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Abstract

In this paper, we focus on the task query-based video local-
ization, i.e., localizing a query in a long and untrimmed video.
The prevailing solutions for this problem can be grouped into
two categories: i) Top-down approach: It pre-cuts the video
into a set of moment candidates, then it does classification
and regression for each candidate; ii) Bottom-up approach: It
injects the whole query content into each video frame, then
it predicts the probabilities of each frame as a ground truth
segment boundary (i.e., start or end). Both two frameworks
have respective shortcomings: the top-down models suffer
from heavy computations and they are sensitive to the heuris-
tic rules, while the performance of bottom-up models is be-
hind the performance of top-down counterpart thus far. How-
ever, we argue that the performance of bottom-up framework
is severely underestimated by current unreasonable designs,
including both the backbone and head network. To this end,
we design a novel bottom-up model: Graph-FPN with Dense
Predictions (GDP). For the backbone, GDP firstly generates a
frame feature pyramid to capture multi-level semantics, then
it utilizes graph convolution to encode the plentiful scene re-
lationships, which incidentally mitigates the semantic gaps in
the multi-scale feature pyramid. For the head network, GDP
regards all frames falling in the ground truth segment as the
foreground, and each foreground frame regresses the unique
distances from its location to bi-directional boundaries. Ex-
tensive experiments on two challenging query-based video
localization tasks (natural language video localization and
video relocalization), involving four challenging benchmarks
(TACoS, Charades-STA, ActivityNet Captions, and Activity-
VRL), have shown that GDP surpasses the state-of-the-art
top-down models.

Introduction

Query-based Video Localization (QBVL), i.e., capturing the
gist of a query and localizing the semantic-similar moment
with the query in a long and untrimmed reference video, is
one of the core tasks in video scene understanding. With
the release of large scale video datasets and developments in
video representation learning, two challenging QBVL tasks
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Figure 1: (a) Natural Language Video Localization: The
query is a natural language; (b) Video Relocalization: The
query is a video clip. Both tasks aim to localize a segment
with start (0.0s/19.5s) and end (21.4s/24.6s) in the reference
video (Ref) which semantically corresponds to the query.

were recently proposed: 1) Natural Language Video Lo-
calization (NLVL) (Gao et al. 2017; Anne Hendricks et
al. 2017), where the query is a natural language description
(Figure 1 (a)). 2) Video Relocalization (VRL) (Feng et al.
2018), where the query is a video clip (Figure 1 (b)). Both
tasks share the same target, i.e., identifying the start and end
point of the segment in reference video which semantically
corresponds to the query. Moreover, QBVL is an indispens-
able technique for many important video applications, e.g.,
text-/context- based video highlight detection or retrieval,
video-based person re-id (Liu et al. 2016; Ye et al. 2017;
Wang et al. 2012b; 2012a; 2017).

A straightforward solution for QBVL is in a sliding-
window fashion: it explicitly pre-cuts the reference video
into a set of moment candidates by multiple predefined tem-
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Figure 2: A typical bottom-up framework for QBVL. It al-
ways consists of a backbone (a) for query-ref interaction
modeling and a head network (c) for boundaries prediction.

poral scales. After it extracts features for the query and
each candidate. The QBVL degrades into a similarity match-
ing problem (Gao et al. 2017; Anne Hendricks et al. 2017;
Liu et al. 2018b; 2018c; Ge et al. 2019; Xu et al. 2019;
Chen and Jiang 2019). However, these methods overlook the
fruitful long term visual context in the whole video, which
is helpful for deep video understanding (Wu et al. 2019).
To benefit from this intuition, some QBVL models resort
to RNN to encode the whole video, and implicitly “cut”
the video by multiple temporal anchors. These temporal an-
chors follow the same spirits as anchor boxes in object de-
tection (Ren et al. 2015). Finally, they do classification and
regression for each candidate as the sliding-window models.

Although the top-down models (i.e., sliding-window and
anchor-based) have dominated the performance. It is worth
noting that this framework has several notorious limitations:
1) the performance is sensitive to heuristic rules (e.g., tem-
poral scales and candidates numbers). 2) To achieve high
recall, the model has to densely place candidates, which re-
sults in heavy computation and slow localization speed.

To avoid these inherent drawbacks in top-down frame-
work, several recent models solve the QBVL in a bottom-
up manner (Chen et al. 2019a; Yuan, Mei, and Zhu 2019;
Feng et al. 2018). As shown in Figure 2, a bottom-up model
consists of two components: a backbone (a) and a head net-
work (c). The backbone, which is typically equipped with
a co-attention or cross-gating mechanism, aims to inject the
gist of the query into each reference video frame1. The out-
put of the backbone is a query-ref frame sequence (b), which
is always encoded by an RNN. Since the nature of the head
network in bottom-up framework, i.e., it predicts the proba-
bility of each frame as a boundary, the query-ref frame se-
quence needs to keep the same temporal resolution as the
reference video. Although these models eliminate the short-
comings in top-down framework, their performance is still
behind the performance of top-down models thus far, espe-
cially for long videos (e.g., TACoS). We argue that the main
reasons come from the current unreasonable designs:
Backbone: 1) Each video contains abundant “scene” (a clus-
ter of frames) changes, i.e., different scenes are interleaved
in a video sequence. Thus, exploiting scene relationships
is crucial to understand the whole video content. However,

1The frame in this paper is a general description for a frame in
a video sequence or an element in a video frame feature sequence.

the backbone only utilizes RNN to encode frame-level in-
teractions and ignores plentiful scene relationships. 2) To
generate high-resolution query-ref frame sequence, all in-
termediate frame features in the backbone keep the same
temporal resolution as reference video all the time. This
is similar to the high-resolution feature map in ConvNet,
which purely encodes low semantics (Chen et al. 2018b;
Lin et al. 2017). Instead, the bottom-up framework requires
each frame feature to capture higher (i.e., global) semantics.
Head network: 1) To predict the probabilities of each frame
as a boundary, the head network in existing bottom-up mod-
els only regards two extract boundary frames as foreground,
and all other frames as background. This results in an ex-
treme imbalance between positive and negative samples,
even worse for long videos. 2) The predictions of the start
and end boundaries are independent, i.e., the model over-
looks the content consistency between two predictions.

In this paper, we propose a novel bottom-up model:
Graph-FPN with Dense Predictions (GDP), which mitigates
all the above mentioned problems in the existing bottom-
up framework. For backbone, GDP introduces a Graph-
FPN layer to enhance the output of backbone. Specifically,
it firstly constructs a pyramid hierarchy from the query-ref
frame sequence (Figure 2 (b)), which helps to capture higher
semantics. Then it maps all these multi-scale frame fea-
tures to a scene space, where each node represents a scene.
And it conducts graph convolution over all nodes in the
scene space. The graph convolution not only exploits the
plentiful scene relationships but also mitigates the seman-
tic gaps between multi-scale features. Finally, these scene
nodes are projected to compose new frame features. For
head network, GDP replaces the sparse boundary predic-
tions with dense predictions. It regards all frames falling in
the ground truth segment as foreground. Each foreground
frame regresses the unique distances from its location to bi-
directional boundaries. Meanwhile, each frame predicts a
confidence score to rank its boundaries prediction. In this
manner, we utilize as many positive samples as possible
to alleviate the imbalanced problem. Meanwhile, since two
boundary predictions are based on a same frame feature, i.e.,
two predictions act as a whole, which helps to avoid falling
into the local optimum caused by independent predictions.

We demonstrate the effectiveness of GDP on two chal-
lenging QBVL tasks: natural language video localization
over TACoS (Regneri et al. 2013), Charades-STA (Gao et al.
2017), ActivityNet Captions (Krishna et al. 2017) and video
relocalization over ActivityNet-VRL (Feng et al. 2018).
Without bells and whistles, GDP achieves a new state-of-
the-art performance over all benchmarks and metrics.

Related Work

Query-based Video Localization

Natural Language Video Localization (NLVL). NLVL is
a difficult QBVL task which involves two different modali-
ties. The current NLVL models, which are mainly top-down
models, focus on designing stronger multi-modal interac-
tion backbone. The backbone typically contains an attention
mechanism (Chen et al. 2017), e.g., video-based query at-
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tention (Liu et al. 2018b), query-based video attention (Liu
et al. 2018c), or query-video co-attention (Chen et al. 2018a;
2019a; Yuan, Mei, and Zhu 2019). To the best of our knowl-
edge, there are two exceptions, which are neither top-down
nor bottom-up models: RWM (He et al. 2019) and SM-
RL (Wang, Huang, and Wang 2019). They formulate NLVL
as a sequence decision making problem, solved by policy
gradient (Chen et al. 2019b; Liu et al. 2018a). The action
space is temporal box transformation or frame hopping.
Video Relocalization (VRL). VRL is a recently proposed
QBVL task. The main challenges for VRL come from the
huge differences between the query and reference video
even though they express the same visual concept, e.g.,
the appearance of environments, objects, and viewpoints.
The state-of-the-art VRL method is the bottom-up model:
CGBM (Feng et al. 2018). It contains a cross-gating bilinear
matching in backbone to encode query-reference interaction,
and a sparse head network to predict boundaries.

Top-Down vs. Bottom-Up

The concepts about the top-down and bottom-up in QBVL
are similar to the one in object detection. After the appear-
ance of anchor boxes in modern object detectors (Ren et
al. 2015), top-down models have dominated object detec-
tion for years. Recently, some works start to borrow ideas
from keypoint estimation and directly predict the key points
of object bounding boxes (Law and Deng 2018; Zhou, Zhuo,
and Krahenbuhl 2019; Zhou, Wang, and Krahenbuhl 2019;
Tian et al. 2019). These bottom-up models not only enjoy
much faster detection speed but also get comparable per-
formance with the top-down models. Thus, the bottom-up
detectors begin to gain unprecedented attention, which en-
courages us to design a stronger bottom-up QBVL model.

Graph-based Global Reasoning

Modeling context, especially for the global context, is a
crucial step in many computer vision tasks. Graph-based
global reasoning is a recent proposed global context model-
ing technique for visual recognition, which performs higher-
level reasoning over a graph structure (Chen et al. 2019c;
Li and Gupta 2018; Liang et al. 2018; Zhang, Yan, and He
2019). Specifically, it projects visual features in the coordi-
nate space into a graph space, and each node in the graph up-
dates its feature by graph convolution. Then these nodes are
mapped back to the coordinate space. Different from the ex-
isting works which only consider single scale features, GDP
does graph convolution over nodes from multi-scales.

Approach
The QBVL task considered in this paper, is defined as fol-
lows. Given an untrimmed reference video V and a query Q
(e.g., natural language or video clip), QBVL needs to predict
two time points (ts, te), where the segment in V from time
point ts to te corresponds to the same semantic as Q.

In this section, we firstly introduce the architecture de-
tails about each component of GDP (Figure 3), including a
query-ref interaction backbone (a), a Graph-FPN layer (b),
and a dense head network (c). Then we demonstrate the de-
tails about the training and test stage of the GDP.
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Figure 3: The architecture of GDP. It consists of a backbone
(a), a Graph-FPN layer (b), and a dense head network (c).

Backbone

As shown in Figure 3, the backbone has two inputs: query
feature Q = {qn}Nn=1 and reference video feature V =
{vi}Ti=1. N and T are the length of the query and reference
video (see Section for details). The backbone consists of:
Query Encoder. We use the same encoder as prior work (Yu
et al. 2018), which contains a stack of encoder blocks. The
details of the encoder block are shown in Figure 4 (a). It has
multiple conv-layers, layer-norm layers, self-attention lay-
ers, and feedforward layers. The output of the query encoder
is Q̃ = {q̃n}Nn=1, which encodes the context in query.
Reference Encoder. The design of reference encoder is
identical to the query encoder, and the output of this encoder
is Ṽ = {ṽi}Ti=1, which encodes the context in video.
Query-Ref Co-Attention. It contains a co-attention mecha-
nism to fuse the query and reference video features. Specif-
ically, it firstly calculates a similarity matrix S ∈ R

T×N ,
where each element Sij denotes the similarity between ṽi

and q̃j . Thus, we obtains two weighted features A and B:

A = S̄ · Q̃, B = S̄ · ¯̄ST · Ṽ , (1)

where S̄ and ¯̄S are the row-wise and column-wise normal-
ized matrix of S, respectively. Then it composes a new frame
feature sequences with i-th position is [vi,ai,vi � ai,vi �
bi], where ai and bi are i-th row of A and B, � is the
element-wise multiplication, and [, ] is the vector concate-
nate operation. And it uses another stack of encoder blocks
(Figure 4 (a)) to encoder these new frame features. The out-
put is H0 = {h0

i }Ti=1,H0 ∈ R
T×D, where h0

i ∈ R
D is i-th

frame feature which encoders the query gist. Different from
the existing bottom-up models which directly feeds H0 into
the head network, GDP has a Graph-FPN layer to refine the
frame features H0. It is worth noting that our proposed GDP
is agnostic to the backbone, i.e., it can be seamlessly incor-
porated into any stronger backbone to boost performance.

Graph-FPN Layer

As shown in Figure 4 (b), the Graph-FPN layer contains four
main steps to refine the query-ref frame features H0:
Build Pyramid Hierarchy. Taking H0 from backbone, we
firstly build a pyramid {H1 ∈ R

T1×D,H2 ∈ R
T2×D,H3 ∈

R
T3×D} with gradually half decrease the temporal resolu-

tion, i.e., Ti+1 = Ti/2. The network which transforms Hi

to Hi+1, is also a stack of the encoder blocks (Figure 4 (a))
with an extra stride-2 conv-layer to decrease resolution.
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Figure 4: The details of each component of GDP. (a) The encoder block; (b) the Graph-FPN layer; (c) dense head network.

From Frame Space to Scene Space. After getting the
multi-scale features {H1,H2,H3}, we project them to a
scene space. Taking H2 = {h2

i }T2
i=1 as an example, we aim

to learn a scene-level features X2 = f2(H2) ∈ R
N2×D,

where N2 is the number of node in scene space for this scale.
We formulate the projection f2(·) as a linear combination of
origin features, i.e., each node feature in scene space is:

x2
i = c2iH2 =

∑
j
c2ijh

2
j , (2)

where C2 = [c21, ..., c
2
N2

], C2 ∈ R
N2×T2 . C2 is derived

from H2 through a 1 × 1 convolution. Similarly, we obtain
X1 ∈ R

N1×D, X3 ∈ R
N3×D from H1, H3 respectively.

Graph Convolution in Scene Space. After projecting the
multi-scale features into the scene space, we adopt graph
convolution (Kipf and Welling 2017) to exploit the scene re-
lationships. In particular, we treats all Ntotal (i.e., Ntotal =
N1 + N2 + N3) scene node features as a fully-connected
graph, and the graph convolution is formulated as:

Y = ((I −Aadj)X)W , (3)

where X = [X1;X2;X3] ∈ R
Ntotal×D is the feature of all

nodes in scene space, [;] is the row concatenate operation in
matrix, W ∈ R

D×D is a transformation matrix, and Aadj is
a learnable Ntotal×Ntotal node adjacency matrix. I denotes
the identity connection to relief the optimization difficulties.
From Scene Space to Frame Space. Given the updated
node feature in scene space Y = [Y1;Y2;Y3], we reserve
project them to the frame space. Taking Y2 as an example:

h̃2
i = d2

iY2 =
∑

j
d2ijy

2
j , (4)

where D2 = [d2
1, ...,d

2
T2
],D2 ∈ R

T2×N2 .To reduce the
computation cost, we set Ci = DT

i . After getting new frame
sequences: {H̃1, H̃2, H̃3}, we upsize H̃1 and H̃2 to the
same resolution as H̃3, and concatenate all frames and de-
crease the dimension to obtain final features H̃ ∈ R

T1×D.

Dense Head Network

Different from the head network in existing bottom-up mod-
els, GDP regards each frame falling in the ground truth seg-
ment as positive samples. For each frame, there are two sub-
nets, which aims to predict the boundary distances and con-
fidence scores. The details about the two subnets are:
Boundary Regression Subset. It regresses the distances
from each frame to the ground truth segment bi-directional
boundaries. As shown in Figure 4 (c). Taking H̃ from pre-
ceding Graph-FPN layer, this subset applies four 1×3 conv-
layers with D channels, each followed by ReLU activation,
and followed by 1 × 3 conv-layer with 1 channels. Then a
sigmoid activation is attached to output two predictions (i.e.,
left and right). For this subset, we only assign regression tar-
gets for positive frames. In particular, for the frame at i-th
position, if the ground truth segment range is (ts, te) (i.e.,
ts ≤ i ≤ te), the regression targets are t∗i = (l∗i , r

∗
i ):

l∗i = i− ts, r∗i = te − i, (5)
where l∗i and r∗i denotes the distances from i-th frame to the
left and right boundaries, respectively.
Confidence Subset. Although each frame has a prediction
about the ground truth segment, the confidence of each pre-
diction should be different. The intuition comes from that
a frame near the boundary should be easier to predict the
distance to the boundary than a far one. Therefore, to take
both left and right predictions into consideration, we use the
“centerness” as ground truth confidence of positive samples.
For negative samples, we set the ground truth to 0:

s∗i =

⎧⎨
⎩

min(l∗i , r
∗
i )

max(l∗i , r
∗
i )
, ts ≤ i ≤ te

0. i < ts or i > te

(6)

Training and Inference

Loss. Give the predictions from all frames {(t̂i, ŝi)}Ti=1 and
the corresponding ground truth {(t∗i , s∗i )}Ti=1, the total train-
ing losses of the GDP is:

L =
1

T
Lconf (ŝi, s

∗
i ) +

1

Tp
1{s∗i >0}Lreg(t̂i, t

∗
i ), (7)
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Figure 5: The qualitative results of GDP for NLVL on ActivityNet Captions (upper) and VRL on ActivityNet-VRL (below).

where T and Tp are the number of samples and positive sam-
ples. �{s∗i >0} is the indicator function, being 1 if s∗i > 0
(i.e., i-th frame is a positive frame) and 0 otherwise. Lconf

is a binary cross entropy loss for the confidence subset.
Lreg(t̂i, t

∗
i ) = Ll1(t̂i, t

∗
i ) + LIoU (t̂i, t

∗
i ) is the loss for

boundary regression subnet, where Ll1 is a smooth l1 loss
and LIoU is an IoU loss (i.e., −ln

min(r̂i,r
∗
i )−max(l̂i,l

∗
i )

max(r̂i,r∗i )−min(l̂i,l∗i )
).

Inference. At the test stage, we can obtain a confidence
score and two boundary predictions from each frame. A
straightforward solution is selecting the boundary predic-
tions from the frame with highest confidence score. How-
ever, we empirically found the predictions from a single
frame are usually with high variance. To relieve this situa-
tion, we follow Lu et al. (Lu et al. 2019) and use a Temporal
Pooling to consider multiple frame predictions.

Experiments

Datasets

Natural Language Video Localization. We evaluated GDP
on three prevailing NLVL benchmarks: 1) TACoS (Regneri
et al. 2013): It consists of 127 videos and 17,344 text-to-clip
pairs. The average duration of each video is 5 minutes. We
used the standard split as (Gao et al. 2017), i.e., 50% for
training, 25% for validation, and 25% for test. 2) Charades-
STA (Gao et al. 2017): It consists of 12,408 text-to-clip pairs
for training, and 3,720 pairs for test. The average duration of
each video 30 seconds. 3) ActivityNet Captions (Krishna et
al. 2017): It is the largest NLVL benchmark with much more
diverse context. Specifically, it consists of 19,209 videos and
the average duration of each video is 2 minutes. We used
the standard split as (Yuan, Mei, and Zhu 2019), i.e., 37,421
text-to-clip pairs for training, and 17,505 pairs for test.
Video Relocalization. We evaluated GDP on the challeng-
ing VRL benchmark: ActivityNet-VRL (Feng et al. 2018),
which is the only open released VRL dataset so far. It reorga-

nizes the action recognition dataset ActivityNet (Caba Heil-
bron et al. 2015), by randomly selecting 160 action classes
for training, 20 classes for validation, and 20 classes for test.
This zero-shot split facilitates to evaluate the model gen-
eralization capability. For training, the query and reference
video are randomly paired; for test, the pairs are fixed.

Evaluation Metrics

Natrual Language Video Localization. We evaluated mod-
els on two standard metrics: 1) R@N, IoU@θ: The percent-
age of test samples which have an IoU larger than threshold
θ in one of the top-N predictions. Since the nature of bottom-
up framework, we used N =1 in all experiments; 2) mIoU:
The average IoU of top-1 predictions over all test samples.
Video Relocalization. We evaluated models on mAP@1,
i.e., the mAP of top-1 predictions over different thresholds.

Implementation Details.

Given a reference video V , we first extracted the C3D fea-
tures (Tran et al. 2015) of the down-sampled frames as the
initial frame features, and utilized PCA to reduce the di-
mensions of these features to 500. For NLVL with language
query Q, we truncated or padded sentence to a maximum
length of 15 words. Each word embedding was initialized
with the 300-d Glove vector, and kept fixed all the time.
Then we learned a transformation matrix to map these fea-
tures into 500-d; For VRL with video query Q, we followed
the same processing steps as reference video. The dimension
of all intermediate layers was set to 128. The node number
N1, N2 and N3 were set to 10. We trained the whole network
from scratch with Adam optimizer for 100 epochs. The ini-
tial learning rate was set to 0.0001 and it was divided by
10 when the loss arrives on plateaus. The batch size of all
experiments was set to 16, and the dropout rate was 0.5.
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Method Venue TACoS Charades-STA ActivityNet Captions
IoU@0.1 IoU@0.3 mIoU IoU@0.3 IoU@0.5 IoU@0.7 IoU@0.3 IoU@0.5 mIoU

T
D

VSA-RNN ICCV’17 8.84 6.91 - - 10.50 4.32 - - -
VSA-STV ICCV’17 15.01 10.77 - - 16.91 5.81 - - -
CTRL ICCV’17 24.32 18.32 - - 23.63 8.89 - - -
ROLE MM’18 - - - 25.26 12.12 - - - -
ACRN SIGIR’18 24.22 19.52 - - - - - - -
MCF IJCAI’18 25.84 18.64 - - - - - - -
TGN EMNLP’18 - - - - - - 43.81 27.93 -
ACL WACV’19 28.31 22.07 - - 26.47 11.23 - - -
SAP AAAI’19 31.15 - - - 27.42 13.36 - - -
QSPN AAAI’19 - - - 54.70 35.60 15.80 45.30 27.70 -

R
L RWM AAAI’19 - - - - 36.70 - - 36.90 -

SM-RL CVPR’19 26.51 20.25 - - 24.36 11.17 - - -

B
U

L-NET AAAI’19 - - 13.41 - - - - - -
ABLR-aw AAAI’19 31.60 18.90 12.50 - - - 53.65 34.91 35.72
ABLR-af AAAI’19 34.70 19.50 13.40 - - - 55.67 36.79 36.99
GDP AAAI’20 39.68 24.14 16.18 54.54 39.47 18.49 56.17 39.27 39.80

Table 1: Performance compared with the state-of-the-art NLVL models on TACoS, Charades-STA and ActivityNet Captions.

Comparisons with State-of-the-Arts

Experiments on NLVL. We compared GDP with the
state-of-the-art NLVL models. From the viewpoint of top-
down and bottom-up frameworks, we group them into
three categories: 1) Top-down models: VSA-RNN, VSA-
STV, CTRL (Gao et al. 2017), ROLE (Liu et al. 2018c),
ACRN (Liu et al. 2018b), MCF (Wu and Han 2018),
TGN (Chen et al. 2018a), ACL (Ge et al. 2019), SAP (Chen
and Jiang 2019), and QSPN (Xu et al. 2019); 2) RL-based
models: RWM (He et al. 2019), SM-RL (Wang, Huang,
and Wang 2019); 3) Bottom-up models: L-Net (Chen et al.
2019a), ABLR-af, ABLR-aw (Yuan, Mei, and Zhu 2019).
Results. The results on NLVL are reported in Table 1. We
can observe that GDP achieves a new state-of-the-art perfor-
mance over almost all evaluation metrics and benchmarks. It
is worth noting that the performance gains in stricter metrics
are more obvious (e.g., 2.77% and 2.81% absolute improve-
ment in mIoU on dataset TACoS and ActivityNet, 2.69% ab-
solute improvement in IoU@0.7 on dataset Charades-STA).

Experiments on VRL. We compared GDP with the state-
of-the-art VRL models. Similarly, we group them into two
categories: 1) Top-down models: Frame-level and video-
level baselines (Feng et al. 2018), SST (Buch et al. 2017);
2) Bottom-up models: CGBM (Feng et al. 2018).
Results. The results on VRL are reported in Table 2. We
can observe that GDP surpasses all existing state-of-the-art
models, especially for high-quality predictions (e.g., GDP
almost double the performance with tIoU threshold at 0.9).

Ablative Studies

Effectiveness of Graph-FPN Layer. To evaluate Graph-
FPN layer, we designed three strong baselines. As shown in
Figure 6, model A (a) is a bottom-up model with a backbone
and a dense head network; model B (b) builds a pyramid
hierarchy on top of backbone to capture higher semantics;
model C (c) follows FPN (Lin et al. 2017) which combines
adjacent scale features via a top-down connection; model D

mAP@1 0.5 0.6 0.7 0.8 0.9 Avg
Frame-level 18.8 13.9 9.6 5.0 2.3 9.9
Video-level 24.3 17.4 12.0 5.9 2.2 12.4
SST 33.2 24.7 17.2 7.8 2.7 17.1
CGBM 43.5 35.1 27.3 16.2 6.5 25.7
GDP 44.0 35.4 27.7 20.0 12.1 27.8

Table 2: Performance compared with state-of-the-art VRL
models on ActivityNet-VRL.

(d) is the GDP. In particular, we used the same backbone and
the proposed dense head network in all four models.
Results. The results about the four models are reported in
Table 3. We have the following observations: 1) Pyramid hi-
erarchy is important for QBVL, e.g., the model with pyra-
mid (model B, C, and D) achieves better performance than
the one without pyramid (model A); 2) Fusing only adjacent
two scale features in FPN-style is not an effective solution
to mitigate the semantic gaps between multi-scale features,
e.g., model C only gets comparable performance with model
B. 3) Model D (i.e., GDP) achieves the best performance
over most of the metrics and benchmarks, which demon-
strates the effectiveness of the Graph-FPN layer.

Effectiveness of Dense Predictions. To evaluate the dense
predictions, we compared with a strong baseline which uses
the same backbone and Graph-FPN layer as GDP. The only
difference is replaceing the dense head network with the
sparse head network (i.e., directly predict boundaries).
Results. The results are reported in Table 4. We can ob-
serve that dense predictions significantly improve the per-
formance over all benchmarks and metrics. In particular, the
performance gap is more obvious in long video dataset (e.g.,
TACoS). It demonstrates that dense predictions are benefi-
cial to relieve the imbalance problem in the existing models.

Visualization

Qualitative Results. The qualitative results of GDP are il-
lustrated in Figure 5. We can observe that the frame with the
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Figure 6: (a) Model A consists of a backbone and a dense head network. (b) Model B builds a pyramid hierarchy on top of
backbone. (c) Model C uses FPN to combine two adjancent scale features. (d) Model D is the GDP with a Graph-FPN layer.

NLVL VRL
TACoS Charades-STA ActivityNet Captions ActivityNet-VRL

Model IoU@ mIoU IoU@ mIoU IoU@ mIoU mAP@1
0.1 0.3 0.5 0.3 0.5 0.7 01. 0.3 0.5 0.5 0.6 0.7 0.8 0.9

A 37.4 23.3 11.5 15.3 51.8 38.3 17.8 35.1 72.1 56.0 40.7 39.3 41.1 34.2 27.7 20.3 6.8
B 37.3 23.1 13.9 15.8 53.8 38.6 18.4 36.0 73.1 56.2 40.3 39.5 43.3 35.0 27.9 18.2 9.6
C 36.8 23.1 13.8 15.7 52.6 38.9 18.3 35.8 73.7 54.7 38.9 39.4 42.9 34.5 26.9 18.8 8.4
D 39.7 24.1 13.5 16.2 54.5 39.5 18.5 36.6 75.0 56.2 39.3 39.8 44.0 35.4 27.7 20.0 12.1

Table 3: Performance of different ablative models (model A, B, C, and D) on NLVL and VRL.

Frame 
Seq

Node 2

Node 3 Node 4

Node 1

Figure 7: The visualization of nodes in the scene space.

highest score is always near the center of the ground truth
segment, which conforms with our design, i.e., using “cen-
terness” as the confidence subnet targets.
Nodes in Scene Space. To visualize the nodes in scene
space, we randomly select four nodes in the same scale and
each node is represented by three video frames with high-
est attention weights. The results are illustrated in Figure 7.
From the figure, we observe that each node in scene space is
always a certain scene or with similar visual appearance.

Conclusion

In this paper, we thoroughly analyze the existing approaches
for QBVL, especially the drawbacks of the current bottom-
up framework. Based on the analysis, we proposed a novel
bottom-up model GDP, which mitigates all the problems in
existing bottom-up models: 1) It contains a Graph-FPN layer
to encoder plentiful scene relationships and capture higher

Dataset Metric Head Network
Sparse Dense∗ Dense

N
LV

L

TACoS

IoU@0.1 32.3 36.5 39.7
IoU@0.3 18.7 22.9 24.1
IoU@0.5 9.6 13.0 13.5
mIoU 12.9 15.2 16.2

Charades-STA

IoU@0.3 52.9 53.9 54.5
IoU@0.5 31.4 39.0 39.5
IoU@0.7 14.7 18.3 18.5
mIoU 35.1 36.1 36.6

ActivityNet

IoU@0.1 72.4 73.5 75.0
IoU@0.3 53.0 55.9 56.2
IoU@0.5 37.5 39.8 39.3
mIoU 39.0 39.3 39.8

V
R

L

ActivityNet

tIoU@0.5 41.6 42.3 44.0
tIoU@0.6 30.5 35.3 35.4
tIoU@0.7 25.7 27.6 27.7
tIoU@0.8 19.8 20.6 20.0
tIoU@0.9 8.5 12.5 12.1
Average 25.2 27.7 27.8

Table 4: Performance compared with the model with sparse
head network. ∗ denotes model without temporal pooling.

semantics; 2) It replaces the sparse boundary predictions
with dense predictions to avoid the positive and negative
samples imbalance. Extensive experiments on two QBVL
tasks (NLVL and VRL) have demonstrated the effectiveness
of GDP. Moving forward, we are going to design a hybrid
model combining both top-down and bottom-up framework.
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