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Abstract

The dominant video question answering methods are based
on fine-grained representation or model-specific attention
mechanism. They usually process video and question sepa-
rately, then feed the representations of different modalities
into following late fusion networks. Although these methods
use information of one modality to boost the other, they ne-
glect to integrate correlations of both inter- and intra-modality
in an uniform module. We propose a deep heterogeneous
graph alignment network over the video shots and ques-
tion words. Furthermore, we explore the network architecture
from four steps: representation, fusion, alignment, and rea-
soning. Within our network, the inter- and intra-modality in-
formation can be aligned and interacted simultaneously over
the heterogeneous graph and used for cross-modal reason-
ing. We evaluate our method on three benchmark datasets
and conduct extensive ablation study to the effectiveness of
the network architecture. Experiments show the network to
be superior in quality.

1 Introduction

Video question answering (VideoQA), which aims to auto-
matically infer the correct answer given a video and a re-
lated textual question, has received an increasing amount of
attention in recent years (Jang et al. 2019). VideoQA’s infer-
ence always involves heterogeneous data from two domains,
i.e., spatio-temporal video content and word sequence in lan-
guage.

Recent efforts towards VideoQA (Tapaswi et al. 2016;
Jang et al. 2017) try to uncover latent correlations between
video content and words’ semantics, which could be taken
as inter-modality correlations. Li et al. introduced a specific
co-attention mechanism to attend to relevant video and lan-
guage. Kim et al. proposed a progressive attention memory
to conduct dynamic modality fusion.

Meanwhile, it has been shown that appropriately in-
corporating correlations inside videos or dependencies
among word sequence do help improve the performance
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Figure 1: Given a shot-level video and a question, our model
performs cross-modal reasoning over a heterogeneous graph
between factors, shots si and words wi, then answers it. Het-
erogeneous means both inter- and intra-modality. The high-
lighted lines indicate the reasoning process between factors.

of VideoQA, which could be regarded as exploiting intra-
modality correlations. A common practice is to encode video
and word sequences using RNN-based encoders separately
(Jang et al. 2017). A further contribution is that Fan et
al. proposed heterogeneous memory to fuse visual features
while devised another memory to process question.

On the other hand, in most cases, integrating correlations
of both inter-modality and intra-modality (also referred to as
heterogeneous relation) in a more flexible way may further
benefit the inference of VideoQA, such as graph-structured
methods. As shown in the upper part of Fig. 1, to answer
the question, we need firstly establish semantic relations be-
tween the word woman and visual regions in video, then lo-
calize the action put hand. Moreover, we need inter-modality
alignment with semantic similarity to figure out the action
dance after temporal reasoning. However, current methods
of VideoQA lack an uniform model for simultaneously mod-
eling and reasoning with inter- and intra-modality relations.

In this paper, we propose a novel network of heteroge-
neous graph alignment (HGA) to perform cross-modal rea-
soning and VideoQA. We firstly build an uniform hetero-
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geneous graph over different modality factors, which is an
expressive and interpretable pathway. Through the hetero-
geneous graph, shown in the lower part of Fig. 1, there are
two types of edges, intra-modality homogeneous edges and
inter-modality heterogeneous edges. We can reason inside
one modality, like “s1 � s3” and “w1 � w2”, and inter-
modality, like “s1 � w2”. Over the graph, particularly,
we introduce modular co-attention embedding operation to
align the visual and linguistic representations, while em-
ploying further aligned Graph Convolutional Network (Kipf
and Welling 2016) to model complex correlation and rea-
son among multiple modalities. Nonetheless, an intractable
drawback is the semantic gap between different modalities,
blocking inter-modality interactions. Recently, cross-modal
attention mechanisms are widely used as a compromise (Yu
et al. 2019), and we regard the attention-based fusion as se-
mantic alignment in an interaction space, which is crucial
prior knowledge for constructing the graph. We evaluate our
method on three benchmark datasets and conduct extensive
ablation study to the effectiveness. Experiments show the
HGA network to be superior in quality.

Our contributions can be summarized into threefold. (1)
We introduce a novel heterogeneous graph to VideoQA task,
representing video shots and words to graph nodes, which
enables us to represent rich inter- and intra-modality interac-
tions. (2) We propose a variety of modular co-attention em-
bedding operations, which play an important role in cross-
modal fusion and alignment. (3) We embed these modules
into an overall parallel network to perform four steps: repre-
sentation, fusion, alignment, and reasoning.

2 Related Work

2.1 Video Question Answering

Recently, there has been significant progress in multimodal
question answering, the most representative task is Visual
Question Answering (VQA) (Cadene et al. 2019; Gao et
al. 2019; Yu et al. 2019) and Video Question Answering
(VideoQA), where VideoQA extends VQA to video domain
and raises higher demands on spatio-temporal understand-
ing and reasoning. Tapaswi et al. adopted memory network
to attend and reuse the relevant information regarding the
questions. Jang et al. proposed to use spatio-temporal atten-
tion mechanism. Lei et al. introduced a multi-stream end-to-
end network and used a RNN to fuse them. There are several
widely used benchmark datasets. The TGIF-QA dataset is
built on short, action-specific video clips and requires fine-
grained action understanding and reasoning while the other
two have more complicated video plots, requiring more on
long-range understanding of the scenes. More recently, part
of the contributions applied the dynamic memory network
to enhance the intelligence through better representation
and fusion strategies (Wang et al. 2018; Gao et al. 2018;
Fan et al. 2019; Kim et al. 2019). Besides, Xue et al. pro-
posed tree-structured memory network and Li et al. used
self-attention to model temporal information, introducing
several novel methods to VideoQA. However, existing meth-
ods focus on multimodal representation and fusion, there is
still little work on alignment and reasoning.

2.2 Multimodal Information Fusion

Multimodal fusion is an original topic in multimodal ma-
chine learning. The simplest example is a vector operation
of individual modality features, referred to as early fusion,
including vector concatenation, element-wise addition and
element-wise multiplication. Then the outputs are projected
into a joint space followed by a neural network (Baltrušaitis,
Ahuja, and Morency 2018). Attention mechanism has been
regarded as an effective method to enhance the interaction
between modalities, attending to the important terms and
avoiding noise (Zhang, Cao, and Wu 2019). The co-attention
mechanism is viewed as another effective solution, and pre-
vious work has suggested a variety of task-specific structures
(Nguyen and Okatani 2018; Gao et al. 2019; Yu et al. 2019;
Li et al. 2019). Bilinear pooling is also an effective pathway
to fuse multimodal vectors by computing the outer product
(Ben-Younes et al. 2019), and provides multiplicative in-
teraction between all elements of both vectors. The effec-
tiveness of these methods is widely proven in the VQA and
VideoQA task.

3 Method

The framework of our HGA network is depicted in Fig. 2.
In our method, we argue that each word and each video shot
contains equally semantic information, and can be integrated
in an uniform modules. Precisely, on the whole, we design
a parallel architecture including global and local fusion. To
jointly model visual and linguistic factors (shots or words),
we first obtain the contextualized visual and linguistic rep-
resentations. Note that when we talk about a “video shot”,
we mean a small video segment that can be processed by a
3D convolution module and produces a single motion vector.
We embed visual and linguistic vectors into a common space
through a modular co-attention embedding operation. In the
next heterogeneous graph reasoning part, we first propose an
alignment strategy to obtain weighted adjacency matrix, and
then use the adjacency matrix to construct a multilayer graph
convolution network for multimodal crossover reasoning.

3.1 Visual and Linguistic Contextual
Representation

Video shots have richer motion expression ability than
frame-level, so we use 3D ConvNets (i.e., C3D) (Tran et
al. 2015) to obtain shot-level video motion features, and in
order to take into account the perception of image, we use
2D ConvNets (i.e., ResNet) (He et al. 2016) as an auxiliary
view. Then, the video is represented as two feature views,
appearance features FA =

{
ai : i ≤ Lv,ai ∈ R

da
}

and
motion features FM =

{
mi : i ≤ Lv,mi ∈ R

dm
}

, where
Lv is the number of frames and da, dm are the input di-
mensionalities of the two views. We obtain a joint visual
representation by a concatenation of the two and use two
fully-connected layers to project them into a common vi-
sual space. Then the video is represented by a set of vectors
F =

{
fi : i ≤ Lv,fi ∈ R

d
}

, where d is the dimension of
visual features.

For question, we follow previous work (Gao et al. 2018;
Jang et al. 2019; Fan et al. 2019) and represent each word
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Figure 2: HGA network consists of four stages: representation, fusion, alignment, and reasoning. In representation stage, the
visual encoder and linguistic encoder generate contextual representations, local V ,Q and global vLv

, qLq
. In fusion stage, the

co-attention embedding operation performs cross-modal fusion. In alignment stage, the heterogeneous matrix X is projected
to an interaction space, producing a further aligned adjacency matrix G and conducting a heterogeneous graph. In reasoning
stage, the multilayer GCN takes X as inputs and performs cross-modal reasoning over G to produce local vector slocal. In
another branch, the global vector sglobal is fed through a bilinear fusion module. Finally, they are fused together for answer.

as a vector using the pre-trained GloVe word embedding de-
noted as E =

{
ei : i ≤ Lq, ei ∈ R

300
}

, where Lq is the
number of embedded words.

In order to obtain contextual representations to aggre-
gate dynamic temporal information from multiple time-steps
and enhance reasoning ability. We employ two indepen-
dent Gated Recurrent Units (GRU) to encode visual and
linguistic features separately. The generated video features
V ∈ R

Lv×d and question features Q ∈ R
Lq×d denote as

V ,vLv
= GRU (F ; θGRU ) , (1)

Q, qLq
= GRU (E; θGRU ) , (2)

where vLv
and qLq

are the outputs of the last hidden units
which represent the global features of the two sequences.

3.2 Cross-Modal Joint Fusion and Alignment

Beyond recognizing and memorizing the visual and linguis-
tic contents, VideoQA also requires to understand the dense
interactions between factors of different modalities in a com-
mon space. We consider co-attention mechanism as one type
of cross-modal fusion and alignment method between visual
and textual channels, because it requires one modality as the
clue to determine the weight of another modality by the se-
mantic similarity. We first give a general describe of modu-
lar co-attention embedding operation (CAEO) and then we
provide several universal variants of it.

Given a query and a set of key-value pairs, co-attention
mechanism calculates weighted sum of values based on a
compatibility function of the query and keys, and two modal
features alternate as queries. Self-attention is a special case
of same query and key. Supposed that query, key and value
are represented as MQ,MK ,MV , both of them are a set
of vectors and packed together into matrices. Following the
scaled dot-product self-attention (Vaswani et al. 2017), we

define a generic CAEO (see Fig. 3f) as:

CAEO (MQ,MK ,MV ) = softmax

(
MQM

T
K√

d

)
MV ,

(3)
where MQ,MK usually indicate two different modalities
and MK and MV are equal in most cases. CAEO embeds
the information of the query into key’s feature space by cal-
culating the similarity between the two modalities and per-
forming soft selection.

We argue that a reasonable explanation for the CAEO is
the soft nearest neighbors theory (Goldberger et al. 2005).
The softmax dot-product operation first scaled to have unit
norm is equivalent to cosine similarity while soft KNN uses
a softmax over Euclidean distances. The significance of this
operation is that for each vector in the query, the weighted
sum of value vectors is taken as its soft nearest neighbor.
Therefore, the outputs of CAEO can be seen as vectors in the
space of MV , but the information of query MQ is embedded.

Next we discuss diversiform choices for CAEO, as illus-
trated in Fig. 3.

Transform from linguistic to visual space. We first use a
linear projection to affine Q and V into a transformed space.
Then we apply CAEO to transform linguistic representation
Q to visual representation Qq→v , named LinguisticVisual,

QCAEO = CAEO
(
W q

q Q,W q
kV ,W q

vV
)
, (4)

Qq→v = LayerNorm (FFq (QCAEO) +Q) . (5)

In the above formulation, Wq,Wk,Wv with superscript are
the learned weight matrices, FFq is a feed-forward module
implemented as linear transformation. LayerNorm is used
here to stabilize training (Ba, Kiros, and Hinton 2016).

Transform from visual to linguistic space. Contrary to
the previous practice, we transform visual representation V
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to linguistic representation Vv→q , named VisualLinguistic:

VCAEO = CAEO
(
W v

q V ,W v
kQ,W v

v Q
)
, (6)

Vv→q = LayerNorm (FFv (VCAEO) + V ) . (7)

Co-attention transformation. Beyond the first two unidi-
rectional affine transformations, we argue that the crossover
transformation is crucial to fuse and align the information
of different modalities. We combine the above two transfor-
mation and introduce a symmetrical co-attention operation,
illustrated in Fig. 3c and named CoAttn.

Pseudo-siamese co-attention transformation. We utilize
Eq. (4) and Eq. (6) for QCAEO and VCAEO, then devise two
streams to generate co-attention outputs Qq→v and Vv→q:

Qq→v = LayerNorm (FFq ([QCAEO;Q]) +Q) , (8)
Vv→q = LayerNorm (FFv ([VCAEO;V ]) + V ) , (9)

where [·] is concatenation operation. FFq, FFv are two in-
dependent feed-forward networks, the structure is named
PseudoSiamese (see Fig. 3d).

Siamese co-attention transformation is similar to Pseu-
doSiamese, named Siamese and shown in Fig. 3e. The only
difference is Siamese uses the weight-shared feed-forward
network, FFq and FFv in Eq. (8) and (9).

Note that we have added residual connection (He et al.
2016) in each CAEO variant, so these modules can be
stacked multiple layers for better performance. We write the
outputs of this module as Qupdate and Vupdate uniformly.

3.3 Heterogeneous Graph Reasoning

In this section, we introduce our key innovations that we de-
vise a heterogeneous graph for cross-modal relational rea-
soning. We argue that cross-embedded visual factors (video
shots) and linguistic factors (words) have coordinate seman-
tic information and can be aligned for interactive reasoning
in graph-structured neural networks.

Based on previous representation and fusion steps, we ob-
tain two cross-embedded features of linguistic modality and
visual modality, Qupdate and Vupdate. We seek to construct
an undirected heterogeneous graph with each video shot and
each question word as a node. We concatenate the Vupdate

and Qupdate to construct the heterogeneous input matrix X
involving all the visual and linguistic vectors.

X =

[
Qupdate

Vupdate

]
, (10)

where X ∈ R
N×d and N = Lv + Lq . We treat the feature

vectors {xi}Ni=1 in X as nodes. Then, the heterogeneous
graph is defined as G = {V, E} with N nodes vi ∈ X and
fully-connected edges (vi,vj).

Cross-modal aligned adjacency matrix. The initializa-
tion of edge weights, formalized as an adjacency matrix, is
an crucial prior knowledge for graph. Because a question
tends to focus on part of video rather than the whole, while
visual and linguistic factors are also not equally weighted in-
side the respective modalities. For instance, practical words
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Figure 3: Flowcharts of CAEO variants. (a) LinguisticVi-
sual. (b) VisualLinguistic. (c) CoAttn. (d) PseudoSiamese.
(e) Siamese. (f) Vanilla CAEO.

are usually more important than function words. In the het-
erogeneous graph G, we perform graph-based alignment to
obtain cross-modal aligned adjacency matrix weighted by
semantic similarity.

Firstly, we project the input features X into an interaction
space by a non-linear transformation operation φ (·). Then,
we obtain the correlation scores of nodes by calculating the
dot-product similarity (Wang and Gupta 2018):

G = φ (X)φ (X)
T
, (11)

where G is defined as the adjacency matrix and Gi,j indi-
cates the alignment weight between xi and xj . Then we per-
form normalization on each row of the matrix by a softmax
function to obtain the final aligned adjacency matrix.

By introducing the learnable transformation φ (·), it is
effective to learn the weights between both homogeneous
and heterogeneous edges, which allows us to carry out both
inter- and intra-modality alignment.

Reasoning on heterogeneous graph. Recent VQA re-
searches point out that Graph Convolutional Network works
effectively on intra-modality reasoning (Teney, Liu, and
van den Hengel 2017; Norcliffe-Brown, Vafeias, and Parisot
2018). These methods usually regard the features of image
regions as graph nodes and establish graph-based reasoning
models between different regions. While for VideoQA, the
video shots contains motion and reasoning clues, as well as
words of question. Reasoning over the heterogeneous graph
G can be natural and effective. GCN performs relational
reasoning over a graph where the response of each node
is updated by a linear transformation of aggregated excita-
tion of its neighbors and itself. The weights are specified by
the aligned adjacency matrix G. In order to incorporate the
graph input signals, we represent one layer of GCN as

Z = GXW , (12)
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Table 1: State-of-the-art comparison on TGIF-QA dataset.
Mean �2 loss for Count, and accuracy (%) for others.

Methods Count Action Trans. FrameQA

Random 19.62 20.00 20.00 0.06

ST-VQA-Sp. 4.28 57.3 63.7 45.5
ST-VQA-Tp. 4.40 60.8 67.1 49.3
ST-VQA-Sp.Tp. 4.56 57.0 59.6 47.8

CT-SAN 5.14 56.1 64.0 39.6
Co-Mem 4.10 68.2 74.3 51.5
PSAC 4.27 70.4 76.9 55.7

Fan et al. 4.101 73.9 77.8 53.8
ST-VQA� 4.22 73.5 79.7 52.0

Ours HGA 4.09 75.4 81.0 55.1

where W ∈ R
d×d is the learnable weight matrix and Z ∈

R
N×d is the output of GCN with the same shape as X .
We apply a self-attention pooling on Z to obtain a lo-

cal result vector slocal which reflects the underlying cross-
modal relations after local reasoning. We define the self-
attention pooling as an operation flow ρ := (FC(d)-Tanh-
FC(1)-Softmax), and the outputs are attended weights. So
we have

slocal =

N∑
ρ(Z)

T
Z. (13)

One thing to note is that similar work (Norcliffe-Brown,
Vafeias, and Parisot 2018) targeting VQA tasks also utilized
question conditioned GCN to deal with the relationships be-
tween different visual regions but they did it simply by con-
catenating question embedding with each region’s feature,
while we view shots and words as equally valuable nodes.

3.4 Global and Local Information Fusion

Because the graph-structured reasoning module focuses
more on the interaction between local factors, it loses the
integration ability of global semantic information to some
extent. In this section, we fuse the local and global informa-
tion by a bilinear fusion module (Ben-Younes et al. 2019).
In the first step, the last GRU hidden states, qLq

and vLv
,

are fused into a global representation:

sglobal = Bilinear
(
qLq

,vLv

)
. (14)

Next, we use bilinear module again to fuse the global and
local representations to produce the output vector s of the
whole network,

s = Bilinear (sglobal, slocal) . (15)

3.5 Answer Prediction and Evaluation

VideoQA tasks usually come in two forms, multiple-choice
and open-ended (Jang et al. 2019; Xu et al. 2017). Given
the input video clip v ∈ V and the related question q ∈ Q,
multiple-choice task is to choose a correct answer a� out of a

14.10 is the mean �2 loss of rounded numbers, the unrounded
value is 4.02 (Fan et al. 2019).

Table 2: State-of-the-art comparison on MSVD-QA dataset.
Mean �2 loss for Count, and accuracy (%) for others.

Methods What
(8,149)

Who
(4,552)

How
(370)

When
(58)

Where
(28)

All
(13,157)

ST-VQA 18.1 50.0 83.8 72.4 28.6 31.3
Co-Mem 19.6 48.7 81.6 74.1 31.7 31.7
AMU 20.6 47.5 83.5 72.4 53.6 32.0
Fan et al. 22.4 50.1 73.0 70.7 42.9 33.7

Ours HGA 23.5 50.4 83.0 72.4 46.4 34.7

Table 3: State-of-the-art comparison on MSRVTT-QA
dataset. Mean �2 loss for Count, and accuracy (%) for others.

Methods What
(49,869)

Who
(20,385)

How
(1,640)

When
(677)

Where
(250)

All
(72,821)

ST-VQA 24.5 41.2 78.0 76.5 34.9 30.9
Co-Mem 23.9 42.5 74.1 69.0 42.9 32.0
AMU 26.2 43.0 80.2 72.5 30.0 32.5
Fan et al. 26.5 43.6 82.4 76.0 28.6 33.0

Ours HGA 29.2 45.7 83.5 75.2 34.0 35.5

candidate set {ai}Ki=1, while open-ended task is to predict an
answer â belongs to a pre-defined answer set A that matches
the ground answer a� ∈ A.

For multiple-choice task, we follow (Jang et al. 2019) to
concentrate the question with each answer candidates so that
we obtain K candidate textual sequences. Then we use a
linear regression function that inputs the final output vector
s and outputs K scores for all candidate answers. We train
the whole network by minimizing the hinge loss of pairwise
comparisons, scores of incorrect answers sni , i ≤ K − 1 and
correct answer sp, where

Loss =
K−1∑
i=1

max (0, 1 + sni − sp) . (16)

For open-ended task, we employ a linear classifier and
softmax function to predict scores of all answers in A. We
train the network by minimizing the cross-entropy loss. Note
that for open-ended numbers, the task of repetition counting,
we treat it as a regression problem that predict a rounded
number (0-10) and adopt �2 loss to train the network.

4 Experiments

4.1 Experimental Setup

Datasets. We validate the benefits of HGA network on
three recent benchmark datasets.

TGIF-QA is a widely used large-scale benchmark dataset
for VideoQA (Jang et al. 2017), which consists of 165K
Q&A pairs collected from 72K animated GIFs. TGIF-QA
defines four task types: (1) Repetition count (Count) is an
open-ended numbers task to count the number of repetitions
of an action in a video; (2) Repeating action (Action) is a
multiple-choice task to identifying a repetitive action from
5 candidate answers; (3) State transition (Trans.) is also a 5-
options multiple-choice task which aims to identify the tran-
sition of two states; (4) Frame QA (FrameQA) is an open-
ended task that can be answered from a single frame of a
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video and this task is formalized as a multi-classification
problem aiming at indicating the correct answer from a pre-
pared dictionary.

MSVD-QA and MSRVTT-QA are two datasets gener-
ated from video descriptions through an automatic method
(Xu et al. 2017). There are 50K and 243K Q&A pairs re-
spectively and both consist of five different types of ques-
tions, including what, who, how, when and where. The task
is open-ended and aims to identify the answer from a pre-
defined answer set of size 1000.

Implementation details. For fair comparisons with other
methods, we follow previous work (Jang et al. 2017; Xu et
al. 2017) and take a consistent approach to extract video
and text features. Specifically, for TGIF-QA, the pre-trained
ResNet-152 and C3D are chosen separately for appear-
ance and motion features, while we use VGG and C3D for
MSVD-QA and MSRVTT-QA. For all the three datasets, the
pre-trained GloVe word embedding is adopted for text fea-
tures. These datasets have provided a standard partition of
the training, validation and testing sets. In terms of train-
ing details, we set the number of the hidden units d to 512.
Batch size is set to 64. We use Adam as an optimizer with
initial learning rate 10−4. The dropout rate is set to 0.3. For
better performance, we use some general training strategies,
including early stop, learning rate warming up, and learning
rate cosine annealing.

4.2 State of the Art Comparison

TGIF-QA In Table 1, we compare our HGA network
against the state-of-the-art methods on TGIF-QA dataset.
The following is a brief introduction to these methods:

• The series of ST-VQA (Jang et al. 2017) adopts three dif-
ferent variants of attention-based encoder-decoder model,
where “Sp.” denotes spatial attention, “Tp.” denotes tem-
poral attention and “Sp.Tp.” means the joint one.

• CT-SAN trains a concept word detector based on semantic
attention for further VideoQA (Yu et al. 2017).

• Co-Mem utilizes a co-memory attention mechanism to in-
tegrate motion and appearance features (Gao et al. 2018).

• PSAC uses self-attention instead of RNN to process
videos while using a special co-attention (Li et al. 2019).

• Fan et al. proposed heterogeneous memory on appearance
and motion features (Fan et al. 2019).

• ST-VQA� is the current state-of-the-art on TGIF-QA
dataset (Jang et al. 2019). It is an extension of the afore-
mentioned ST-VQA series and uses new features and up-
dated model to obtain better performance.

Our HGA network outperforms the most recent ST-VQA�
by 3.1% for Count, 2.6% for Action, 1.6% for Trans. and
6.0% for FrameQA. Compared with all methods, HGA net-
work also achieves the best performance in terms of Count,
Action and Trans. task and establish new state-of-the-art
scores on the three tasks. On FrameQA task, we attain com-
parable result, just 1.1% behind PSAC. The reason for this
phenomenon may be due to the model structure and we have
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Figure 4: Experimental results of CAEO variants.

Table 4: Ablation study on TGIF-QA dataset. Mean �2 loss
for Count, and accuracy (%) for others.
Methods Count Action Trans. FrameQA

GRU (w/ local fusion) 4.31 55.4 69.8 53.0
+ global fusion (baseline) 4.19 73.4 78.1 55.7

+ GCN §3.3 4.18 74.5 79.7 53.9
+ CoAttn §3.2 4.17 73.9 78.8 55.4

+ GCN §3.3 4.09 75.4 81.0 55.1

HGA w/o global fusion 4.25 73.6 79.6 53.6
HGA w/o local fusion 4.24 71.3 77.8 53.9

some observations in the ablation study, discussed in Sec-
tion 4.3. One aspect to note is that the Count result provided
by Fan et al. was produced by unrounded �2 loss. In order to
be consistent with other results, we obtain the rounded value
through the checkpoint they provided.

MSVD-QA In Table 2, we show a detailed comparison of
recent methods to our experimental results on MSVD-QA
dataset. ST-VQA, Co-Mem and the work of Fan et al. are
described above. AMU (Xu et al. 2017) uses gradually re-
fined attention modules over appearance and motion. The
numbers below question types indicate the quantity of such
type Q&A pairs in test set and there is a similar distribution
in the train set. On the most numerous types, What and Who,
our method outperforms the best previously reported mod-
els by 4.9% and 0.6%, and establishes a new state-of-the-art
overall accuracy of 34.7% which is almost 3.0% better than
the prior best.

MSRVTT-QA In Table 3, we show the experimental re-
sults on MSRVTT-QA dataset with most recent contribu-
tions. As can be seen from the last column, HGA network
achieves a best overall accuracy at 35.5%, outperforming
7.6% than the prior state-of-the-art. The numbers below
question types indicate the quantity of such type Q&A pairs
in test set. We do better on three question types, What, Who
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Q: What does the man do before brush hair ? A1: stare down

A2: hug a boy

A3: emerge from a robot

A4: contemplate

A5: fix jacket

A1: danceQ: What does the woman do before put hand in hair ?

A2: point gun

A3: close

A4: pick up head

A5: grab hair

Q: How many times does the man kick soccer ball ? A: 6

Q: What jumps up at itself in the mirror ? A: cat

Count

Frame
QA

Action

Trans.

Figure 5: Typical examples of successful cases on TGIF-QA dataset.

and How, which account for 99% of all the Q&A pairs.

4.3 Ablation Study

In order to exploit different model variants and analyze
the effectiveness of diverse network structures, we conduct
in-depth analysis. First, we analyze the effect of different
CAEO variants. Next, we discuss the ablation study of net-
work structures. We also try to analyze some phenomena
encountered in experiments and hope the finding could be
useful in informing future research.

TGIF-QA is a proper dataset to establish further analysis
on the strengths and limitations of our network. The Count
task needs to identify actions precisely while the Action and
Trans. task put forward a high demand on temporal reason-
ing. The FrameQA task is not unique to video domain, so
we can analyze the relation between VQA and VideoQA. To
evaluate the importance of different components, we vary
the base network, measuring the change of performance on
TGIF-QA dataset.

Analyzing co-attention embedding operations. We first
assess how different co-attention embedding operations af-
fect the performance, we fix the other modules and present
the results of different variants of CAEO in Fig. 4. The
first gray bar is shown as a comparison reference where
CAEO is not used. The remaining five bars correspond to
the five schemes we proposed in Section 3.2. We observe
that appending the CAEO module improve the performance
of HGA to some extent. Both linguistic to visual transfor-
mation and visual to linguistic transformation have similar
single-modality embedding. The former performs better on
Trans. and FrameQA, while the latter is opposite. The pure
co-attention transformation, CoAttn, achieves the best per-
formance on Action, Trans. and FrameQA. Although sub-
optimal on the Count task, the difference is very subtle.

We notice that PseudoSiamese and Siamese hurt model
quality. This is an interesting phenomenon. In Section 3.2,
we explain why CAEO is effective through soft KNN the-
ory. Along with this thought, QCAEO, the output of CAEO,
actually is located in the space where another modality V
is. Although QCAEO and Q have same shapes, there is a
huge semantic gap of different modalities between them.
The concatenation operator between the two increases inter-

modality noise. Using a feed-forward network is still chal-
lenging to compensate.

Network variations. We compare some ablation instances
of HGA network to investigate the validity of each compo-
nent, presenting these results in Table 4. In the first line,
we give the results of basic single-flow architecture, using
GRU to contextualize visual and linguistic sequence with
only local fusion. In the second line, we add the global fu-
sion branch, introduced in Section 3.4. So far, we conduct
the vanilla parallel architecture, our baseline model. The
baseline has shown competitive performance compared to
other methods in Table 1, benefiting from the parallel ar-
chitecture and bilinear fusion modules. Then, we add GCN-
based reasoning module to the baseline (+GCN), we re-
port a little gain. Analogously, we add co-attention embed-
ding module to the baseline (+CoAttn), which also boost the
performance but subtle. Finally, the GCN is added to the
“baseline+CoAttn” and creating the complete HGA network
(baseline+CoAttn+GCN). This instance reaches the highest
accuracy and there is a significant improvement over oth-
ers. It is worth noting that the performance of combining
“CoAttn” and “GCN” exceeds the sum of the independent
two, which indicates the two modules promote each other.
In addition, in order to verify the effect of discarding global
or local fusion flow, we remove the two branches from the
HGA network respectively, revealed in the last two lines
which suggests the two fusion flows are both effective.

We also observe that GCN hurts the FrameQA perfor-
mance. FrameQA type questions can be answered from one
frame in a video. In particular, “What color” is the ques-
tion far from motion reasoning, while GCN depends on mo-
tion clues and shot-level semantic information for reasoning,
which is weak on extracting information from single frame.

5 Conclusions

In this paper, we propose HGA network, a novel heteroge-
neous graph alignment network for VideoQA, which per-
forms four inevitable steps: representation, fusion, align-
ment, and reasoning. Within HGA, we view multimodal fac-
tors, video shots or question words, as nodes in an uniform
heterogeneous graph, exploring inter- and intra-modality
interactions and cross-modal reasoning. We evaluate our
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method on three benchmark datasets and conduct extensive
ablation study to the effectiveness of HGA. Experiments
show the network to be superior in quality.
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