
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Hierarchical Modes Exploring in Generative Adversarial Networks

Mengxiao Hu, Jinlong Li, Maolin Hu, Tao Hu
University of Science and Technology of China

m x hu@126.com, jlli@ustc.edu.cn, {humaolin, Skyful}@mail.ustc.edu.cn

Abstract

In conditional Generative Adversarial Networks (cGANs),
when two different initial noises are concatenated with the
same conditional information, the distance between their out-
puts is relatively smaller, which makes minor modes likely
to collapse into large modes. To prevent this happen, we
proposed a hierarchical mode exploring method to alleviate
mode collapse in cGANs by introducing a diversity measure-
ment into the objective function as the regularization term.
We also introduced the Expected Ratios of Expansion (ERE)
into the regularization term, by minimizing the sum of differ-
ences between the real change of distance and ERE, we can
control the diversity of generated images w.r.t specific-level
features. We validated the proposed algorithm on four condi-
tional image synthesis tasks including categorical generation,
paired and un-paired image translation and text-to-image gen-
eration. Both qualitative and quantitative results show that the
proposed method is effective in alleviating the mode collapse
problem in cGANs, and can control the diversity of output
images w.r.t specific-level features.

Introduction

With the potentiality of capturing high dimensional prob-
ability distributions, Generative Adversarial Networks
(GANs) (Goodfellow 2016) are broadly used in synthesiz-
ing text (Yu et al. 2017a), videos (Zhang and Peng 2018)
and images (Ge et al. 2018). Conditional GANs (cGANS)
(Mirza and Osindero 2014) are one of the early variants of
GANs and have been applied in many tasks of image synthe-
sis (Doan et al. 2019) because of the ability to synthesizing
images with given information (e.g, generating images of
bird with given description of colors).

Many generation tasks adopt GANs for its simple setting
and impressive result, but we often suffer from the prob-
lem that the generator can only synthesize samples from few
modes of the real data distribution, which is called ”mode
collapse”. The formal definition of mode collapse (Lin et al.
2018) provides a theoretical measure of mode collapse.

In image synthesis, mode collapse means the output im-
ages are less diverse than the real ones. Therefore, it might
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be very important to quantify the diversity of output images
for addressing the mode collapse problem. The Learned Per-
ceptual Image Path Similarity (LPIPS) (Zhang et al. 2018)
and the Fréchet Inception Distance (FID) (Heusel et al.
2017) are often used to measure the diversity and the quality
of output images, respectively. The Number of Statistically-
Different Bins (NDB) (Richardson and Weiss 2018) is also
used for estimation of mode missing in the generated dis-
tribution (Mao et al. 2019). Unlike previous works only use
the diversity metrics for evaluation, in this work, we pro-
posed hierarchical Modes Exploring Generative Adversarial
Networks to alleviate the mode collapse problem in cGANs
by introducing a diversity measurement into the objective
function as a regularization term.

The regularization term was employed to expand the dif-
ference of an output image pair which is obtained by feeding
an input pair from the same batch to the generator (Mao et al.
2019; Yang et al. 2019). Here, we firstly compute the ratio
of the distance between an input pair to the distance between
an output feature pair and use it as a coefficient of the expan-
sion at each convolutional layer of the generator. Then, we
calculate the absolute difference between the computed ratio
and a predefined ratio which is used to control the generated
images with different features. At last, we sum the absolute
differences across all layers as the regularization term of the
objective function. Since our regularization method requires
no modification to the structure of original networks, it can
be used in cGANs for various tasks.

In this work, our primary contributions are:

• We proposeed a hierarchical mode exploring method
to alleviate mode collapse in cGANs by introducing
a diversity measurement into the objective function
as the regularization term.

• We introduced the Expected Ratio of Expansion
(ERE) into the regularization term. With different
ERE, we can control the diversity of generated im-
ages w.r.t specific-level features.

• We demonstrated the proposed regularization
method on different datasets in three image synthe-
sis tasks, and experimental results show that our
method can generate images with higher diversity,
compared with the baseline models.
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Backgrounds

Generative adversarial networks (GANs) are composed of
two players: the generator G and the discriminator D. The
training process of GANs is a minimax game between D
and G . G is learning to transform the initial noise to data
with same dimension as real data’s, such that D cannot tell
whether the output was drawn from the true distribution or
was generated by G. The solution of this minimax game is
a Nash equilibrium in which neither G nor D can improve
unilaterally.

In cGANs, because with the same concatenated infor-
mation vectors, the distance between two inputs is smaller
than the distance between two noise vectors, and the shrink-
age of distance is very likely to be persevered through a
upsampling layer (e.g., a fractionally-strided convolution
layer) which is necessary for G. So, we can expect the
distance between two outputs of G is smaller,compared to
the one in standard GANs. To offset the shrinkage of dis-
tance, people used a regularization term Ld to maximize
the distance between two output images (Mao et al. 2019;
Yang et al. 2019).

Ld =

∥∥∥∥
d(1)(z1, z2)

d(n)(G(n)(z1), G(n)(z2))

∥∥∥∥
1

(1)

Where, z is the latent code, d(i)(·) refers the distance met-
ric, G(i)(z) is the output of i-th convolutional layer in the
generator when the input is z, and n is the number of convo-
lutional layers in the generator.

Methods

Regularization term

Given an input pair (z1, z2), we firstly measure the distance
between the output pair of every convolutional layer, then,
we compute the ratio of the distance at one layer to the dis-
tance at the next layer:

ratio(i) =
d(i−1)(G(i−1)(z1), G

(i−1)(z2))

d(i)(G(i)(z1), G(i)(z2))
(2)

As shown by Eq. (2), we denote the sum of L1 norms of the
difference between the computed ratio and a target ratio as
the regularization term:

Lh =

n∑
i=2

∥∥∥ratio(i) − λ(i)
∥∥∥
1

(3)

Where, λ(i) is the hyper-parameter to control the diversity
gain though i-th layer. When λ(i) = 0 for ∀i ∈ {2, ..., n},
we maximize the diversity of the output images by minimiz-
ing the regularization term Lh.

The proposed regularization method offsets the shrinkage
of distance between two outputs at every layer in the gen-
erator. When we minimize Lh with λ(i) being set to an ap-
propriate value, it can alleviate the mode collapse problem
at every layer of the generator.

To illustrate the advantage of Lh, we compared Lh with
Ld proposed by Mao et al., and there is a true proposition.

Proposition 1. Denotes the rate of ratio(i) converging to
0 as r(i). If ∃i ∈ {2, ..., n} such that r(i) � r(i

′) for
∀i′ ∈ {2, ..., n} \ {i}, in both training processes using Lh

and Ld, namely, r(i)l � r
(i′)
l′ , for ∀l, l′ ∈ {Lh,Ld}, then,

∃H ∈ (0,+∞), (Lh ≤ H, and,Ld ≤ H) =⇒ l(th) <
l(td). Here, when l ≤ H , the corresponding training pro-
cess is immediately stopped, th is the stop time when the
regularization term is Lh.

Proof. Assume ratio
(i)
Lh

(t) = ratio
(i)
Ld

(t) = e
−r

(i)
Lh

t.
According to the condition in the proposition, assume

ratio
(i′)
Lh

(t) ≈ ratio
(i′)
Ld

(t) = e
−r

(i′)
Lh

t, and r
(i)
Lh

� r
(i′)
Lh

, such

that e−r
(i′)
Lh

t̄
> 2e

−r
(i)
Lh

t̄ for a big t̄, such that e−r
(i)
Lh

t̄ ≈ 0.

Denotes a = e
−r

(i′)
Lh

t̄ − e
−r

(i)
Lh

t̄, so, a > e
−r

(i)
Lh

t̄
> 0,

a ∈ (0, 1), and, e−r
(i′)
Lh

t̄
= a+ e

−r
(i)
Lh

t̄.
It is convenient for the proof to assume ratio

(i)
Lh

(t) =

ratio
(i)
Ld

(t) , we will discuss the other cases later.
According to Eq. (1),

Ld(t̄) =

∥∥∥∥
d(1)(z1, z2)

d(n)(G(n)(z1), G(n)(z2))

∥∥∥∥
1

=

n∏

j=2

∥∥∥ratio(j)Ld
( t̄ )

∥∥∥
1

= (a+ e
−r

(i)
Lh

t̄
)n−2e

−r
(i)
Lh

t̄ ≈ 0 ≈ e
−r

(i)
Lh

t̄

(4)

According to Eq. (2), when λi = 0,

Lh(t̄) =

n∑
j=2

∥∥∥ratio(j)Lh
(t)( t̄ )

∥∥∥
1

= (n− 2)(a+ e
−r

(i)
Lh

t̄
) + e

−r
(i)
Lh

t̄

> (n− 2)a > 0

(5)

Denotes H = (n − 2)a, so, H ∈ (0,+∞), and, at time
t̄, Ld(t̄) < H , the corresponding training process has been
stopped, suppose it stopped at time td, td ≤ t̄; and at time
t̄, Lh(t̄) > H , the corresponding training process will be
stopped at time th, th > t̄ > td; therefore, according to the
monotonicity of l, l(th) < l(td).

If ratio
(i)
Lh

(t) > ratio
(i)
Ld

(t), namely, r(i)Lh
< r

(i)
Ld

, de-
notes the new stop time as t>d and the new regularization
term as L>

d , so, when Ld(td) = L>
d (t

>
d ), according to Eq.

(4), e−r
(i)
Lh

td = e
−r

(i)
Ld

t>d , t>d = (r
(i)
Lh

/r
(i)
Ld

)td < td, so,
th > td > t>d ; therefore, l(th) < l(t>d ).

If ratio(i)Lh
(t) < ratio

(i)
Ld

(t), according to the condition in

the proposition, assume ratio
(i′)
Lh

(t) ≈ ratio
(i′)
Ld

(t), namely,

r
(i′)
Ld

≈ r
(i′)
Lh

, and r
(i)
Ld

� r
(i′)
Ld

, such that e
−r

(i′)
Ld

t̄<
>

2e
−r

(i)
Ld

t̄< for a big t̄<, such that e−r
(i)
Ld

t̄< ≈ 0, and Eq. (4)
and Eq. (5) are still satisfied when t = t̄<, the only dif-
ference between the old equations and the new equations is
that a in the new Eq. (4) and Eq. (5) is not the same, for
clarity, denotes a in the new Eq. (4) and Eq. (5) as a4 and
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a5, a4 = e
−r

(i′)
Ld

t̄< − e
−r

(i)
Ld

t̄< , a5 = e
−r

(i′)
Lh

t̄< − e
−r

(i)
Lh

t̄< ;

because e
−r

(i)
Ld

t̄<
> e

−r
(i)
Lh

t̄< and r
(i′)
Ld

≈ r
(i′)
Lh

, a5 > a4;
similarly, we can choose H< = (n − 2)a5 and t<h , t

<
d as

stop time, then, the same conclusion can be deduced when
ratioLh

i (t) = ratioLd
i (t), namely, l(t<h ) < l(t<d ).

�
Proposition 1 shows that, when there exists a layer whose

ratio(i) converges much faster than other layers’, Ld con-
verges more quickly than Lh, which means the training pro-
cess supervised by Ld stops earlier than the one supervised
by Lh, even though their cost are the same in any form of
Lh or Ld.

Since we use λ(i) to independently control ratio(i) at
each layer, we need not assign different weights to them,
therefore, the computation cost of searching the only weight
of Lh is O(n). However, if we use Ld as the term to ad-
just the change of distance through specific layer of G, the
computation cost for searching the weights of terms grows
exponentially with n.

Expected Ratio of Expansion

In Eq. (3), λ(i) controls the diversity of the output. For ex-
ample, when λ(i) = 1, the i-th convolutional layer is en-
couraged to not change the distance; when λ(i) = 0 for
∀i ∈ {2, ..., n}, every layer of the generator is to maximize
the distance between the output images. λλλ is set as the tar-
get ratio of the expansion, we call it the Expected Ratio of
Expansion (ERE) in this work.

In practice, it is important to determine the value of λ(i),
since when λ(i) is larger than 1, the diversity is encouraged
not to be increased, and because the distance cannot be +∞,
we cannot increase the diversity by setting λ(i) lower than its
lower bound. Therefore, we restrict λ(i) ∈ [b(i), 1].

To compute b(i), there are two steps, firstly, we pre-trained
the cGANs using:

Lfin = Lori + βL0
h (6)

Where, β is the weight to manipulate the importance of the
regularization. L0

h denotes the Lh with all λ(i) = 0, and
Lori is the objective function used in the cGANs framework
into which we integrated the proposed method. Then, we fed
the whole dataset X into the generator to calculate the ratio
matrix:

A(i) =

⎡
⎢⎣
d11 . . . d1m

...
. . .

...
dm1 . . . dmm

⎤
⎥⎦ (7)

Here, m is the size of X , duv = d(i−1)(G(i−1)(zu),G
(i−1)(zv))

d(i)(G(i)(zu),G(i)(zv))
.

If we choose L1 norm as d(i)(·) for ∀i, then A(i) can be
calculated by:

(A(i))uv =
|ouMv,p − ovMu,p|
|ouNv,q − ovNu,q| (8)

Here, M and N are the 1×m×f (i) matrices output by (i−
1)-th layer and i-th layer, respectively, f (i) is the dimension
of output by G(i)(·), o is �1m×1.

Then, b(i) is determined as the minimum element of A(i),
b(i) = min(d11, ..., djk, ..., dmm). Since it requires 2 loops
to calculate all duv to determine A(i), the time complexity
of naively computing b(i) is O(m2). Eq. (8) provides a way
to compute A(i) in the form of tensors to compute b(i) with
complexity O(m), because tensor operation of a batch can
be executed on GPU in parallel.

Experiments

To validate our regularization method under an extensive
evaluation, we incorporated four baseline models (DCGAN
(Yu et al. 2017b), Pix2Pix (Isola et al. 2017), DRIT (Lee et
al. 2018) and StackGAN++ (Zhang et al. 2017a)) with it for
three conditional image synthesis tasks:

• Categorical generation, it is trained on CIFAR-10
(Szegedy et al. 2015) using DCGAN as the baseline
model.

• Image-to-image translation, it can be divided into two
subtasks:

– Paired image-to-image translation, it is trained on fa-
cades and maps using Pix2Pix as the baseline model.

– Unpaired image-to-image translation, it is trained on
Yosemite (Zhu et al. 2017a) and cat�dog (Lee et al.
2018) using DRIT as the baseline model.

• Text-to-image generation, it is trained on CUB-200-2011
(Wah et al. 2011) using StackGAN++ as the baseline
model.

Because the original networks of the baseline model do
not change after adding the attention unit and the regular-
ization term, we kept the hyper-parameters of the baseline
model original.

We adopted L1 norm as distance metrics for all d(i)(·) and
set the weight of regularization β = 1 in all experiments.

Evaluation metrics

To evaluate the quality of the generated images, we used FID
(Heusel et al. 2017) to measure the difference between the
distribution of generated images and the distribution of real
images. To compute FID, a pretrained Inception Network
(Szegedy et al. 2015) needed for extracting features of im-
ages. Lower FID indicate higher quality of the generated im-
ages.

To evaluate diversity, we employed LPIPS (Zhang et al.
2018).

d(x1,x2) =
∑

l

1

H(l)W (l)

∑

h,w

∥∥∥w(l) � (E
(l)
hw(x1)− E

(l)
hw(x2)

∥∥∥
2

2

(9)

diversityoutput =

m∑
j=1

m∑
k=1,k �=j

d(xj,xk) (10)

Because deeper convolutional layers detect higher-level
features (Zeiler and Fergus 2014), it is natural to measure
the diversity w.r.t specific-level feature with a specific-l-th
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Figure 1: Visualizing diversity of image batch w.r.t different-level features. HMGAN1 refers λ(i) = 0 for ∀i, and HMGAN2

refers λ(i) = 1. We measured the diversity with LPIPS which uses Alexnet as feature decoder, it provides outputs from 5 layers.

Table 1: NDB and JSD results on the CIFAR-10 dataset.
Metrics Models airplane automobile bird cat deer

NDB ↓
DCGAN 49.60± 3.50 53.30± 6.34 34.30± 5.71 46.00± 2.65 43.90± 4.12
HMGAN1 45.30± 5.2445.30± 5.2445.30± 5.24 51.50± 3.1351.50± 3.1351.50± 3.13 33.20± 2.0233.20± 2.0233.20± 2.02 42.00± 1.4742.00± 1.4742.00± 1.47 42.20± 4.3742.20± 4.3742.20± 4.37
HMGAN2 48.70± 5.1348.70± 5.1348.70± 5.13 52.90± 2.9852.90± 2.9852.90± 2.98 34.00± 2.3834.00± 2.3834.00± 2.38 45.50± 2.1245.50± 2.1245.50± 2.12 43.50± 4.1443.50± 4.1443.50± 4.14

JS ↓
DCGAN 0.035± 0.002 0.035± 0.002 0.026± 0.002 0.031± 0.001 0.033± 0.002
HMGAN1 0.028± 0.0020.028± 0.0020.028± 0.002 0.029± 0.0020.029± 0.0020.029± 0.002 0.024± 0.0010.024± 0.0010.024± 0.001 0.026± 0.0010.026± 0.0010.026± 0.001 0.029± 0.0020.029± 0.0020.029± 0.002
HMGAN2 0.033± 0.000.033± 0.000.033± 0.002 0.034± 0.0010.034± 0.0010.034± 0.001 0.026± 0.0010.026± 0.0010.026± 0.001 0.029± 0.0010.029± 0.0010.029± 0.001 0.032± 0.0020.032± 0.0020.032± 0.002

dog frog horse ship truck

NDB ↓
DCGAN 51.80± 3.92 53.20± 4.27 55.00± 2.81 43.50± 5.00 45.50± 5.05
HMGAN1 34.00± 2.8034.00± 2.8034.00± 2.80 41.60± 3.5541.60± 3.5541.60± 3.55 46.50± 5.8346.50± 5.8346.50± 5.83 41.50± 3.0441.50± 3.0441.50± 3.04 43.20± 3.0143.20± 3.0143.20± 3.01
HMGAN2 52.00± 3.02 52.10± 3.2252.10± 3.2252.10± 3.22 53.90± 4.3253.90± 4.3253.90± 4.32 42.80± 3.0542.80± 3.0542.80± 3.05 45.30± 5.0045.30± 5.0045.30± 5.00

JS ↓
DCGAN 0.035± 0.002 0.035± 0.002 0.036± 0.001 0.030± 0.002 0.034± 0.002
HMGAN1 0.024± 0.0010.024± 0.0010.024± 0.001 0.029± 0.0010.029± 0.0010.029± 0.001 0.032± 0.0020.032± 0.0020.032± 0.002 0.027± 0.0020.027± 0.0020.027± 0.002 0.028± 0.0020.028± 0.0020.028± 0.002
HMGAN2 0.035± 0.002 0.034± 0.0020.034± 0.0020.034± 0.002 0.031± 0.0020.031± 0.0020.031± 0.002 0.028± 0.0020.028± 0.0020.028± 0.002 0.034± 0.002

term in Eq. (9),

d(l)(x1,x2) =
1

H(l)W (l)

∑

h,w

∥∥∥w(l) � (E
(l)
hw(x1)− E

(l)
hw(x2)

∥∥∥
2

2

(11)
The diversity(l) is similarly computed as Eq. (10) does.
To statistically view the diversity of an image batch w.r.t
different-level features, we visualized all diversity(l), as
shown in figure 1. Higher LPIPS means the generated im-
ages are more diverse.

To test the generated images and the real images are
from the same distribution, we employed the NDB score
(Richardson and Weiss 2018). To compute NDB score, it
first put all real and generated samples into bins, then, the

Table 2: FID and LPIPS results on the CIFAR-10 dataset.
Model DCGAN HMGAN
FID ↓ 32.21± 0.05 28.84± 0.0528.84± 0.0528.84± 0.05

LPIPS ↑ 0.208± 0.002 0.209± 0.0020.209± 0.0020.209± 0.002

numbers of the real images and the generated images in one
bin are used to decide if those two numbers are statistically
different, finally, the number of all statistically different bins
defines the NDB score. The bins are the result from a K-
means clustering. In other words, the K-means clustering
finds k modes, so, we can not only estimate the similarity
between two distributions by comparing the NDB scores but
can also tell which mode has collapsed by referring the in-
dices of statistically different bins. However, there is a trade-
off between a less number of bins (less computation for the
clustering) and a higher accuracy of the estimation, we pre-
sented the Jensen–Shannon divergence to validate the NDB
scores, and to find a proper number of bins during the exper-
iment. Lower NDB and JSD mean the generated images are
more likely from the real distribution.

Categorical generation

Firstly, we validated the regularization method on categori-
cal generation task. In categorical generation, the generator
takes the initial noise concatenated with class labels as input
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Table 3: Quantitative results from paired image-to-image translation task.
Datasets Facades

Pix2Pix HMGAN1 HMGAN2

FID ↓ 140.00± 2.57 90.00± 3.2590.00± 3.2590.00± 3.25 138.80± 2.00138.80± 2.00138.80± 2.00
NDB ↓ 16.00± 0.38 12.30± 0.3212.30± 0.3212.30± 0.32 16.12± 0.59
JSD ↓ 0.078± 0.003 0.028± 0.0060.028± 0.0060.028± 0.006 0.080± 0.004
LPIPS ↑ 0.005± 0.001 0.192± 0.0010.192± 0.0010.192± 0.001 0.007± 0.0010.007± 0.0010.007± 0.001

Datasets Maps
Pix2Pix HMGAN1 HMGAN2

FID ↓ 165.80± 3.21 153.60± 2.50153.60± 2.50153.60± 2.50 164.50± 2.39164.50± 2.39164.50± 2.39
NDB ↓ 47.30± 2, 35 42.00± 2.5242.00± 2.5242.00± 2.52 46.80± 3.5246.80± 3.5246.80± 3.52
JSD ↓ 0.072± 0.023 0.035± 0.0030.035± 0.0030.035± 0.003 0.076± 0.025
LPIPS ↑ 0.003± 0.001 0.205± 0.0010.205± 0.0010.205± 0.001 0.003± 0.001

Figure 2: Diversity comparison. HMGAN1 learns more di-
verse results and HMGAN2 learns less diverse results.

to generate images in corresponding categories. This task is
conducted on the CIFAR-10 dataset. It has images with size
32 × 32 in 10 categories. The NDB scores and JSD are re-
ported in Table 1, and Table 2 presents the results FID and
LPIPS. The proposed method alleviates the mode collapse
problem in most categories and maintains the image quality.

Image-to-image translation

Conditioned on paired images
In this task, we integrated the proposed method into

Pix2Pix. In experiments, we kept the original hyper-
parameters setting of Pix2Pix for fair comparison. Figure 2
and Table 3 shows the qualitative and quantitative results,

respectively. It is shown that the proposed method exceeds
Pix2Pix in terms of all metrics when λ(i) = 0 for ∀i, and the
output images from the proposed method have comparable
diversity to the ones from Pix2Pix when λ(i) = 1 for ∀i. The
low quality of generated facades images might be caused by
encouraging diversity too much (Yang et al. 2019), since set-
ting λ(i) = 0 for ∀i regularizes the training more strictly
than minimizing Ld.
Conditioned on unpaired images

To generate images when paired images are not available,
we chose DRIT as the baseline model. It is pointed out that
DRIT can generate diverse images only w.r.t low-level fea-
tures, in other words, the output images share similar struc-
tures. To demonstrate the proposed method can improve the
diversity w.r.t high-level features, we conducted this exper-
iment on cat�dog dataset whose images has shape varia-
tions. We also compared the abilities of generating diverse
image w.r.t low-level features between the proposed method
and DRIT, this experiment is conducted on shape-invariant
Yosemite dataset.

Table 4 shows that the proposed method outperforms
DRIT in terms of all metric in both experiments, especially
on the cat�dog dataset. To quantitively present the differ-
ence of ability to generate diverse images w.r.t different-
level features, we ploted all diversity(l) in figure 1. Figure
1. shows that our proposed method improved the diversity
w.r.t high-level features, and has comparable ability to gen-
erate diverse images w.r.t low-level features.

Text-to-image generation

StackGAN++ is proposed to generate diverse images whose
contents is corresponding to given descriptive sentences. We
chose it as the baseline model in this task, and the task is
conducted on the CUB- 200-2011 dataset.

Table 5 presents quantitative comparisons between the
proposed method and StackGAN++. And the qualitative
results are shown in figure 3, it shows that the proposed
method improve the diversity without losing visual quality.

10985



Table 4: Quantitative results from unpaired image-to-image translation task.
Datasets Summer2Winter Winter2Summer

DRIT HMGAN1 DRIT HMGAN1

FID ↓ 55.03± 3.26 50.00± 3.2350.00± 3.2350.00± 3.23 47.00± 4.28 46.20± 3.3846.20± 3.3846.20± 3.38
NDB ↓ 25.50± 3.35 23.00± 0.2523.00± 0.2523.00± 0.25 29.00± 2.47 27.50± 2.5527.50± 2.5527.50± 2.55
JSD ↓ 0.062± 0.003 0.052± 0.0030.052± 0.0030.052± 0.003 0.050± 0.007 0.038± 0.0050.038± 0.0050.038± 0.005
LPIPS ↑ 0.112± 0.001 0.143± 0.0010.143± 0.0010.143± 0.001 0.112± 0.001 0.119± 0.0010.119± 0.0010.119± 0.001

Datasets Cat2Dog Dog2Cat
DRIT HMGAN1 DRIT HMGAN1

FID ↓ 22.50± 0.35 16.02± 0.3516.02± 0.3516.02± 0.35 59.05± 0.31 28.97± 0.5428.97± 0.5428.97± 0.54
NDB ↓ 39.28± 3.36 27.00± 0.5027.00± 0.5027.00± 0.50 41.32± 0.52 32.23± 0.5332.23± 0.5332.23± 0.53
JSD ↓ 0.125± 0.003 0.085± 0.0010.085± 0.0010.085± 0.001 0.269± 0.002 0.071± 0.0010.071± 0.0010.071± 0.001
LPIPS ↑ 0.250± 0.002 0.280± 0.0020.280± 0.0020.280± 0.002 0.100± 0.002 0.220± 0.0030.220± 0.0030.220± 0.003

Table 5: Quantitative results from text-to-image generation task. HMGAN3 refers λ(i) = 0.5 for ∀i.
StackGAN++ HMGAN1 HMGAN2 HMGAN3

FID ↓ 26.00± 4.23 25.40± 2.0025.40± 2.0025.40± 2.00 27.00± 1.25 25.55± 1.5025.55± 1.5025.55± 1.50
NDB ↓ 37.80± 2.44 29.90± 2.5529.90± 2.5529.90± 2.55 37.55± 1.8337.55± 1.8337.55± 1.83 30.00± 3.8230.00± 3.8230.00± 3.82
JSD ↓ 0.091± 0.005 0.070± 0.0050.070± 0.0050.070± 0.005 0.093± 0.005 0.072± 0.0030.072± 0.0030.072± 0.003
LPIPS ↑ 0.364± 0.005 0.376± 0.0050.376± 0.0050.376± 0.005 0.358± 0.005 0.374± 0.0020.374± 0.0020.374± 0.002

Controlling diversity

To control diversity w.r.t specific level features, we chose
λ(5) as the control variable in this experiment. We firstly
computed the lower bound of λ(5) by choosing the min-
imum element in A(5) computed by Eq. (8). Figure 5
shows the results in text-to-image synthesis task, we can
see diversity(5) is bigger with smaller λ(5), and reaches
the limit when λ(5) < b(5). Figure 1 and figure 4 show
that, in image translation and text-to-image generation, our
method can generate outputs with different distributions of
diversity(l), which is unachievable to the previous method.
We also noticed that, in figure 3, when λ(j) = 1, λ(k) = 0,
the proposed method tends to change the observation angle
to the bird, or to change the posture of the bird.

Supplementary results

We also conducted the three conditional image synthesis
tasks using Eq. (1). The results show that our method out-
performs the one using Eq. (1) in tasks of categorical gener-
ation (85% of the results are better), paired image-to-image
generation (50% of the results are better), unpaired image-
to-image generation (69% of the results are better) and text-
to-image generation (100% of the results are better).

Related Work

Unlike standard GANs only require an initial noise as input
for the generator, cGANs concatenates external information
(e.g. , the number of age) with the initial noise, during train-
ing, the correspondence between perceptual features (e.g.,
wrinkles of a face) and the additional information can be
learned, as a result, an image with specific feature can be

synthesized by a generator conditioned on the external in-
formation. However, it does not only inherit the mode col-
lapse problem in standard GANs, but also worsen it when
the input has a high-dimension information part (Yang et al.
2019) . And it is pointed out that the noise vector is respon-
sible for generating various images, due to its comparative
low dimension, it is often ignored by the generator (Mao et
al. 2019). More specifically, because the input pair has the
same external information, once it is propagated through a
convolutional layer, the distance between an output pair is
smaller, especially when the external information has a high
dimension. In this situation, two modes are prone to be col-
lapsed into one if their initial noises are close.

To alleviate mode collapse in cGANs, some approaches
are proposed by recent works. In text-to-image tasks, (Zhang
et al. 2017b) uses a fully connected layer to sample addi-
tional noise from a Gaussian, the noise is then combined
with the feature of an image as a whole conditional context
to obtain more training pairs for augmentation. A different
approach proposes an extra encoder network which can gen-
erate the noise vector given the generated image to help the
generator construct a one-to-one mapping between the input
and output, this approach was employed in image-to-image
translation (Zhu et al. 2017b). However, the two approaches
require extra time to generate augmentation pairs or to train
an additional encoder, not to mention they are substantial
task-specific modifications to cGANs, that is to say, they are
less generalizable and charge more computational resource.
Recently, (Mao et al. 2019) and (Yang et al. 2019) propose
a regularization method (Diversity-sensitive cGANs) to am-
plify the diversity of the outputs, more specifically, the reg-
ularization term encourages the generator to maximize the
ratio of the distance between a noise pair to the distance be-
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Figure 3: Diversity comparison. Each pair is conditioned by the same sentence. Since StackGAN++ has 15 convolutional
layers, the 6 15th layers are designed to improved the resolution of the 5th layer’s output, the diversity w.r.t high-level features
is controlled by 4th and 5th layer. Here, j ∈ {1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} and k ∈ {4, 5}.

Figure 4: Visualizing diversity of image batch w.r.t different-
level features in text-to-image task.

tween an image pair. The method needs no training over-
heads and can be easily extended to other frameworks of
cGANs. But it ignores the diversity in hierarchical feature
spaces, one of the results is that Diversity-sensitive GANs
can generate the images of bird with various posture but is
not able to synthesize different feather textures.

Figure 5: Controlling the diversity w.r.t specific-level fea-
tures by tuning one term of ERE.

Conclusion

In this work, we applied a regularization term on the gen-
erator to address the mode collapse problem in cGANs.
And we avoided the computation cost for searching a hy-
perparameter growing exponentially with the number of lay-
ers of the generator. We minimized the differences between
the real change of feature distance and a target change at
all convolutional layers of the generator to control diversi-
ties w.r.t specific-level features. The proposed regularization
term could be integrated into the existing different frame-
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works of cGANs. Our method is demonstrated on three im-
age generation tasks and experimental results showed that
our regularization can increase the diversity without decreas-
ing visual quality. As a future work, we will add more con-
volutional layers in the generator and validate how to control
diversities more precisely. We also hope to conduct more ex-
periments to find the dependencies of ratio(i).
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