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Abstract

We introduce the safe linear stochastic bandit framework—
a generalization of linear stochastic bandits—where, in each
stage, the learner is required to select an arm with an expected
reward that is no less than a predetermined (safe) threshold
with high probability. We assume that the learner initially has
knowledge of an arm that is known to be safe, but not neces-
sarily optimal. Leveraging on this assumption, we introduce a
learning algorithm that systematically combines known safe
arms with exploratory arms to safely expand the set of safe
arms over time, while facilitating safe greedy exploitation in
subsequent stages. In addition to ensuring the satisfaction of
the safety constraint at every stage of play, the proposed algo-
rithm is shown to exhibit an expected regret that is no more
than O(

√
T log(T )) after T stages of play.

1 Introduction

We investigate the role of safety in constraining the de-
sign of learning algorithms within the classical framework
of linear stochastic bandits (Dani, Hayes, and Kakade 2008;
Rusmevichientong and Tsitsiklis 2010; Abbasi-Yadkori, Pál,
and Szepesvári 2011). Specifically, we introduce a family
of safe linear stochastic bandit problems where—in addi-
tion to the typical goal of designing learning algorithms that
minimize regret—we impose a constraint requiring that an
algorithm’s stagewise expected reward remains above a pre-
determined safety threshold with high probability at every
stage of play. In the proposed framework, we assume that a
“safe” baseline arm is initially known, and consider a class
of safety thresholds that are defined as fixed cutbacks on the
expected reward of the known baseline arm. Accordingly,
an algorithm that is deemed to be safe cannot induce stage-
wise rewards that dip below the baseline reward by more
than a fixed amount. Critically, the assumption of a known
baseline arm—and the limited capacity for exploration im-
plied by the class of safety thresholds considered—can be
leveraged on to initially guide the exploration of allowable
arms by playing combinations of the baseline arm and ex-
ploratory arms in a manner that expands the set of safe arms
over time, while simultaneously preserving safety at every
stage of play.
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There are a variety of real-world applications that might
benefit from the design of stagewise-safe online learning al-
gorithms (Khezeli and Bitar 2017; Li et al. 2019; Sui et
al. 2015). Most prominently, clinical trials have long been
used as a motivating application for the multi-armed bandit
(Berry and Pearson 1985) and linear bandit (Dani, Hayes,
and Kakade 2008) frameworks. However, as pointed out by
(Villar, Bowden, and Wason 2015): “Despite this apparent
near-perfect fit between a real-world problem and a mathe-
matical theory, the MABP has yet to be applied to an actual
clinical trial.” One could argue that the ability to provide a
learning algorithm that is guaranteed to be stagewise safe
has the potential to facilitate the utilization of bandit mod-
els and algorithms in clinical trials. More concretely, con-
sider the possibility of using the linear bandit framework to
model the problem of optimizing a combination of d can-
didate treatments for a specific health issue. In this context,
an “arm” represents a mixture of treatments, the “unknown
reward vector” encodes the effectiveness of each treatment,
and the “reward” represents a patient’s response to a chosen
mixture of treatments. In terms of the safety threshold, it is
natural to select the “baseline arm” to be the (possibly sub-
optimal) combination of treatments possessing the largest
reward known to date. As it is clearly unethical to prescribe a
treatment that may degrade a patient’s health, the stagewise
safety constraint studied in this paper can be interpreted as a
requirement that a patient’s response to a chosen treatment
must be arbitrarily close to that of the baseline treatment, if
not better.

1.1 Contributions

In this paper, we propose a new learning algorithm that is
tailored to the safe linear bandit framework. The proposed
algorithm, which we call the Safe Exploration and Greedy
Exploitation (SEGE) algorithm, is shown to exhibit near-
optimal expected regret, while guaranteeing the satisfaction
of the proposed safety constraint at every stage of play.
Initially, the SEGE algorithm performs safe exploration by
combining the baseline arm with a random exploratory arm
that is constrained by an “exploration budget” implied by
the stagewise safety constraint. Over time, the proposed al-
gorithm systematically expands the family of safe arms in
this manner to include new safe arms with expected rewards
that exceed the baseline reward level. Exploitation under
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the SEGE algorithm is based on the certainty equivalence
principle. That is, the algorithm constructs an “estimate” of
the unknown reward parameter, and selects an arm that is
optimal for the given parameter estimate. The SEGE algo-
rithm only plays the certainty equivalent (i.e., greedy) arm
when it is safe—a condition that is determined according to
a lower confidence bound on its expected reward. Moreover,
the proposed algorithm balances the trade-off between ex-
ploration and exploitation by controlling the rate at which
information is accumulated over time, as measured by the
growth rate of the minimum eigenvalue of the so-called in-
formation matrix.1 More specifically, the SEGE algorithm
guarantees that the minimum eigenvalue of the informa-
tion matrix grows at a rate ensuring that the expected re-
gret of the algorithm is no greater than O(

√
T log(T )) after

T stages of play. This regret rate is near optimal in light
of Ω(

√
T ) lower bounds previously established in the linear

stochastic bandit literature (Dani, Hayes, and Kakade 2008;
Rusmevichientong and Tsitsiklis 2010).

1.2 Related Literature

There is an extensive literature on linear stochastic bandits.
For this setting, several algorithms based on the principle of
Optimism in the Face of Uncertainty (OFU) (Dani, Hayes,
and Kakade 2008; Rusmevichientong and Tsitsiklis 2010;
Abbasi-Yadkori, Pál, and Szepesvári 2011) or Thompson
Sampling (Agrawal and Goyal 2013) have been proposed.
Although such algorithms are known to be near-optimal un-
der various measures of regret, they may fail in the safe lin-
ear bandit framework, as their (unconstrained) approach to
exploration may result in a violation of the stagewise safety
constraints considered in this paper.

In the context of multi-armed bandits, there is a related
stream of literature that focuses on the design of “risk-
sensitive” learning algorithms by encoding risk in the per-
formance objectives according to which regret is measured
(Cassel, Mannor, and Zeevi 2018; David et al. 2018). Typi-
cal risk measures that have been studied in the multi-armed
bandit literature include Mean-Variance (Sani, Lazaric, and
Munos 2012; Vakili and Zhao 2016), Value-at-Risk (Vakili
and Zhao 2015), and Conditional Value-at-Risk (Galichet,
Sebag, and Teytaud 2013). Although such risk-sensitive al-
gorithms are inclined to exhibit reduced volatility in the cu-
mulative reward that is received over time, they are not con-
strained in a manner that explicitly limits the stagewise risk
of the reward processes that they induce.

Closer to the setting studied in this paper is the conser-
vative bandit framework (Wu et al. 2016; Kazerouni et al.
2017), which incorporates explicit safety constraints on the
reward process induced by the learning algorithm. However,
in contrast to the stagewise safety constraints considered in
this paper, conservative bandits encode their safety require-
ments in the form of constraints on the cumulative rewards

1We note that a closely related class of learning algorithms,
which explicitly control the rate of information gain in this man-
ner, have been previously studied in the context of dynamic pricing
algorithms for revenue maximization (den Boer and Zwart 2013;
Keskin and Zeevi 2014).

received by the algorithm. Along a similar line of research,
(Sun, Dey, and Kapoor 2017) investigate the design of learn-
ing algorithms for risk-constrained contextual bandits that
balance a tradeoff between cumulative constraint violation
and regret. Given the cumulative nature of the safety con-
straints considered by the aforementioned algorithms, they
cannot be directly applied to the stagewise safe linear ban-
dit problem considered in this paper. In Section 6.3, we
provide a simulation-based comparison between the SEGE
algorithm and the Conservative Linear Upper Confidence
Bound (CLUCB) algorithm (Kazerouni et al. 2017) to more
clearly illustrate the potential weaknesses and strengths of
each approach.

We close this section by mentioning another closely re-
lated body of work in the online learning literature that in-
vestigates the design of stagewise-safe algorithms for a more
general class of smooth reward functions (Sui et al. 2015;
2018; Usmanova, Krause, and Kamgarpour 2019). Although
the proposed algorithms are shown to respect stagewise
safety constraints that are similar in spirit to the class of
safety constraints considered in this paper, they lack formal
upper bounds on their cumulative regret.

1.3 Organization

The remainder of the paper is organized as follows. We in-
troduce pertinent notation in Section 2. In Section 3, we de-
fine the safe linear stochastic bandit problem. In Section 4,
we introduce the Safe Exploration and Greedy Exploitation
(SEGE) algorithm. We present our main theoretical findings
in Section 5, and close the paper with a simulation study of
the SEGE algorithm in Section 6. Due to space limitations,
all mathematical proofs for the theoretical results contained
in this paper are included in the appendix of the arXiv ver-
sion of this paper (Khezeli and Bitar 2019).

2 Notation

We denote the standard Euclidean norm of a vector x ∈ R
d

by ‖x‖ and define its weighted Euclidean norm as ‖x‖S =√
x�Sx where S ∈ R

d×d is a given symmetric positive
semidefinite matrix. We denote the inner product of two
vectors x, y ∈ R

d by 〈x, y〉 = x�y. For a square matrix
A ∈ R

d×d, we denote its minimum and maximum eigenval-
ues by λmin(A) and λmax(A), respectively.

3 Problem Formulation

In this section, we introduce the safe linear stochastic bandit
model considered in this paper. Before doing so, we review
the standard model for linear stochastic bandits on which our
formulation is based.

3.1 Linear Bandit Model

Linear stochastic bandits belong to a class of sequential
decision-making problems in which a learner (i.e., decision-
maker) seeks to maximize an unknown linear function using
noisy observations of its function values that it collects over
multiple stages. More precisely, at each stage t = 1, 2, . . . ,
the learner is required to select an arm (i.e., action) Xt from

10203



a compact set X ⊂ R
d of allowable arms, which is assumed

to be an ellipsoid of the form

X =
{
x ∈ R

d | (x− x̄)�H−1(x− x̄) ≤ 1
}
, (1)

where x̄ ∈ R
d and H ∈ R

d×d is a symmetric and positive
definite matrix. In response to the particular arm played at
each stage t, the learner observes a reward Yt that is induced
by the stochastic linear relationship:

Yt = 〈Xt, θ
∗〉+ ηt. (2)

Here, the noise process {ηt}∞t=1 is assumed be a sequence
of independent and zero-mean random variables, and, criti-
cally, the reward parameter θ∗ ∈ R

d is assumed to be fixed
and unknown. This a priori uncertainty in the reward pa-
rameter gives rise to the need to balance the exploration-
exploitation trade-off in adaptively guiding the sequence of
arms played in order to maximize the expected reward accu-
mulated over time.

Admissible Policies and Regret. We restrict the learner’s
decisions to those which are causal in nature. That is to
say, at each stage t, the learner is required to select an
arm based only on the history of past observations Ht =
(X1, Y1, . . . , Xt−1, Yt−1), and on an external source of ran-
domness encoded by a random variable Ut. The random
process {Ut}∞t=1 is assumed to be independent across time,
and independent of the random noise process {ηt}∞t=1. For-
mally, an admissible policy is a sequence of functions π =
{πt}∞t=1, where each function πt maps the information avail-
able to the learner at each stage t to a feasible arm Xt ∈ X
according to Xt = πt(Ht, Ut).

The performance of an admissible policy after T stages
of play is measured according to its expected regret,2 which
equals the difference between the expected reward accumu-
lated by the optimal arm and the expected reward accumu-
lated by the given policy after T stages of play. Formally, the
expected regret of an admissible policy is defined as

RT =

T∑
t=1

〈X∗, θ∗〉 − E

[
T∑

t=1

〈Xt, θ
∗〉
]
, (3)

where expectation is taken with respect to the distribution in-
duced by the underling policy, and X∗ ∈ X denotes the op-
timal arm that maximizes the expected reward at each stage
of play given knowledge of the reward parameter θ∗, i.e.,

X∗ = argmaxx∈X 〈x, θ∗〉. (4)

At a minimum, we seek policies exhibiting an expected re-
gret that is sublinear in the number of stages played T .
Such policies are said to have no-regret in the sense that
limT→∞ RT /T = 0. To facilitate the design and theoreti-
cal analysis of such policies, we adopt a number of technical
assumptions, which are standard in the literature on linear
stochastic bandits, and are assumed to hold throughout the
paper.

2It is worth noting, that in the context of linear stochastic ban-
dits, expected regret is equivalent to expected pseudo-regret due to
the additive nature of the noise process (Abbasi-Yadkori, Pál, and
Szepesvári 2011).

Assumption 1 The unknown reward parameter is bounded
according to ‖θ∗‖ ≤ S, where S > 0 is a known constant.
Assumption 1 will prove essential to the design of policies
that safely explore the parameter space in a manner ensuring
that the expected reward stays above a predetermined (safe)
threshold with high probability at each stage of play. We re-
fer the reader to Definition 1 for a formal definition of the
particular safety notion considered in this paper.
Assumption 2 Each element of {ηt}∞t=1 is assumed to be
ση-sub-Gaussian, where ση ≥ 0 is a fixed constant. That is,

E [exp(γηt)] ≤ exp
(
γ2σ2

η/2
)

for all γ ∈ R and t ≥ 1.

Assumptions 1 and 2, together with the class of admissi-
ble policies considered in this paper, enable the utilization
of existing results that provide an explicit characterization
of confidence ellipsoids for the unknown reward parameter
based on a �2-regularized least-squares estimator (Abbasi-
Yadkori, Pál, and Szepesvári 2011). Such confidence regions
play a central role in the design of no-regret algorithms for
the linear stochastic bandits (Dani, Hayes, and Kakade 2008;
Rusmevichientong and Tsitsiklis 2010; Abbasi-Yadkori, Pál,
and Szepesvári 2011).

3.2 Safe Linear Bandit Model

In what follows, we introduce the framework of safe linear
stochastic bandits studied in this paper. Loosely speaking,
an admissible policy is said to be safe if the expected re-
ward E [Yt | Xt] = 〈Xt, θ

∗〉 that it induces at each stage t is
guaranteed to stay above a given reward threshold with high
probability.3 More formally, we have the following defini-
tion.
Definition 1 (Stagewise Safety Constraint) Let b ∈ R and
δ ∈ [0, 1]. An admissible policy π—or equivalently the arm
Xt that it induces—is defined to be (δ, b)-safe at stage t if

P (〈Xt, θ
∗〉 ≥ b) ≥ 1− δ, (5)

where the probability is calculated according to the distri-
bution induced by the policy π.

The stagewise safety constraint requires that the expected
reward at stage t exceed the safety threshold b ∈ R with
probability no less than 1 − δ, where δ ∈ [0, 1] encodes
the maximum allowable risk that the learner is willing to
tolerate.

Clearly, without making additional assumptions, it is not
possible to design policies that are guaranteed to be safe ac-
cording to (5) given arbitrary safety specifications. We cir-
cumvent this obvious limitation by giving the learner access
to a baseline arm with a known lower bound on its expected
reward. We formalize this assumption as follows.
Assumption 3 (Baseline Arm) We assume that the learner
knows a deterministic baseline arm X0 ∈ X satisfying

〈X0, θ
∗〉 ≥ b0,

3To simplify the exposition, we will frequently refer to
E [Yt | Xt]—the expected reward conditioned on the arm Xt—as
the expected reward, unless it is otherwise unclear from the context.
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where b0 ∈ R is a known lower bound on its expected re-
ward.
We note that it is straightforward to construct a baseline
arm satisfying Assumption 3 by leveraging on the assumed
boundedness of the unknown reward parameter as speci-
fied by Assumption 1. In particular, any arm X0 ∈ X
and its corresponding “worst-case” reward given by b0 =
min‖θ‖≤S 〈X0, θ〉 = −S‖X0‖ are guaranteed to satisfy As-
sumption 3.

With Assumption 3 in hand, the learner can leverage on
the baseline arm to initially guide its exploration of allow-
able arms by playing combinations of the baseline arm and
carefully designed exploratory arms in a manner that safely
expands the set of safe arms over time. Plainly, the ability
to safely explore in the vicinity of the baseline arm is only
possible under stagewise safety constraints defined in terms
of safety thresholds satisfying b < b0. Under such stagewise
safety constraints, the difference in rewards levels b0−b can
be interpreted as a stagewise “exploration budget” of sorts,
as it reflects the maximum relative loss in expected reward
that the learner is willing to tolerate when playing arms that
deviate from the baseline arm. Naturally, the larger the ex-
ploration budget, the more aggressively can the learner ex-
plore. With the aim of designing safe learning algorithms
that leverage on this simple idea, we will restrict our atten-
tion to stagewise safety constraints that are specified in terms
of safety thresholds satisfying b < b0.

Before proceeding, we briefly summarize the framework
of safe linear stochastic bandits considered in this paper.
Given a baseline arm satisfying Assumption 3, the learner
is initially required to fix a safety threshold that satisfies
b < b0. At each subsequent stage t = 1, 2, . . . , the learner
must select a risk level δt ∈ [0, 1] and a corresponding arm
Xt ∈ X that is (δt, b)-safe. The learner aims to design an ad-
missible policy that minimizes its expected regret, while si-
multaneously ensuring that all arms played satisfy the stage-
wise safety constraints. In the following section, we propose
a policy that is guaranteed to both exhibit no-regret and sat-
isfy the safety constraint at every stage of play.

Relationship to Conservative Bandits. We briefly dis-
cuss the relationship between the safety constraints consid-
ered in this paper and the conservative bandit framework
orginally studied by (Wu et al. 2016) in the context of multi-
armed bandits, and subsequently extended to the setting of
linear bandits by (Kazerouni et al. 2017). In contrast to the
stagewise safety constraints considered in this paper, conser-
vative bandits encode their safety requirements in the form
of constraints on the cumulative expected rewards received
by a policy. Specifically, given a baseline arm satisfying As-
sumption 3, an admissible policy is said to respect the safety
constraint defined in (Kazerouni et al. 2017) if

P

(
t∑

k=1

〈Xk, θ
∗〉 ≥ (1− α)

t∑
k=1

b0, ∀ t ≥ 1

)
≥ 1− δ,

(6)
where δ ∈ [0, 1] and α ∈ (0, 1). Here, the parameter α en-
codes the maximum fraction of the cumulative baseline re-
wards that the learner is willing to forgo over time. In this

context, smaller values of α imply greater levels of conser-
vatism (safety). It is straightforward to show that conserva-
tive performance constraints of the form (6) are a special
case of the class of stagewise safety constraints considered
in Definition 1. In particular, if we set the safety threshold
according to b = (1−α)b0, and let {δt}∞t=1 be any summable
sequence of risk levels satisfying

∑∞
t=1 δt ≤ δ, then any ad-

missible policy that is (δt, b)-safe for each stage t ≥ 1 also
satisfies the conservative performance constraint (6).

4 A Safe Linear Bandit Algorithm

In this section, we propose a new algorithm, which we call
the Safe Exploration and Greedy Exploitation (SEGE) algo-
rithm, that is guaranteed to be safe in every stage of play,
while exhibiting a near-optimal expected regret. Before pro-
ceeding with a detailed description of the proposed algo-
rithm, we briefly summarize the basic elements underpin-
ning its design. Initially, the SEGE algorithm performs safe
exploration by playing convex combinations of the baseline
arm and random exploratory arms in a manner that satisfies
Definition 1. Through this process of exploration, the SEGE
algorithm is able to expand the family of safe arms to incor-
porate new arms that are guaranteed to outperform the base-
line arm with high probability. Among all safe arms avail-
able to the algorithm at any given stage of play, the arm with
the largest lower confidence bound on its expected reward
is used as the basis for safe exploration. The SEGE algo-
rithm performs exploitation by playing the certainty equiv-
alent (greedy) arm based on a �2-regularized least-squares
estimate of the unknown reward parameter. The SEGE algo-
rithm only plays the greedy arm when it is safe, i.e., when
a lower confidence bound on its expected reward exceeds
the given safety threshold. Critically, the proposed algorithm
balances the trade-off between exploration and exploitation
by explicitly controlling the growth rate of the so-called in-
formation matrix (cf. Eq. (8)) in a manner that ensures that
the expected regret of the SEGE algorithm is no greater than
O(

√
T log(T )) after T stages of play. The pseudocode for

the SEGE algorithm is presented in Algorithm 1.
In the following section, we introduce a regularized least-

squares estimator that will serve as the foundation for the
proposed learning algorithm.

4.1 Regularized Least Squares Estimator

The �2-regularized least-squares estimate of the unknown re-
ward parameter θ∗ based on the information available to the
algorithm up until and including stage t is defined as

θ̂t = argmin
θ∈Rd

{
t∑

k=1

(Yk − 〈Xk, θ〉)2 + λ‖θ‖2
}
.

Here, λ > 0 denotes a user-specified regularization parame-
ter. It is straightforward to show that

θ̂t = V −1
t

t∑
k=1

XkYk, (7)

10205



where

Vt = λI +

t∑
k=1

XkX
�
k . (8)

Throughout the paper, we will frequently refer to the matrix
Vt as the information matrix at each stage t.

The following result taken from (Abbasi-Yadkori, Pál,
and Szepesvári 2011, Theorem 2) provides an ellipsoidal
characterization of a confidence region for the unknown re-
ward parameter based on the regularized least-squares esti-
mator (7). It is straightforward to verify that the conditions
of (Abbasi-Yadkori, Pál, and Szepesvári 2011, Theorem 2)
are satisfied under the standing assumptions of this paper.

Theorem 1 For any admissible policy and δ ∈ (0, 1), it
holds that

P (θ∗ ∈ Ct(δ), ∀t ≥ 1) ≥ 1− δ,

where the confidence set Ct(δ) is defined as

Ct(δ) =
{
θ ∈ R

d : ‖θ̂t − θ‖Vt
≤ rt(δ)

}
. (9)

Here, rt(δ) is defined as

rt(δ) = ση

√
d log

(
1 + tL2/λ

δ

)
+
√
λS, (10)

where L = maxx∈X ‖x‖.

In the following section, we propose a method for safe
exploration using the characterization of the confidence el-
lipsoids introduced in Theorem 1.

4.2 Safe Exploration

We now describe a novel approach to “safe exploration” that
will be utilized in the design of the proposed learning algo-
rithm. At each stage t ≥ 1, given a risk level δt, the SEGE
algorithm constructs a safe exploration arm (XSE

t ) as a con-
vex combination of a (δt, b0)-safe arm (XS

t ) and a random
exploratory arm (Ut), i.e.,

XSE
t = (1− ρ)XS

t + ρUt. (11)

Qualitatively, the user-specified parameter ρ ∈ (0, 1) con-
trols the balance between safety and exploration. Figure 1
provides a graphical illustration of the set of all safe explo-
ration arms induced by a given safe arm XS

t according to
(11).

The random exploratory arm process {Ut}∞t=1 is gener-
ated according to

Ut = x̄+H1/2ζt, (12)

where the random process {ζt}∞t=1 is assumed to be a se-
quence of independent, zero-mean, and symmetric random
vectors. For each element of the sequence, we require that
‖ζt‖ = 1 almost surely and σ2

ζ = λmin(Cov (ζt)) > 0. Ad-
ditionally, we define σ2 = λmin(Cov (Ut)). The parameters
σ and ρ both determine how aggressively the algorithm can
explore the set of allowable arms. However, exploration that

Figure 1: The figure illustrates the effect of the safety con-
straint on the learner’s decision making ability. The shaded
blue ellipse X SE

t depicts the set of all safe exploration arms
constructed using the safe arm XS

t under the SEGE algo-
rithm, i.e., X SE

t = {(1− ρ)XS
t + ρx | ρ ∈ (0, ρ̄], x ∈ ∂X}.

The red shaded area depicts the set of unsafe arms. The black
ellipse (and its interior) depicts the entire set of allowable
arms.

is too aggressive may result in a violation of the stagewise
safety constraint. In the following Lemma, we establish an
upper bound on ρ such that for all choices of ρ ∈ (0, ρ̄], the
arm XSE

t is guaranteed to be safe for any σ ≥ 0. The proof
of Lemma 1 can be found in the appendix to (Khezeli and
Bitar 2019).
Lemma 1 Let ρ ∈ (0, ρ̄] where ρ̄ > 0 is defined as

ρ̄ = min

{
1,

b0 − b

2S
√
λmax(H)

}
. (13)

Then, for every stage t ≥ 1, the safe exploration arm XSE
t

defined in Equation (11) is (δ, b)-safe for any δ ∈ [0, 1].
As the SEGE algorithm expands its set of safe arms over

time, it attempts to increase the stagewise efficiency with
which it safely explores by exploring in the vicinity of the
safe arm with the largest lower confidence bound on its ex-
pected reward. More specifically, at each stage t, the SEGE
algorithm constructs a confidence set Ct−1(δt) according to
Equation (9). With this confidence set in hand, the proposed
algorithm calculates a lower confidence bound (LCB) on the
expected reward of each arm x ∈ X according to

LCBt(x) = min
θ∈Ct−1(δt)

〈x, θ〉.

It is straightforward to show that the lower confidence bound
defined above admits the closed-form expression:

LCBt(x) = 〈x, θ̂t−1〉 − rt(δt)‖x‖V −1
t−1

.

We define the LCB arm (XLCB
t ) to be the arm with the largest

lower confidence bound on its expected reward among all
allowable arms. It is given by:

XLCB
t = argmaxx∈X LCBt(x). (14)

Clearly, the LCB arm is guaranteed to be (δt, b0)-safe if
LCBt(X

LCB
t ) ≥ b0. In this case, the SEGE algorithm re-

lies on the LCB arm for safe exploration, as its expected
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reward is potentially superior to the baseline arm’s expected
reward.4 Putting everything together, the SEGE algorithm
sets the safe arm (XS

t ) at each stage t according to:

XS
t =

{
XLCB

t , if LCBt(X
LCB
t ) ≥ b0,

X0, otherwise.
(15)

Before closing this section, it is important to note that the
LCB arm (14) can be calculated in polynomial time by solv-
ing a second-order cone program. This is in stark contrast to
the non-convex optimization problem that needs to be solved
when computing the UCB arm (i.e., the arm with the largest
upper confidence bound on the expected reward)—a prob-
lem that has been shown to be NP-hard in general (Dani,
Hayes, and Kakade 2008).

4.3 Safe Greedy Exploitation

We now describe a novel approach to “safe exploration” that
will be utilized in the design of the proposed learning algo-
rithm. Exploitation under the SEGE algorithm relies on the
certainty equivalence principle. That is, the algorithm first
estimates the unknown reward parameter according to Equa-
tion (7). Then, the algorithm chooses an arm that is optimal
for the given parameter estimate. Given the ellipsoidal struc-
ture of the set of allowable arms, the optimal arm X∗ can be
calculated as

X∗ = x̄+
Hθ∗

‖θ∗‖H . (16)

Similarly, the certainty equivalent (greedy) arm can be cal-
culated as

XCE
t = x̄+

Hθ̂t−1

‖θ̂t−1‖H
, (17)

where θ̂t−1 is the regularized least-squares estimate of the
unknown reward parameter, as defined in Equation (7).

It is important to note that the SEGE algorithm only plays
the greedy arm (17) when the lower confidence bound on its
expected reward is greater than or equal to the safety thresh-
old b. This ensures that the greedy arm is only played when
it is safe.

5 Theoretical Results
We now present our main theoretical results showing that the
SEGE algorithm exhibits near optimal regret for a large class
of risk levels (cf. Theorem 3), in addition to being safe at
every stage of play (cf. Theorem 2). As an immediate corol-
lary to Theorem 3, we establish sufficient conditions under
which the SEGE algorithm is also guaranteed to satisfy the
conservative bandit constraint (6), while preserving the up-
per bound on regret in Theorem 3 (cf. Corollary 1).
Theorem 2 (Stagewise Safety Guarantee) The SEGE al-
gorithm is (δt, b)-safe at each stage, i.e.,

P (〈Xt, θ
∗〉 ≥ b) ≥ 1− δt

for all t ≥ 1.
4It is important to note that the condition LCBt(X

LCB
t ) ≥ b0

does not guarantee superiority of the LCB arm to the baseline arm,
as b0 is only assumed to be a lower bound on the baseline arm’s
expected reward.

Algorithm 1 SEGE Algorithm

1: Input: X0, b0, X , S > 0, c > 0, λ > 0, b < b0,
ρ ∈ (0, ρ̄], δt ∈ [0, 1] ∀t ≥ 1

2: for t = 1, 2, 3, . . . do
{Parameter Estimation}

3: Set θ̂t−1 according to Eq. (7)
4: Set Ct−1(δt) according to Eq. (9)

{Safe Greedy Exploitation}
5: if LCBt(X

CE
t ) ≥ b and λmin(Vt) ≥ c

√
t

6: Set Xt = XCE
t according to Eq. (17)

{Safe Exploration}
7: else
8: Set Xt = XSE

t according to Eq. (11)
9: end if

10: Observe Yt = 〈Xt, θ
∗〉+ ηt

11: end for

The ability to enforce safety in the sequence of arms
played is not surprising given the assumption of a known
baseline arm that is guaranteed to be safe at the outset. How-
ever, given the potential suboptimality of the baseline arm,
a naı̈ve policy that plays the baseline arm at every stage will
likely incur an expected regret that grows linearly with the
number of stages played T . In constrast, we show, in The-
orem 3, that the SEGE algorithm exhibits an expected re-
gret that is no greater than O(

√
T log(T )) after T stages—

a regret rate that is near optimal given existing Ω(
√
T )

lower bounds on regret (Dani, Hayes, and Kakade 2008;
Rusmevichientong and Tsitsiklis 2010).

Theorem 3 (Upper Bound on Expected Regret) Fix δ ∈
(0, 1] and K ≥ 0. Let {δt}∞t=1 be any sequence of risk levels
satisfying

δt ≥ δe−K
√
t (18)

for all t ≥ 1. Then, there exists a finite positive constant C
such that the expected regret of the SEGE algorithm is upper
bounded as

RT ≤ C
√
T log(T ) (19)

for all T ≥ 1.

In what follows, we provide a high-level sketch of the proof
of Theorem 3. The complete proof can be found in the ap-
pendix to (Khezeli and Bitar 2019). We bound the expected
regret incurred during the safe exploration and the greedy
exploitation stages separately. First, we show that the stage-
wise expected regret incurred when playing the greedy arm
is proportional to the mean squared parameter estimation er-
ror. We then employ Theorem 1 to show that, conditioned
on the event {λmin(Vt) ≥ c

√
t}, the mean squared pa-

rameter estimation error at each stage t is no greater than
O(log(t)/

√
t). It follows that the cumulative expected re-

gret incurred during the exploitation stages is no more than
O(

√
T log(T )) after T stages of play. Now, in order to up-

per bound the expected regret accumulated during the safe
exploration stages, it suffices to upper bound the expected
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number of safe exploration stages, since the stagewise re-
gret can be upper bounded by a finite constant under any ad-
missible policy. We show that the expected number of safe
exploration stages is no more than O(

√
T ) after T stages

of play for any sequence of risk levels that does not decay
faster than the rate specified in (18).

We close this section with a result establishing sufficient
conditions under which the SEGE algorithm is guaranteed to
satisfy the conservative performance constraint (6), in addi-
tion to being stagewise safe, while satisfying an upper bound
on its expected regret that matches that of the CLUCB al-
gorithm (Kazerouni et al. 2017, Theorem 5). Corollary 1 is
stated without proof, as it is an immediate consequence of
Theorems 2 and 3.

Corollary 1 (Conservative Performance Guarantee) Let
δ ∈ (0, 1). Assume, in addition to the standing assumptions
of Theorem 3, that {δt}∞t=1 is a summable sequence satis-
fying

∑∞
t=1 δt ≤ δ. Then, the SEGE algorithm satisfies the

conservative performance constraint (6), and exhibits an
expected regret that is upper bounded by O(

√
T log(T )) for

all T ≥ 1.

6 Simulation Results

In this section, we conduct a simple numerical study to il-
lustrate the qualitative features of the SEGE algorithm and
compare it with the CLUCB algorithm introduced by (Kaze-
rouni et al. 2017).

6.1 Simulation Setup

Model Parameters. We consider a linear bandit with a
two-dimensional input space (d = 2), and restrict the set
of allowable arms X to be closed disk of radius r = 1 cen-
tered at x̄ = (1, 1). The true reward parameter is taken to
be θ∗ = (0.6, 0.8), and the upper bound on its norm is set
to S = 1. We select a baseline arm at random from the set
of allowable arms as X0 = (1.2, 1.9), and set the baseline
expected reward to b0 = 〈X0, θ

∗〉 = 2.24. We set the safety
threshold to b = 0.8 × b0. The observation noise process
{ηt}∞t=1 is assumed to be an IID sequence of zero-mean Nor-
mal random variables with standard deviation ση = 1.

SEGE Algorithm. We set the parameters of the SEGE al-
gorithm to c = 0.5, λ = 0.1, and ρ = ρ̄ = 0.224. We gener-
ate the random exploration process according to Ut = x̄+ζt,
where {ζt}∞t=1 is a sequence of IID random variables that are
uniformly distributed on the unit circle. To enable a direct
comparison between the SEGE and CLUCB algorithms, we
restrict our attention to a summable sequence of risk levels
that satisfy the conditions of Corollary 1. Specifically, we set
the sequence of risk levels to δt = 6δ/(π2t2) for all stages
t ≥ 1, where δ = 0.1.

CLUCB Algorithm. We note that the implementation of
the CLUCB algorithm requires the repeated solution of a
non-convex optimization problem in order to compute UCB
arms. To circumvent this intractable calculation, we approx-
imate the continuous set of arms X by a finite set of arms X̂
that correspond to a uniform discretization of the boundary

of X . The error induced by this approximation is negligible,
as maxx∈X 〈x, θ∗〉 −maxx∈ ̂X 〈x, θ∗〉 ≤ 3× 10−3.

6.2 Performance of the SEGE Algorithm

We first discuss the transient behavior and performance of
the SEGE algorithm. As one might expect, the SEGE algo-
rithm initially relies on the baseline arm for safe exploration
as depicted in Figure 3(a). Over time, as the algorithm accu-
mulates information, it is able to gradually expand the set of
safe arms as shown in Figure 2. This expansion enables the
algorithm to increase the stagewise efficiency with which it
safely explores by selecting arms in the vicinity of the safe
arm with the largest lower confidence bounds on their ex-
pected rewards. In turn, the SEGE algorithm is able to ex-
ploit the information gained to play the greedy with increas-
ing frequency over time. As a result, the growth rate of regret
diminishes over time as depicted in Figure 3(c). Critically,
Figure 3(a) also shows that the SEGE algorithm maintains
stagewise safety throughout each of the 250 independent ex-
periments.

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Figure 2: The blue curves depict the gradual expansion of
the set of safe arms {x ∈ X | LCBt(x) ≥ b} over time
under the SEGE algorithm for t = 250, 500, 1000, 2000,
5000, 10000, and 50000. The blue dot depicts the baseline
arm X0, the black star depicts the optimal arm X∗, and the
red shaded area depicts the set of unsafe arms.

6.3 Comparison with the CLUCB Algorithm

Unlike the SEGE algorithm, the CLUCB algorithm is seen
to violate the stagewise safety constraint at an early stage
in the learning process as depicted in Figure 3(b). The vio-
lation of the stagewise safety constraint by the CLUCB al-
gorithm is not surprising as it is only guaranteed to respect
the conservative performance constraint (6). The SEGE al-
gorithm, on the other hand, is guaranteed to satisfy the con-
servative performance constraint, in addition to being stage-
wise safe (cf. Corollary 1). However, as one might expect,
the more stringent safety guarantee of the SEGE algorithm
comes at a cost. Specifically, the regret under the SEGE al-
gorithm initially grows more rapidly than the regret incurred
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(a) Stagewise expected reward under the
SEGE algorithm.

(b) Stagewise expected reward under the
CLUCB algorithm.

(c) Cumulative regret of the SEGE algorithm
(blue) and the CLUCB algorithm (green).

Figure 3: These figures illustrate the empirical performance of the SEGE and CLUCB algorithms. The solid lines depict empir-
ical means and the shaded regions depict empirical ranges computed from 250 independent simulations.

by the CLUCB algorithm, as shown in Figure 3(c). However,
over time the growth rate of regret of the SEGE algorithm
slows down as information accumulates and the need for
safe exploration diminishes enabling the algorithm to play
the greedy arm more frequently.
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David, Y.; Szörényi, B.; Ghavamzadeh, M.; Mannor, S.; and
Shimkin, N. 2018. PAC bandits with risk constraints. In ISAIM.
den Boer, A. V., and Zwart, B. 2013. Simultaneously learning and
optimizing using controlled variance pricing. Management science
60(3):770–783.
Galichet, N.; Sebag, M.; and Teytaud, O. 2013. Exploration vs
exploitation vs safety: Risk-aware multi-armed bandits. In Asian
Conference on Machine Learning, 245–260.
Kazerouni, A.; Ghavamzadeh, M.; Abbasi, Y.; and Van Roy, B.
2017. Conservative contextual linear bandits. In Advances in Neu-
ral Information Processing Systems, 3910–3919.
Keskin, N. B., and Zeevi, A. 2014. Dynamic pricing with an un-
known demand model: Asymptotically optimal semi-myopic poli-
cies. Operations Research 62(5):1142–1167.

Khezeli, K., and Bitar, E. 2017. Risk-sensitive learning and
pricing for demand response. IEEE Transactions on Smart Grid
9(6):6000–6007.
Khezeli, K., and Bitar, E. 2019. Safe linear stochastic bandits.
arXiv preprint.
Li, C.; Kveton, B.; Lattimore, T.; Markov, I.; de Rijke, M.;
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