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Abstract

Pedestrians in videos are usually in a moving state, re-
sulting in serious spatial misalignment like scale varia-
tions and pose changes, which makes the video-based per-
son re-identification problem more challenging. To address
the above issue, in this paper, we propose a Frame-Guided
Region-Aligned model (FGRA) for discriminative represen-
tation learning in two steps in an end-to-end manner. Firstly,
based on a frame-guided feature learning strategy and a non-
parametric alignment module, a novel alignment mechanism
is proposed to extract well-aligned region features. Secondly,
in order to form a sequence representation, an effective fea-
ture aggregation strategy that utilizes temporal alignment
score and spatial attention is adopted to fuse region fea-
tures in the temporal and spatial dimensions, respectively.
Experiments are conducted on benchmark datasets to demon-
strate the effectiveness of the proposed method to solve the
misalignment problem and the superiority of the proposed
method to the existing video-based person re-identification
methods.

Introduction

The person re-identification research has drawn increasing
attention in the computer vision field in recent years, as
this problem underpins various critical applications such as
surveillance, activity analysis and tracking. Given a target
person appearing in a surveillance camera, this task aims
to identify a set of matching person images from a pool,
which are usually captured from non-overlapping cameras.
It remains a challenging task due to the influence of clut-
tered background, occlusion, heavy illumination changes,
non-rigid deformation of human bodies and viewpoint vari-
ations across camera views.

In recent years, much attention has been shifted to video-
based re-ID because of its natural settings and impressive
benefits of sequential information. In this paper, we study
the person re-ID problem in the video setting. Many ex-
isting video-based person re-identification methods extract
frame-level features and generate sequence-level features
through average or maximum pooling (Liu et al. 2017;
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Figure 1: Sample video sequences with misalignment. Body
parts correspond to the excessive background and other body
parts in the same spatial regions due to detection errors.

You et al. 2016; McLaughlin, Rincon, and Miller 2016;
Zhou et al. 2017). In the presence of partial occlusion,
the extracted sequence-level features are usually corrupted
due to the equal treatment of all the frames, leading to
severe performance degradation. To address this, recent
works (Liu, Yan, and Ouyang 2017; Song et al. 2018;
Li et al. 2018b) have proposed several impressive meth-
ods that generate the adaptive scores for feature weighting.
Region-based methods (Song et al. 2018; Li et al. 2018b)
concentrate more attention on the discriminative image re-
gions and aggregate the complementary region information
across frames. However, aggregating region features is not
straightforward. As illustrated in Fig. 1, due to two types of
detection errors: excessive background and body misalign-
ment, poor spatial alignment of moving pedestrians deterio-
rates the quality of the extracted sequence-level features and
compromise pedestrian matching. To this end, we propose
a novel video representation learning scheme called Frame-
Guided Region-Aligned model (FGRA) to effectively solve
the misalignment problem.

Our approach is partially motivated by the success of a
frame-guided feature learning strategy in the video object
segmentation field (Caelles et al. 2017; Perai et al. 2017)
as well as the successful application of cross correlation to
target location in the visual object tracking field (Bertinetto
et al. 2016; Li et al. 2018a; 2019). One apparent distinc-
tion is that instead of using previous frame masks, we use
discriminative feature vectors to pass guidance information
across frames. Another distinction is that without predefined
target objects, our approach automatically learns target tem-
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plate features for region alignment. Specifically, we design
our model as a two-branch architecture including a global
branch and a local branch. The global branch is deployed
to extract global spatiotemporal features for complementary
discriminability. The local branch extracts local spatiotem-
poral features in two steps, including a region alignment
mechanism and a feature aggregation strategy. The whole
model is trained in an end-to-end manner.With the assist of
the proposed region alignment mechanism and feature ag-
gregation strategy, FGRA can drive the alignment of the cor-
responding regions across frames at the feature level, and
explore more discriminative spatiotemporal cues that are ro-
bust to misalignment like scale variances and pose changes.

The main contributions in this paper can be summarized
in four folds as follows:
• To the best of our knowledge, this is the first attempt to

introduce the frame-guided alignment strategy for video-
based person re-identification. We utilize well-learned re-
gion features of a reference frame as template features to
explicitly align body regions across frames, which aims
to explore more accurate spatiotemporal cues.

• We propose a novel non-parametric alignment module
based on depth-wise cross correlation to generate well-
aligned region features. A consistency regularization term
is optimized to further ensure the compactness of the
aligned features.

• We design temporal alignment score for temporal feature
aggregation based on how relevant the region-aligned fea-
ture is to the template feature. We also adopt spatial at-
tention to explore discriminative region information for
spatial feature aggregation.

• We conduct extensive experiments to demonstrate the ef-
fectiveness of each component. The final results achieve
significant performance compared to the existing state-of-
the-art approaches on three mainstream video-based re-ID
datasets: iLIDS-VID, PRID and MARS.

Related Work
In this section, we review the related works related to the
video-based person re-identification, the frame-guided fea-
ture learning strategy and the cross correlation module.

Video-based Person Re-identification. Compared with
image-based re-ID, video-based re-ID provides richer vi-
sual information and is promising for more accurate re-
trieval (Zheng et al. 2016). McLaughlin et al. (McLaughlin,
Rincon, and Miller 2016) and Wu et al. (Wu, Shen, and Hen-
gel 2016) built a CNN to extract per-frame feature and then
utilized an RNN and temporal pooling for feature aggrega-
tion. RNN-based methods treat all the frames equally so that
the poor-quality frames will distort the video representation.
In order to better distill relevant information from the video,
attention-based approaches are gaining popularity (Zhou
et al. 2017; Xu et al. 2017; Liu, Yan, and Ouyang 2017;
Li et al. 2018b; Song et al. 2018). Some recent works (Li
et al. 2018b; Song et al. 2018) tend to learn region-based
video representations and further tackle the misalignment
problem. For example, Li et al. (Li et al. 2018b) utilized mul-
tiple spatial attention modules to roughly localize distinctive

body parts of a person for region alignment. However, spa-
tial attention may not steadily focus on the same regions and
generate false saliency due to frequent detection errors. To
alleviate this dilemma, we propose a novel region alignment
mechanism based on a frame-guided feature learning strat-
egy and a non-parametric alignment module to effectively
solve the misalignment problem. Recently Hou et al. (Hou et
al. 2019) proposed VRSTC to recover the occluded regions
to train re-ID network, which can be treated as data prepro-
cessing. The main contributions of our paper and VRSTC
work on two different aspects and can be combined. In this
paper, we do not concentrate on it since our work focuses on
discriminative representation learning.

Frame-Guided Feature Learning Strategy. Consec-
utive frames contain strong information correlation be-
tween each other, and previous frame provides guidance
for information analysis of subsequent frames, which has
been practically accepted in the video object segmenta-
tion field (Caelles et al. 2017; Perai et al. 2017). Caelles
et al. (Caelles et al. 2017) proposed OSVOS that utilized
merely one mark of the first frame but gave rise to highly
accurate and temporally consistent segmentations. Our work
is partially motivated by this strategy. Corresponding body
regions of a person in a sequence are highly similar to each
other. It is desirable to locate and align the same body re-
gions of the remaining frames based on the previous frame.

Cross Correlation Module. The cross correlation mod-
ule is a significant operation to aggregate information of
two objects, which has been successfully applied in vi-
sual tracking tasks (Bertinetto et al. 2016; Li et al. 2018a;
2019). For example, a unified framework SiamRPN++ (Li
et al. 2019) presented a lightweight cross correlation layer
called depth-wise cross correlation, which achieved efficient
information association. Inspired by the above methods, our
method extends them to extract region-aligned features.

Proposed Method

In this section, we introduce the overall system pipeline of
the proposed method and then explain specific configuration
of its important components in more detail.

Problem Formulation

Person re-identification can be implemented as a ranking
task. Given a probe video sequence Q = {qn|qn ∈ R

D}Nn=1,
where N is the sequence length and D is the dimension of an
image, the video-based re-ID task aims to retrieve the same
person by ranking gallery sequences based on the similarity
between the probe sequence Q and each gallery sequence
G = {gn|gn ∈ R

D}Nn=1. In the final search result list, the
video sequences of the same person as the probe Q are as-
signed the top rank, i.e. the highest ranking score.

Architecture Overview

This work proposes a new deep learning architecture to learn
region-aligned video representations guided by well-learned
template features in an end-to-end manner. As illustrated in
Fig. 2, an input video S = {x1, x2, · · · , xN} is fed into the
backbone network to extract the frame features {Fn|Fn ∈
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Figure 2: The architecture of FGRA framework. This framework is designed as a two-branch architecture. The global branch is
deployed to extract global spatiotemporal features, and the local branch extracts local spatiotemporal features in two steps, in-
cluding region alignment and feature aggregation. Specifically, the local branch is composed of multiple functional components
including a template feature learning branch, a guide alignment module (GAM) and a spatial-temporal aggregation operation.

R
C×H×W }Nn=1, where C, H and W denote the number of

channels, height and width of the feature maps, respectively.
We select Resnet50 (He et al. 2016) as the backbone net-
work, where the global average pooling and fully connected
layers are discarded. Then the frame features are processed
through the global branch and local branch to obtain the
global and local sequence features [fs,g ∈ R

c, fs,l ∈ R
c],

respectively, where c denotes the length of the reduced di-
mension. Both of them are complementary to each other and
concatenated as the final representation to perfect the com-
prehensiveness for retrieval.

In the global branch, we first apply a global average pool-
ing layer to each frame feature map, which is followed by a
temporal attention module originally proposed in (Li et al.
2018b) to temporally aggregate the global features and gen-
erate a compact video representation. A 1× 1 convolutional
layer is further applied to reduce the feature dimension from
2048 to1024 and output the final representation fs,g .

In the local branch, we adopt a region alignment mech-
anism and a feature aggregation strategy to drive region
alignment and capture discriminative spatiotemporal cues.
We deploy a guide branch to learn template region fea-
tures {Ft,i|Ft,i ∈ R

C}Ns
i=1 of a reference frame selected

from a sequence of images, where Ns indicates the num-
ber of regions. Then the template features {Ft,i}Ns

i=1 and
the frame features {Fn}Nn=1 are fed into a guide align-
ment module (GAM) to generate the region-aligned features
{{Fn,i|Fn,i ∈ R

C}Ns
i=1}Nn=1. The final local representation

fs,l is obtained by spatiotemporal weighted averaging and
dimension reduction.

Region Alignment Mechanism

Pedestrians in most datasets are well-aligned by hand-drawn
bounding boxes. But in reality, the bounding boxes of pedes-
trians are detected rather than manually labeled, and thus
pedestrian matching may succumb to heavy misalignment
and strong deformation. To this end, we propose an effec-

tive approach called region alignment mechanism, which au-
tomatically solves two common problems in video re-ID:
aligning corresponding body regions across frames and de-
termining which region is more informative.

Template Feature Learning. We treat the feature align-
ment challenge as a guided feature learning problem, con-
sidering that the previous frame can provide information
clues for feature learning of subsequent consecutive frames.
In the guide branch, we take the first frame of the input
video sequence as a reference frame and spatially downsam-
ple the corresponding backbone feature into Ns column vec-
tors {Ft,i}Ns

i=1. Afterward, a 1 × 1 kernel-sized convolution
layer is employed to reduce the dimension of Ft,i, which is
independently optimized by the objective function.

Guide Alignment Module (GAM). In order to solve the
misalignment problem, a novel non-parametric alignment
module is embedded to the proposed architecture to achieve
region alignment. As shown in Fig. 3, the template region
feature Ft,i and the frame feature Fn with the same number
of channels do the depth-wise cross correlation to produce
the similarity maps Mn,i ∈ R

C×H×W , where the target re-
gion will get high response value. The above process can be
formulated as a parameter-free function f(Ft,i,Fn):

Mn,i = f(Ft,i,Fn) = Ft,i ∗ Fn, (1)
where ∗ indicates group convolution operation. It is clear
that depth-wise cross correlation is mathematically equiva-
lent to group convolution and the template feature Ft,i can
be regarded as the convolution kernel exactly.

We apply a batch normalization layer and a sigmoid func-
tion to the similarity maps to normalize each element to the
range of (0,1). Then the frame feature Fn and the similar-
ity maps Mn,i perform Hadamard product to enhance the
feature saliency of the target region. The result of the cal-
culation is further downsampled to obtain the final region-
aligned feature Fn,i, which can be summarized as :

Fn,i =
1

H ×W

H∑ W∑
Fn ◦Mn,i (2)
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Figure 3: The details of the guide alignment module (GAM).

where ◦ denotes Hadamard product.
Consistency Regularization. The outlined method for

region alignment might be subject to extreme light condi-
tion and superposition, which result in the false high saliency
region and inaccurate spatiotemporal cues. In practice, we
need to ensure the consistency of the aligned regions and
avoid the case in which similar but misaligned regions gain
high response value in the similarity maps.

Specifically, we design a regularization term based on
center loss (Wen et al. 2016) to encourage the proposed
model to maintain the alignment consistency. Typically, the
regularization term for each video sequence is defined as:

Lcenter =

Ns∑
i=1

N∑
n=1

‖Fn,i − ci‖22, (3)

where ci indicates the center of the region-aligned features
{Fn,i}Nn=1. This regularization term is minimized to in-
crease the compactness of the region-aligned features.

Feature Aggregation Strategy

As we obtain the region-aligned features, a video sequence
S can be mapped to a local video representation fs,l by spa-
tial and temporal feature aggregation.

Temporal Alignment Score. To achieve temporal aggre-
gation, we propose temporal alignment scores to conduct the
weighted combination on the aligned features. Based on the
similarity between the aligned feature and the template fea-
ture, the temporal alignment score is generated by feeding
the similarity maps into a global average pooling layer and
a softmax layer:

ŝn,i =
exp(sn,i)∑N
k=1 exp(sk,i)

, (4)

sn,i =
1

H ×W

H∑ W∑
Mn,i. (5)

Note that sn,i ∈ R
C , ŝn,i ∈ R

C are vectors instead of
scalers, and Eq. 4 serves as a normalization function like
a traditional softmax function but it is implemented along
the time dimension. The temporal alignment score indicates
how relevant the aligned feature is to the well-learned tem-
plate feature. In other words, it reflects how informative the
aligned features are to represent a pedestrian.

The region video representation Fs,i ∈ R
C is obtained

by fusing the region-aligned features in a weighted average
manner:

Fs,i =

N∑
n=1

Fn,i ◦ ŝn,i, (6)

where ◦ means Hamamard product.
Spatial Attention Feature Learning. Not all regions of

an object are discriminative in every video frame because
of similar clothes or explicit foreground occluders. There-
fore, the effective region information is easily weakened by
noise region information due to the equal treatment of all
regions. To address this, we conduct the weighted combi-
nation over the region video representations for spatial ag-
gregation. Specifically, we concatenate the region video rep-
resentations {Fs,i}Ns

i=1 as Fs ∈ R
C×Ns and send it into

a convolutional layer to generate spatial attention weights
W ∈ R

1×Ns . The above process can be formulated as:

W = softmax(g(Fs)), (7)

where g(·) denotes a series of operations including a 1D con-
volution layer with a filter of kernel size 3, a batch normal-
ization layer and a ReLU unit. The softmax function is also
used to normalize the spatial weights. Then the local video
representation Fs,l ∈ R

C can be calculated as follow:

Fs,l = Fs ·WT (8)

After dimension reduction on the local representation Fs,l,
the input video is represented by a single feature vector fs
generated by concatenating the global and local representa-
tions:

fs = [fs,g, fs,l] (9)

Objective Functions

In this paper, we train our model in an end-to-end manner
by optimizing the objective function composed of an identi-
fication loss function and a regularization term.

The identification loss Lid consists of softmax loss
Lsoftmax and triplet loss Ltriplet, aiming to supervise the
learning of discriminative representations of pedestrians.
Typically, the original triplet loss proposed in (Hermans,
Beyer, and Leibe 2017) is given by:

Ltriplet =

P∑
i=1

K∑
a=1

[m+

hardest positive︷ ︸︸ ︷
max

p=1...K
||f ia − f ip||2

− min
n=1...K
j=1...P

j �=i

||f ia − f jn||2

︸ ︷︷ ︸
hardest negative

]+, (10)

where f ia, f ip and f jn indicate the features extracted from
anchor, positive and negative samples respectively, and m
denotes the margin value between intra-class distance and
inter-class distance. The original softmax loss can be formu-
lated as follows:

Lsoftmax = − 1

P ×K

P∑
i=1

K∑
a=1

log p(yi,a|xi,a) (11)
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where yi,a is the ground truth identity of the corresponding
input tracklet xi,a, and p(yi,a|xi,a) indicates the prediction
probability of the classifier for the ground truth identity.

As mentioned, we design a regularization term to regu-
larize the consistency of the aligned regions across frames,
which can be globally given by:

Lreg =
1

P ×K

P∑ K∑
Lcenter (12)

We multiply it by the coefficient λ and add it to the final ob-
jective function, which is minimized to optimize our model:

min(Lid + λLreg) (13)

Experiments

Datasets and Protocols

We evaluate our approach on three well-known datasets, in-
cluding iLIDS-VID (Wang et al. 2014), PRID-2011 (Hirzer
et al. 2011) and MARS (Zheng et al. 2016). 1) iLIDS-
VID is very challenging due to clothing similarities among
people and random occlusion. It consists of 600 image se-
quences of 300 people in total, recorded by a pair of non-
overlapping cameras. Video sequences have various lengths
ranging from 23 to 192 frames with an average duration of
73 frames. 2) PRID-2011 is captured in relatively simple en-
vironments with rare occlusion. It contains 749 persons cap-
tured by two cameras but only 200 persons appear in both
cameras, constituting of 400 video sequences. The length of
each video sequence varies from 5 to 675. Following Zheng
et al. (Zheng et al. 2016), sequences with more 21 frames are
selected, leading to 178 identities. 3) MARS is one of the
largest video-based person re-identification datasets which
contains 17503 tracklets from 1261 identities and additional
3248 tracklets of poor quality serving as distracters. Each
identity is captured by at least 2 cameras and has 13.2 track-
lets on average.

Evaluation Protocols. We use the standard experi-
mental protocols for testing. For iLIDS-VID and PRID-
2011 datasets, we follow the implementation in previous
works (Wang et al. 2014) and randomly split the datasets
into 50% of persons for training and 50 % of persons for
testing. This procedure is repeated 10 times to calculate the
average accuracy. The MARS dataset provides fixed training
and testing sets, which contain predefined 8298 sequences
of 625 persons for training and 12180 sequences of 636 per-
sons for testing, including 3248 low-quality sequences in the
gallery set. We employ CMC curve (Bolle et al. 2005) and
mAP (Zheng et al. 2015) to evaluate the performance in our
experiments. For ease of comparison, we only report the cu-
mulated re-identification accuracy at the selected ranks.

Implementation Details

Since the video tracklet has a variable length, a subsequence
of N = 6 frames is randomly selected from the entire track-
let as an input during the training process. The input size of
each frame is set as 256×128 pixels, randomly cropped from
a scaled image whose size is enlarged by 1/8. We then apply

the image-level augmentation to the whole sequence, includ-
ing mirroring, normalization and randomly erasing (Zhong
et al. 2017b). In order to train hard mining triplet loss, 16
identities with 4 tracklets each person are taken in a mini-
batch so that the mini-batch size is 64. The number of spa-
tial regions Ns in the local branch is set to 4. For better op-
timization of our model, we recommend to set the margin
parameter in triplet loss to 0.5 and set the coefficient associ-
ated with center loss to 5e-4.

For network parameter training, we adopt Adam with a
weight decay of 0.0005. The model is trained for 300 epochs
in total, starting with a learning rate of 0.03 for parameters
in the center loss and 0.0003 for others. The learning rate is
reduced ten times after every 100 epochs.

In the test phase, in order to make full use of the informa-
tion of the whole sequence, we segment several video clips
from each sequence by the stride of 3, and every two ad-
jacent clips overlap by half the length. The video clips pass
forward the model to obtain the retrieval features. These fea-
tures then conduct average pooling to compute the similarity
based on the cosine distance. Note that different clips have
different reference frames, which can effectively relieve the
negative impact if the reference frame is of poor quality.

Comparison with State-of-the-art Approaches

We compare our proposed method with the state-of-the-
art methods on three datasets: iLIDS-VID, PRID-2011 and
MARS in Table 1. All the result are achieved without any
post-processing techniques such as re-ranking (Zhong et al.
2017a) or multi-query (Zheng et al. 2016). As shown in Ta-
ble 1, our method achieves the top-1 accuracy of 88.0%,
95.5% and 87.3% on iLIDS-VID, PRID2011 and MARS,
and the mAP of 81.2% on MARS, outperforming the best
performance of the published methods including extracting
handcrafted features and learning deep features. The main
reason for the improvements is that we propose a novel
region alignment mechanism to carefully align the corre-
sponding regions of a moving person and adopt an effective
feature aggregation strategy to explore accurate spatiotem-
poral cues. STA utilizes attention to aggregate roughly-
partitioned region information but suffers from slight perfor-
mance degradation due to neglecting the misalignment prob-
lem. The previous best results are reported by CSACSE and
SCAN, which incorporate optical flow to represent the mo-
tion information. However, off-line optical flow extraction
is time and resources consuming due to the storage require-
ments, especially for the large-scale dataset, such as MARS,
and the whole network can not be trained end to end. Given
that our model is trained in an end-to-end manner, we aban-
don additional optical flow extraction and significantly sur-
pass the existing works that do not use optical flow in terms
of the top-1 accuracy by 6.7%, 2.3% and 0.7% and the
mAP by 4.5% on three datasets respectively.

Ablation Study

To demonstrate the effectiveness of each component of our
model, we compared our full model with several different
settings on iLIDS-VID, PRID2011 and MARS. The overall
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Table 1: Comparisons of our proposed method with the state-of-the-art on iLIDS-VID, PRID2011 and MARS datasets. Top-1,
-5, -10, -20 accuracy (%) and mAP (%) are reported. ’OF’ denotes optical flow.

Method iLIDS-VID PRID2011 MARS

Top1 Top5 Top10 Top20 Top1 Top5 Top10 Top20 Top1 Top5 Top20 mAP

STFV3D (Liu et al. 2015) 44.3 71.7 83.7 91.7 64.7 87.3 89.9 92.0 - - - -
TDL (You et al. 2016) 56.3 87.6 95.6 98.3 56.7 80.0 87.6 93.6 - - - -
RNN (McLaughlin, Rincon, and Miller 2016) 58.0 84.0 91.0 96.0 70.0 90.0 95.0 97.0 - - - -
CNN+XQDA (Zheng et al. 2016) 53.0 81.4 - 95.1 77.3 93.5 - 99.3 65.3 82.0 89.0 47.6
SeeForest (Zhou et al. 2017) 55.2 86.5 - 97.0 79.4 94.4 - 99.3 70.6 90.0 97.6 50.7
ASTPN (Xu et al. 2017) 62.0 86.0 94.0 98.0 77.0 95.0 99.0 99.0 44.0 70.0 81.0 -
QAN (Liu, Yan, and Ouyang 2017) 68.0 86.8 95.4 97.4 90.3 98.2 99.3 100.0 73.7 84.9 91.6 51.7
RQEN (Song et al. 2018) 77.1 93.2 97.7 99.4 91.8 98.4 99.3 99.8 77.8 88.8 94.3 71.7
STAN (Li et al. 2018b) 80.2 - - - 93.2 - - - 82.3 - - 65.8
M3D (Li, Zhang, and Huang 2019) 74.0 94.33 - - 94.4 100.0 - - 84.4 93.8 97.7 74.0
CSACSE (Chen et al. 2018) 79.8 91.8 - - 88.6 99.1 - - 81.2 92.1 - 69.4
SCAN (Zhang et al. 2019) 81.3 93.3 96.0 98.0 92.0 98.0 100.0 100.0 86.6 94.8 97.1 76.7
STA (Fu et al. 2019) - - - - - - - - 86.3 95.7 98.1 80.8
RRU (Liu et al. 2019) 84.3 96.8 - 99.5 92.7 98.8 - 98.8 84.4 93.2 96.3 72.7

CSACSE+OF (Chen et al. 2018) 85.4 96.7 98.8 99.5 93.0 99.3 100.0 100.0 86.3 94.7 98.2 76.1
SCAN+OF (Zhang et al. 2019) 88.0 96.7 98.0 100.0 95.3 99.0 100.0 100.0 87.2 95.2 98.1 77.2

FGRA(Ours) 88.0 96.7 98.0 99.3 95.5 100.0 100.0 100.0 87.3 96.0 98.1 81.2

Table 2: Component analysis of the proposed method. Top-1, -5 accuracy (%) and mAP (%) are reported. AVG, GB, RAM, TA,
TAS, CR and SA indicate average pooling, global branch, region alignment mechanism, temporal attention, temporal alignment
score, consistency regularization and spatial attention, respectively.

Method iLIDS-VID PRID2011 MARS

Top1 Top5 mAP Top1 Top5 mAP Top1 Top5 mAP

1. AVG 76.8 91.3 81.4 86.1 96.2 87.0 76.6 88.0 72.0
2. GB 55.1 80.8 60.0 73.4 89.0 75.7 58.0 79.7 46.3
3. GB+AVG 80.3 93.3 84.3 88.8 96.8 90.8 81.7 93.8 74.7
4. GB+RAM+AVG 83.3 96.0 88.5 92.3 98.4 92.4 84.6 94.6 79.0
5. GB+RAM+TA 85.3 97.3 90.2 94.0 99.3 94.6 86.3 95.2 80.2
6. GB+RAM+TAS 86.0 96.7 90.8 93.4 99.0 94.5 86.0 94.8 79.9
7. GB+RAM+TAS+CR 87.3 96.7 91.4 95.3 100.0 95.7 86.7 95.1 80.9
8. GB+RAM+TAS+CR+SA 88.0 96.7 91.9 95.5 100.0 97.3 87.3 96.0 81.2

results are shown in Table 2. We also conduct the hyperpa-
rameter analysis and exhibit the comparison results in Fig. 4.

Component Analysis of the Proposed Model. We spec-
ify the first variant (1) as our baseline model. It horizontally
partitions the backbone feature maps into several region fea-
tures and conducts temporal average pooling to calculate the
region video representations. Finally, the matching feature is
produced by concatenating these independent region repre-
sentations. The comparison results of variants (1) (2) and (3)
show that the global feature can provide complementary in-
formation for discrimination and compensate for the weak
capability of matching. Given that misalignment is a vital
factor that constrains the learning of high-quality matching
feature, to address this, the region alignment mechanism is
embedded to extract the region-aligned features before fea-
ture aggregation. It can be observed that variant (4) boost
the top-1 accuracy by 3.0%, 3.5% and 2.9% and the mAP by
4.2%, 1.6% and 4.3% on three datasets. We further visualize
the response maps of the region-aligned features in Fig. 5.
As we can see, each response map in the same row has con-
sistently high saliency on the same region boxed in the ref-
erence image, which confirms the effectiveness of the pro-

posed alignment mechanism. Compared with STAN which
relied on attention mechanism to learn to roughly identify
and localize regions of interests for spatial alignment, we
similarly introduce temporal attention module in the local
branch for feature aggregation in variant (5). As we can see,
the performance gap between variant (5) and STAN reflects
the superiority of the proposed alignment mechanism.

One typical way to aggregate temporal information is to
learn temporal attention, which requires the deployment of
additional convolution layers. To simplify the network, we
introduce the temporal alignment scores for temporal ag-
gregation in variant (6) but also achieve competitive perfor-
mance. In variant (7), the consistency regularization term is
incorporated to guarantee the intra-consistency among the
corresponding regions, which further improves the perfor-
mance on all evaluation protocols with a margin. In order to
verify the necessity of mining cross-region and spatial infor-
mation for the prominent capability of matching, we lever-
age spatial attention to further capture latent spatial informa-
tion and yield our full model. The best performance shown
in Table 2 validates our assumption.

Sequences with Different Lengths. To investigate how
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Figure 4: Parameter analysis of the sequence length and the number of spatial regions on iLIDS-VID and PRID2011datasets.
The top-1 accuracy (%) and mAP (%) are reported.

Ref Img 1 65432

Figure 5: Examples of feature response maps extracted from
sampled frames in a video. The leftmost column exhibits
the reference frame and the partitioned regions boxed by red
rectangles. The feature response maps deployed in the same
row represent the corresponding aligned receptive fields.

the sequence length impacts the final performance, we con-
duct a series of experiments using various lengths of the in-
put tracklets on two candidate datasets in Fig. 4. It can be
observed that, except for the sequence length of 2, other set-
tings can consistently achieve competitive performance, and
the top-1 accuracy and mAP steadily fluctuate within 5%,
reflecting that the trained model is robust to the sequence
length. In our model, the sequence length of 6 is chosen for
its best performance.

Various Numbers of Spatial Regions. We also investi-
gate the performance of the proposed model using different
numbers of spatial regions in Fig. 4. Considering the actual
spatial size of the backbone feature map, we conduct exper-

iments with four numbers of spatial regions: 1, 2, 4 and 8.
When the number of spatial regions is set as 1, that is to
say, the model tends to globally align the whole body. As
the number of spatial regions increases, there is a general
improvement in performance, which implies that multiple
spatial regions can capture more fine-grained visual infor-
mation. Our model achieves the best results with the setting
of 4 spatial regions and the accuracy drops when the num-
ber of spatial regions increases from 4 to 8. This is because
very small regions are easily corrupted by noise and make
the overall training process unstable.

Conclusion

In this paper, we propose a frame-guided region-aligned
model (FGRA) to solve the video-based person re-
identification problem. To tackle the misalignment problem,
a novel region alignment mechanism and an effective feature
aggregation strategy are proposed to achieve region align-
ment and explore accurate spatiotemporal cues. Concretely,
we present a frame-guided feature learning strategy and a
non-parametric alignment module that uses depth-wise cross
correlation to align body regions across frames, which are
supervised by a consistency regularization term to improve
the compactness of the region-aligned features. To form the
final representation, we design temporal alignment scores
and spatial attention to aggregate discriminative region in-
formation in the temporal and spatial dimension, respec-
tively. The outstanding performance on three mainstream
datasets demonstrates the effectiveness of each component
of our model and the superiority of the proposed method to
the existing video-based person re-identification methods.
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