and max-
imize those of different identities. Specially, for a sample a
in a batch, we can randomly select a positive sample p (with
the same identity) and a negative sample n. The Triplet ReID
constraint/loss over the output feature map of the lth block
of the SA-Dec is defined as

Ll
TR = max(

1

hl × wl
||fdl(xa

l )− fdl(x
p
l )||22−

1

hl × wl
||fdl(xa

l − fdl(x
n
l )||22 +m, 0),

(1)

where hl ×wl is the resolution of feature map with cl chan-
nels, fdl(xa

l ) ∈ R
hl×wl×cl denotes the feature map of sam-

ple a. ||fdl(xa
l ) − fdl(x

p
l )||22 =

∑hl

i=1

∑wl

j=1 ||fdl(xa
l )(i, j, :
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)− fdl(x
p
l )(i, j, :)||22 with fdl(x

a
l )(i, j, :) denotes the feature

vector of cl channels at spatial position (i, j). The margin
parameter m is set to 0.3 experimentally

Training Scheme: There are two steps for training our
proposed SAN framework for reID:

Step-1, we train a network for the purpose of generating
pseudo groundtruth texture images for any given input per-
son image. For simplicity, we reuse a simplified SAN (i.e.,
SAN-PG) which consists of the SA-Enc and SA-Dec, but
with only the reconstruction loss LRec.. We train the SAN-
PG with our synthesized PIT dataset. The SAN-PG model is
then used to generate pseudo groundtruth texture image for
reID datasets (such as CUHK03 (Li et al. 2014)).

Step-2, we train the SAN for both reID and aligned tex-
ture generation. The pre-trained weights of the SAN-PG are
used to initialize the SAN. One alternative is to use only the
reID dataset for training SAN, where the pseudo groundtruth
texture images are used for supervision and all the losses
are added. The other strategy is to iteratively use the reID
dataset and the synthesized PIT dataset during training. We
find the later solution gives superior results because the
groundtruth texture images for the synthesized PIT dataset
have higher quality than that of reID dataset. The overall loss
L consists of the ID Loss LID, the Triplet Loss LTriplet,
the reconstruction loss LRec., and the Triplet ReID con-
straint LTR, i.e., L = λ1LID + λ2LTriplet + λ3LRec. +
λ4LTR. For a batch of reID data, we experimentally set
λ1 to λ4 as 0.5, 1.5, 1, 1. For a batch of synthesized data,
λ1 to λ4 are set to 0, 0, 1, 0 where the reID losses and
Triplet ReID constraints (losses) are not used.

4 Experiment

4.1 Datasets and Evaluation Metrics

We conduct experiments on six benchmark person reID
datasets, including CUHK03 (Li et al. 2014), Market1501
(Zheng, Shen, and others 2015), DukeMTMC-reID (Zheng,
Zheng, and Yang 2017), the large-scale MSMT17 (Wei,
Zhang, and others 2018), and two challenging partial per-
son reID datasets of Partial REID (Zheng et al. 2015) and
Partial-iLIDS (He et al. 2018)

We follow the common practices and use the cumulative
matching characteristics (CMC) at Rank-k, k = 1, 5, 10, and
mean average precision (mAP) to evaluate the performance.

4.2 Implementation Details

We use ResNet-50 (He et al. 2016) (which are widely used
in some re-ID systems (Sun et al. 2018; Zhang et al. 2017;
2019)) to build our SA-Enc. We also take it as our baseline
(Baseline) with both ID loss and triplet loss. Similar to (Sun
et al. 2018; Zhang et al. 2019), the last spatial down-sample
operation in the last Conv layer is removed. We build a light
weight decoder SA-Dec by simply stacking 4 residual up-
sampling blocks with about 1/3 parameters of the SA-Enc.
This facilitates our model training using only a single GPU.

4.3 Ablation Study

We perform comprehensive ablation studies to demonstrate
the effectiveness of the designs in the SAN framework, on

Table 1: Comparisons (%) of our SAN and baseline.

Model
CUHK03(L) Market1501

Rank-1 mAP Rank-1 mAP

Baseline (ResNet-50) 73.7 69.8 94.1 83.2
SAN-basic 77.9 73.7 95.1 85.8

SAN w/ LTR 78.9 74.9 95.4 86.9
SAN w/ syn. data 78.8 75.8 95.7 86.8

SAN 80.1 76.4 96.1 88.0

the datasets of CUHK03 (labeled bounding box setting) and
Market-1501 (single query setting).

Effectiveness of Dense Semantics Alignment. In Ta-
ble 1, SAN-basic denotes our basic semantics aligning
model which is trained with the supervision of the pseudo
groundtruth texture images with loss of LRec., the reID
losses LID and LTriplet. SAN w/LTR denotes that the
Triplet ReID constraints at the SA-Dec is added on top of
the SAN-basic. SAN w/syn. data denotes that the (per-
son image, texture image) pairs of our PIT dataset is
also used in training the SAN on top of the SAN-basic
network. SAN denotes our final scheme with both the
Triplet ReID constraints and the groundtrth texture image
supervision from the PIT on top of the SAN-basic network.

We have the following observations/conclusions. 1)
Thanks to the drive to learn semantics aligned fea-
tures, our SAN-basic significantly outperforms the base-
line scheme by about 4% in both Rank-1 and mAP ac-
curacy on CUHK03. 2) The introduction of high-level
Triplet ReID constraints (LTR) as the perceptual loss can
regularize the feature learning and it brings about additional
1.0% and 1.2% improvements in Rank-1 and mAP accu-
racy on CUHK03. Note that we add them after each block
of the first three blocks in the SA-Dec. 3) The use of the
synthesized PIT dataset (syn. data) with the input image and
groundtruth texture image pairs for training the SAN reme-
dies the imperfection of the generated pesudo groundtruth
texture images (with errors/noise/blurring). It improves the
performance over SAN-basic by 0.9% and 2.1% in Rank-1
and mAP accuracy. 4) Our final scheme SAN significantly
outperforms the baseline, i.e., by 6.4% and 6.6% in Rank-1
and mAP accuracy on CUHK03, but with the same infer-
ence complexity. On Market1501, even though the baseline
performance is already very high, our SAN achieves 2.0%
and 4.8% improvement in Rank-1 and mAP.

Different Reconstruction Guidance. We study the ef-
fect of using different reconstruction guidance and show re-
sults in Table 2. We design another two schemes for compar-
isons. For the same input image, the three schemes use the
same encoder-decoder networks (the same network as SAN-
basic) but to reconstruct (a) the input person image, (b) pose
aligned person image, and (c) proposed texture image (see
Figure 5). To have pose aligned person image as supervision,
during synthesizing the PIT dataset, for each projected per-
son image, we also synthesized a person image of a given
fixed pose (frontal pose here). Thus, the pose aligned per-
son images are also semantically aligned. In this case, only
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Figure 5: The same encoder-decoder networks but with different reconstruction objectives of reconstructing the (a) input image,
(b) pose aligned person image, and (c) texture image, respectively.

Table 2: Performance (%) comparisons of the same encoder-
decoder networks but with different reconstruction objec-
tives of reconstructing the input image, pose aligned person
image, and texture image respectively.

Model
CUHK03(L) Market1501

Rank-1 mAP Rank-1 mAP

Baseline (ResNet-50) 73.7 69.8 94.1 83.2
Enc-Dec rec. input 74.4 70.8 94.3 84.0
Enc-Dec rec. pose 75.8 72.0 94.4 84.5

Enc-Dec rec. PN-GAN pose 76.1 72.6 94.3 84.7
Enc-Dec rec. texture (SAN-basic) 77.9 73.7 95.1 85.8

partial texture (frontal body regions) of the full 3D surface
texture is retained with information loss. In addition, corre-
sponding to (b), we also use the pose aligned person images
generated by PN-GAN (Qian et al. 2018) as the reconstruc-
tion guidance and get Enc-Dec rec. PN-GAN pose.

From Table 2, we have the following observa-
tions/conclusions. 1) The addition of a reconstruction sub-
task helps improve the reID performance which encourages
the encoded feature to preserve more original information.
Enc-Dec rec. input improves the performance of the base-
line by 0.7% and 1.0% in Rank-1 and mAP accuracy. How-
ever, the input images (and their reconstructions) are not se-
mantically aligned across images. 2) Enc-Dec rec. pose and
Enc-Dec rec. PN-GAN pose both enforce the supervision to
be pose aligned person images. This has a superior perfor-
mance to Enc-Dec rec. input, demonstrating the effective-
ness of alignment. But they are sub-optimal which may lose
information. For example, for an input back-facing person
image, such fixed (frontal) pose supervision may mistakenly
guide the features to drop the back-facing body information.
3) In contrast, our full aligned texture image as supervision
can provide comprehensive and densely semantics aligned
information, which results in the best performance.

Why not Directly use Generated Texture Image for
ReID? How about the performance when the generated tex-
ture images are used as the input for reID? Results show that
our scheme significantly outperforms them. The inferior per-
formance is caused by the low quality of the generated tex-
ture image (with the texture smoothed/blurred).

How does the Quality of Textures affect reID Perfor-
mance? We use different backbone networks, e.g., ResNet-
101, DenseNet-121, etc., to train the pseudo texture genera-
tors, and then the generated pseudo textures are used to train
our SAN-basic network for reID. We find that using deeper

Figure 6: Two sets of examples of the pairs. Each pair corre-
sponds to the original input image and the generated texture
image.

and more complex generators can improve the texture qual-
ity, which in turn further boosts the reID performance.

4.4 Comparison with State-of-the-Arts

Table 3 shows the performance comparisons of our proposed
SAN with the state-of-the-art methods. Our scheme SAN
achieves the best performance on CUHK03, Market1501,
and MSMT17. It consistently outperforms the approach
DSA-reID (Zhang et al. 2019) which also considers the
dense alignment. On the DukeMTMC-reID dataset, MGN
(Wang et al. 2018b) achieves better performance, however,
it ensembles the local features of multiple granularities and
the global features.

4.5 Visualization of Generated Texture Image

For the different images with varied poses, viewpoints, or
scales, we find the generated texture images from our SAN
are well semantically aligned (see Figure 6).

4.6 Partial Person ReID

Partial person reID is more challenging as the misalignment
problem is more severe, where two partial person images
are generally not spatially semantics aligned and usually
have less overlapped semantics. We also demonstrate the
effectiveness of our scheme on the challenging partial per-
son reID datasets of Partial REID (Zheng et al. 2015) and
Partial-iLIDS (He et al. 2018).

Benefiting from the aligned full texture generation capa-
bility, our SAN exhibits outstanding performance. Figure 7
shows our regressed texture images from the SA-Dec are
semantically aligned across images even though the input
images have severe misalignment.

Table 4 shows the experimental results. Note that we train
SAN on the Market1501 dataset (Zheng, Shen, and oth-
ers 2015) and test on the partial datasets. We directly take
the trained model for Market1501 for testing, i.e., Base-
line (ResNet-50), SAN. In this case, the network seldom
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Table 3: Performance (%) comparisons with the state-of-the-art methods. Bold numbers denote the best performance, while the
numbers with underlines denote the second best.

Method

CUHK03
Market1501 DukeMTMC-reID MSMT17Labeled Detected

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

IDE (ECCV) (Sun et al. 2018) 43.8 38.9 - - 85.3 68.5 73.2 52.8 - -

Pose
/Part

/Mask
-related

MGN (ACMMM) (Wang et al. 2018b) 68.0 67.4 66.8 66.0 95.7 86.9 88.7 78.4 - -
AACN (CVPR) (Xu et al. 2018) - - - - 85.9 66.9 76.8 59.3 - -
MGCAM (CVPR) (Song et al. 2018) 50.1 50.2 46.7 46.9 83.8 74.3 - - - -
MaskReID (ArXiv) (Qi et al. 2018) - - - - 90.0 70.3 78.9 61.9 - -
SPReID (CVPR) (Kalayeh et al. 2018) - - - - 92.5 81.3 84.4 71.0 - -
Pose Transfer (CVPR) (Liu et al. 2018) 33.8 30.5 30.1 28.2 87.7 68.9 68.6 48.1 - -
PSE (CVPR) (Sarfraz et al. 2018) - - 30.2 27.3 87.7 69.0 79.8 62.0 - -
PN-GAN (ECCV) (Qian et al. 2018) - - - - 89.4 72.6 73.6 53.2 - -
Part-Aligned (ECCV) (Suh et al. 2018) - - - - 91.7 79.6 84.4 69.3 - -
PCB+RPP (ECCV) (Sun et al. 2018) 63.7 57.5 - - 93.8 81.6 83.3 69.2 - -

Attention
-based

DuATM (CVPR) (Si et al. 2018) - - - - 91.4 76.6 81.8 64.6 - -
Mancs (ECCV) (Wang et al. 2018a) 69.0 63.9 65.5 60.5 93.1 82.3 84.9 71.8 - -
FD-GAN (NIPS) (Ge et al. 2018) - - - - 90.5 77.7 80.0 64.5 - -
HPM (AAAI) (Fu et al. 2019) 63.9 57.5 - - 94.2 82.7 86.6 74.3 - -

Semantics DSA-reID (CVPR) (Zhang et al. 2019) 78.9 75.2 78.2 73.1 95.7 87.6 86.2 74.3 - -

Others

GoogLeNet (CVPR) (Wei, Zhang, and others 2018) - - - - - - - - 47.6 23.0
PDC (CVPR) (Wei, Zhang, and others 2018) - - - - - - - - 58.0 29.7
GLAD (CVPR) (Wei, Zhang, and others 2018) - - - - - - - - 61.4 34.0

Ours Baseline (ResNet-50) 73.7 69.8 69.7 66.1 94.1 83.2 85.9 71.8 73.8 47.2
SAN 80.1 76.4 79.4 74.6 96.1 88.0 87.9 75.5 79.2 55.7

Table 4: Partial person reID performance on the datasets of
Partial REID and Partial-iLIDS (partial images are used as
the probe set and holistic images are used as the gallery set).
“*” means that the network is fine-tuned with holistic and
partial person images from Market1501.

Model

Partial REID Partial-iLIDS

Rank-1 Rank-5 Rank-10 Rank-1 Rank-5 Rank-10

AMC+SWM 36.0 - - 49.6 - -
DSR (single-scale)* 39.3 - - 51.1 - -
DSR (multi-scale)* 43.0 - - 54.6 - -

Baseline (ResNet-50) 37.8 65.0 74.5 42.0 65.5 73.2
SAN 39.7 67.5 80.5 46.9 71.2 78.2

Baseline (ResNet-50)* 38.9 67.7 78.2 46.1 69.6 76.1
SAN* 44.7 72.4 86.0 53.7 77.4 81.9

sees partial person data. Similar to (He et al. 2018), we also
fine-tune with the holistic and partial person images cropped
from Market1501 (marked by *). SAN* outperforms Base-
line*, AMC+SWM (Zheng et al. 2015) and is compara-
ble with the state-of-the-art partial reID method DSR (He
et al. 2018). SAN* outperforms Baseline (ResNet-50)* by
5.8%, 4.7%, 7.8% on Rank-1, Rank-5, and Rank-10 respec-
tively on the Partial REID dataset, and by 7.6%, 7.8%, 5.8%
on Rank-1, Rank-5, and Rank-10 respectively on the other
Partial-iLIDS dataset. Even without fine-tune, our SAN also
significantly outperforms the baseline.

Figure 7: Three example pairs of (input image, regressed
texture images by our SAN) from the Partial REID dataset.

5 Conclusion

In this paper, we proposed a simple yet powerful Se-
mantics Aligning Network (SAN) for learning semantics-
aligned feature representations for efficient person reID,
under the joint supervisions of person reID and seman-
tics aligned texture generation. At the decoder, we add
Triplet ReID constraints over the feature maps as the per-
ceptual loss to regularize the learning. We have synthesized
a Paired-Image-Texture dataset (PIT) to train a SAN-PG
model, with the purpose to generate pseudo groundtruth tex-
ture images for the reID datasets, and to train the SAN.
Our SAN achieves the state-of-the-art performances on the
datasets CUHK03, Market1501, MSMT17, and the Partial
REID, without increasing computational cost in inference.
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