
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

A Calculus for Stochastic Interventions:
Causal Effect Identification and Surrogate Experiments

Juan D. Correa, Elias Bareinboim
Computer Science Department

Columbia University
{jdcorrea, eb}@cs.columbia.edu

Abstract

Some of the most prominent results in causal inference have
been developed in the context of atomic interventions, fol-
lowing the semantics of the do-operator and the inferential
power of the do-calculus. In practice, many real-world set-
tings require more complex types of interventions that cannot
be represented by a simple atomic intervention. In this pa-
per, we investigate a general class of interventions that covers
some non-trivial types of policies (conditional and stochas-
tic), which goes beyond the atomic class. Our goal is to de-
velop general understanding and formal machinery to be able
to reason about the effects of those policies, similar to the
robust treatment developed to handle the atomic case. Specif-
ically, in this paper, we introduce a new set of inference rules
(akin to do-calculus) that can be used to derive claims about
general interventions, which we call σ-calculus. We develop
a systematic and efficient procedure for finding estimands of
the effect of general policies as a function of the available ob-
servational and experimental distributions. We then prove that
our algorithm and σ-calculus are both sound for the tasks of
identification (Pearl, 1995) and z-identification (Bareinboim
and Pearl, 2012) under this class of interventions.

1 Introduction

Causal relations are considered highly valuable and desir-
able throughout data-driven sciences due to their inherent in-
terpretability and robustness to changing conditions. In ma-
chine learning, for example, they play a key role due to their
amenability to extrapolation to new, unforeseen situations,
and also their capability to support robust decision-making.
Making sense of the world and constructing coherent and
transparent explanations about it, almost invariably, hinge
on our ability to learn and reason with cause and effect rela-
tionships (Pearl 2000; Spirtes, Glymour, and Scheines 2001;
Bareinboim and Pearl 2016; Pearl and Mackenzie 2018).

One of the most common ways of learning about causal
relations is through controlled experimentation. In practice,
however, performing interventions is not always feasible due
to its potentially harmful side effects, financial, and ethical
considerations. This leads to one of the fundamental chal-
lenges in causal inference, namely, to determine whether the
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effect of an intervention can be computed without directly
experimenting in the system, which is known as the problem
of identification of causal effects (Pearl 2000, Def. 3.2.4).
The most studied and well-understood type of intervention
is called atomic, which is the most basic, simplest, and fun-
damental among many. In modern causal inference, atomic
interventions are usually modeled through the do-operator
(Pearl 1995), which is denoted by do(X=x). Formally,
do(X=x) represents the symbolic operation of replacing the
underlying causal mechanism that naturally dictates the be-
havior of a variable X with a constant value x1.

The identification task relies on assumptions about the un-
derlying causal system, which can be encoded in the form
of a causal graphical model. For concreteness, consider the
causal diagram in Fig. 1(a), where X represents the choice
to smoke, W age, Z a set of risk factors leading to tendency
to smoke (e.g., peer pressure, education, SES, psycholog-
ical age), and Y the development or not of lung cancer.
The task here is to compute the average effect of X on Y
based on the observational (i.e., non-interventional) distribu-
tion P (W,Z,X, Y ). Using the do-operator, this quantity can
be formally written as P (Y |do(X = x)), which describes
the behavior of Y when X is fixed to x (smoking or not)
regardless of Z or any other confounding factors.

Considering the example again, the difference between
two do-distributions, P (Y |do(X = 1))−P (Y |do(X = 0)),
amounts to the causal variability of Y due to X , i.e., free
of the influence of spurious factors. This difference can be
thought of as a hypothetical regime corresponding to the
new causal diagram as in Fig. 1(b), where the arrows incom-
ing to X are removed. Graphically, we will explicitly anno-
tate the diagram with a regime node σX to indicate that the

1This basic primitive has appeared in different contexts in the
causal inference literature. It was introduced in econometrics by
(Haavelmo 1943) and then (Strotz and Wold 1960). In the context
of potential outcomes in statistics, it was formalized by (Neyman
1923) to describe randomized experiments, and then later on con-
nected with observational studies by (Rubin 1974). In mathemati-
cal logic, it was discussed by (Lewis 1973) in the context counter-
factuals in a possible-worlds semantics. It was given a more general
and algorithmic treatment in artificial intelligence through the use
of graphical models (Pearl 1993b; Spirtes, Glymour, and Scheines
1993).
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causal mechanism of X has changed compared to the natural
regime (this is a critical construct as discussed in Sec. 3).

There exists a body of literature concerned with identi-
fication of do-interventions from data collected under ob-
servational and experimental regimes, including celebrated
results such as do-calculus (Pearl 1993a; 1995; 2000), and
complete graphical and algorithmic conditions (Tian and
Pearl 2002a; Tian 2004; Shpitser and Pearl 2006a; 2006b;
Huang and Valtorta 2006; Bareinboim and Pearl 2012;
Lee, Correa, and Bareinboim 2019).

While the intervention do(X = 0) describes with mathe-
matical precision a counterfactual world where smoking is
banned from society, in practice, it is not likely that a policy
could be implemented such that cigarettes would be com-
pletely wiped out from the streets. In words, we could even-
tually predict the effect of this new, idealized policy, how-
ever unlikely to be implemented in reality. This challenge
has been a point subject to intense debate in causal inference
circles (Woodward 2003; Heckman 2005; Cartwright 2007;
Pearl 2010).

In this paper, we offer a mathematical solution to address
this decade old debate. Going back to our example, for con-
creteness, policy-makers contemplate a more strict regula-
tion on underage smoking and higher taxes on cigarettes
sales that could be set in place. A sensible question in this
context could be – what is the effect of a policy that in-
hibits smoking in people under 21 years of age, by 90%?
Such intervention is certainly non-atomic (which would en-
tail that a 100% decrease in smoking should be enforced for
this group), and in this case, the underlying mechanism for
X is replaced with a softer mechanism; these interventions
are sometimes called soft or stochastic interventions.

Even though deciding the identifiability of complex in-
terventions has been studied in the literature, there is still
work to be done (Pearl 2000, Ch. 4). For instance, (Pearl
and Robins 1995) studied the effect of interventions in lon-
gitudinal settings where the decision in each time step is
dependant on the previous ones, which was called condi-
tional plans. Further, other works investigated the effect of
stochastic interventions, where the original causal mecha-
nism of the treatment variable is replaced with a new known
function (Dawid 2002; Didelez, Dawid, and Geneletti 2006;
Tian 2008; Shpitser and Sherman 2018). For the case when
the new function is unknown, the problem has been studied
under the rubrics of transportability (Bareinboim and Pearl
2014; 2016; Correa and Bareinboim 2019).

Despite the high level of sophistication and generality
achieved for reasoning with atomic interventions, we high-
light the glaring difference with the non-atomic case. For
instance, there exist no counterpart for do-calculus in the
non-atomic case nor general results on identifiability from
experimental distributions produced by soft interventions.
In this paper, we develop a general, symbolic, and algorith-
mic treatment for identifiability of arbitrary non-atomic in-
terventions from both observational and experimental distri-
butions. More specifically, our contributions are as follows:
1. Symbolic characterization. We introduce a set of infer-

ence rules, called σ-calculus, to reason about the effect of
general types of intervention. Further, we provide a syn-

(a) G (b) GσX=do(x)

(c) GσX=g(w) (d) GσX=P∗(x|z,w)

Figure 1: (a) original causal diagram G. (b), (c), and (d)
show the causal diagrams after an atomic, conditional, and
stochastic intervention, respectively. See discussion in the
introduction and examples 1 and 2 for details.

tactical method for deriving and verifying claims about
such interventions given a causal graph.

2. Algorithmic solution. We develop an efficient procedure
to determine the identifiability of the (conditional) effect
of non-atomic interventions from observational and ex-
perimental distributions given a causal diagram.

2 Preliminaries

The basic semantic framework our work rests on is the
Structural Causal Models paradigm (Pearl 2000, Ch. 7),
which allows one to represent the data-generation process
and different types of interventions:
Definition 1 (SCM). A Structural Causal Model M is a 4-
tuple 〈U,V,F , P (u)〉, where U is a set of exogenous (la-
tent) variables; V is a set of endogenous (observed) vari-
ables; F is a collection of functions such that each variable
Vi ∈ V is determined by a function fi ∈ F . Each fi is a
mapping from a set of exogenous variables Ui ⊆ U and a
set of endogenous variables Pai ⊆ V \ {Vi} to the domain
of Vi. The uncertainty is encoded through a probability dis-
tribution over the exogenous variables, P (U).

Note that this definition allows for latent confounders, so
the model is also known as Semi-Markovian. Each SCM M
is associated with a causal diagram where every Vi ∈ V is a
vertex, there is a directed edge (Vj → Vi) for every Vi ∈ V
and Vj ∈ Pai, and a bidirected edge (Vi ������ Vj) for
every pair Vi, Vj ∈ V such that Ui∩Uj �= ∅ (Vi and Vj have
a common latent confounder).

We assume that the underlying model is recursive, that
is, there are no cyclic dependencies among the variables.
Equivalently, the causal diagram corresponding to the SCM
is acyclic. The observable distribution is derived from M as

P (v) =
∑

u

∏
{i|Vi∈V} P (vi | pai, ui)P (u), (1)

where every term P (vi|pai, ui) is governed by the corre-
sponding function fi ∈ F that represents an autonomous
mechanisms affecting only Vi, locally (Aldrich 1989).
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A do(X=x) intervention results in a new structural causal
model Mx, which represents the state of the system after the
hypothetical intervention takes place. As for M , assump-
tions about the causal structure of Mx can be seen as the
corresponding causal diagram GX, which is the same as G
but for the absence of all edges incoming towards X. More-
over, Mx induces a probability distribution P (V|do(x)) that
can be established using Eq. (1) in the context of Mx, i.e.:

P (v|do(x))=∑
u

∏
{i|Vi∈V}

P (vi|pai, ui, do(x))P (u|do(x)). (2)

The key observation here is that for every Vi ∈ V, Vi /∈
X, P (vi | pai, ui, do(x)) = P (vi | pai, ui), because
the functions fi in M and Mx are the same. Similarly,
P (u | do(x)) = P (u) since exogenous variables are not
affected by the do-operation. Moreover, for Vi ∈ X, the
function fi in Mx is independent of U ∪ (V \ {Vi}), hence
Pai = ∅, Ui = ∅, and the corresponding term P (Vi = vi |
do(x)) = 1, if vi is consistent with x; and 0, otherwise.
Then, P (v|do(x)) in Eq. (2) is also equal to:
⎧⎨
⎩
∑
u

∏
{i|Vi∈V\X}

P (vi|pai,ui)P (u) v consistent with x

0 v inconsistent with x
. (3)

In the special case of Markovian models, where every unob-
servable variable in U affects at most one observable, Eq. (3)
is called the “truncated factorization product” (Pearl 1993a;
2000; Bareinboim, Brito, and Pearl 2012), which yields a
mapping from the pre (P (V)) to the post-interventional dis-
tribution (P (V|do(x))). In Fig. 1(a), for example, the effect
P (y|do(x))=∑

w,z P (y|x, z, w)P (z|w)P (w) by Eq. (3).
It is unlikely that one could observe all variables in the

system in most practical applications. Consequently, realis-
tic causal diagrams usually account for latent (unobserved,
exogenous) variables that affect more than one observable,
which are represented through bidirected edges. In the fol-
lowing sections, we will address the problem of identifying
the effect of stochastic interventions in such class of models.

We follow standard notation in the field. Random vari-
ables are denoted with uppercase letters (e.g, C) while their
instantiations to particular values are written in lowercase
(e.g, c). Similarly, letters in bold (e.g, C) represent sets of
variables, and lowercase-bold letters (e.g., c) a particular
value assignment for them. Further, we denote by GWX the
graph that is the same as G except that the edges incom-
ing to variables in W and the edges going out from vari-
ables in X are removed. Let G[C] be the subgraph of G made
only of nodes in C⊂V and the edges between them. We
define Pa(C) and An(C), as the union of C ⊂ V with
its parents and ancestors, respectively. Also, the expression
(X⊥⊥Y | Z)G denotes that the variables in X are separated
from the variables in Y conditioned on Z according to the
d-separation criterion in the graph G (Pearl 2000).

The proofs are provided in the Appendix.

3 Moving Beyond Atomic Interventions

In general, the result of an intervention encompasses a new
regime where the data-generating process differs from that

of the natural system only in the mechanisms associated
with the variables that have been intervened (Pearl 1994;
Dawid 2002; 2015). From this point of view, we use regime
indicators as discussed in (Pearl 2000, Sec. 3.2.2) and
(Dawid 2002) to represent different types of interventions.
The regime indicator for interventions on a variable X is de-
noted by σX , and encodes the fact that the function fx in
M has been replaced by a new function f∗

x . This operation
results in a new model MσX

, with causal diagram GσX
, and

inducing a distribution P (V;σX). See Fig. 1(b)-(d) for a
few examples of post-interventional diagrams.

In particular, depending on the intervention, the function
f∗
x could receive as inputs the values of variables other than

the original parents Pax and Ux. Accordingly, we will de-
note as Pa∗

x and U∗
x the set of observable and unobserv-

able parents of X in MσX
, as dictated by f∗

x . To avoid clut-
ter, when a regime indicator σX is present in a probability
expression, such as P (x|pax, ux;σX), Pax and Ux corre-
spond to Pa∗

x and U∗
x , respectively. Naturally, this means

that GσX
may not be a subgraph of G, as it occurs with

do-interventions. One important assumption used through-
out the paper is that the hypothetical model MσX

resulting
from the intervention σX does not contain cycles. Follow-
ing the convention in (Dawid 2002), we augment GσX

with
a node σXi

for every Xi ∈ X that graphically denote the
targets of intervention, together with the edge (σXi

→ Xi).

Representing Different Types of Interventions

Qualitatively different types of interventions can be mod-
eled by assigning different strategies to the indicator σX us-
ing the construct discussed above. We list in Table 1 general
types of interventions that will be used in the remaining of
the paper. The idle intervention represents the natural state
of the system; atomic or do interventions replace the func-
tion fX with a constant, while conditional ones replace it
with a deterministic function of some observables pa∗

x. The
stochastic type sets the new f∗

X such that the variable X will
follow a pre-specified distribution P ∗(X|pa∗

x). To simplify
notation, whenever the strategy assigned to σX is clear from
the context, we will omit it in the probability expressions.
Also, we may just write P (V) whenever P (V;σX=∅). For
a set X⊂V, let σX={σX1

, . . .} represent an intervention af-
fecting the functions fxi

of every Xi∈X.

Example 1 (Conditional Intervention). In the context of a
tutoring program, suppose that in Fig. 1(a) W represents
previous GPA of a student, Z student’s motivation, X af-
ter hours tutoring (or not), and Y the GPA at the end of the
term. Currently, students seek tutoring voluntarily, which de-
pends on their motivation. Given the limited amount of re-
sources, the school is considering to make after hours tutor-
ing mandatory for students with low GPAs, and offering this
service only to them. The proposed intervention can be en-
coded as σX = g(w), where g(w) = 1 if W is low GPA,
and 0 otherwise. Graphically, this change in policy is repre-
sented by the diagram in Fig. 1(c), where X now depends on
W , not on Z. Still, we highlight that X was dependent on Z
in the observational regime and its corresponding dataset.
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Type Strategy P (x | pax, ux;σX)

Idle ∅ (unaltered)
Atomic/do do(X = x′) δ(x, x′) (4)
Conditional do(X = g(pa∗

x)) δ(x, g(pa∗
x)) (5)

Stochastic/Random P ∗(X | pa∗
x) P ∗(x | pa∗

x) (6)

Table 1: (1st column) Different types of interventions. (2nd) The corresponding strategies that can be assigned to the indicator
variable σX . (3rd) Distributions that X will display after the intervention is implemented. δ(a, b) = 1 if a = b, and 0 otherwise.

Example 2 (Stochastic Intervention). Recall the discus-
sion about the new smoking policy in the introduction. One
could estimate the effect of reducing by 90% smoking on
people under 21 years old by reasoning about a stochas-
tic intervention P ∗(x|w,z), depicted in Fig.1(d), such that
P ∗(X=1|W<21, z)=(0.1)×P (X=1|z), for every z.

Interestingly, the randomization procedure used in a
controlled experiment (Fisher 1951) – represented by the
do-operator – can be seen as the implementation of
the stochastic intervention σX=P ∗(X), with P ∗(x)=1/2,
for x={0, 1}. This procedure induces the distribution
P (v;σX=P ∗(X)). Evidently, Fisher’s randomization is
physical, while the inferences studied here are about how
to determine a causal effect without actually perform-
ing the intervention in the real world. To understand this
connection more precisely, we first condition the post-
interventional distribution, P (v;σX=P ∗(X)), on X , which
leads to P (v|X=x;σX=P ∗(x)). Now notice that each in-
dividual for which X=x under σX is assigned treatment
completely at random (i.e., without the influence of any
other factor), which is the very definition of do(x), hence
P (v|x;σX=P ∗(x)) = P (v | do(x)).
Effect of General Interventions

Regardless of the particular type of intervention, we can rea-
son about the distribution that (the hypothetical) MσX

in-
duces. Let U∗ be the set of all unobservable variables in
MσX

, then using Eq. (1) we have:

P (v;σX) =
∑
u∗

∏
{i|Vi∈V}

P (vi|pai, ui;σX)P (u∗;σX). (7)

Every Vi ∈ V \ X is governed by the same function
in M and MσX

, by definition, hence P (vi|pai, ui;σX) =
P (vi|pai, ui). For the exogenous, the variables in the set
U∗\U were introduced due to σX and were not originally in
M (e.g., the randomness for a stochastic intervention). Since
U is not affected by σX, it follows P (u;σX)=P (u), and

P (v;σX) =
∑
u∗

∏
{i|Vi∈X}

P (vi|pai, ui;σX)P (u∗\u;σX)

∏
{i|Vi∈V\X}

P (vi|pai, ui)P (u). (8)

While Eq. (8) holds in general, the distribution P (U) is
not observed. The challenge is then to find a function of the
observed distribution P (V) that is guaranteed to be equal
to the probability query of interest in the intervened model
MσX

, for any M inducing G. Formally,

Definition 2 (Effect Identifiability). Let Y,X,W ⊂ V
with W ∩ Y = ∅. The (conditional) effect of an interven-
tion specified by σX = {σX1

, . . . , σXn
} on a set of out-

come variables Y, conditional on W, P (y|w;σX), is said
to be identifiable in G, if it is uniquely computable from the
joint distribution P (V), for every assignment (y,w), in ev-
ery model that induces G and P (V).
Remark 1. An important distinction between atomic and
more general interventions is that the former implicitly con-
ditions on the intervened variable X, more formally,

P (y | do(x)) = P (y;σX = do(X = x)) (9)
= P (y | x;σX = do(X = x)). (10)

Eq. (9) follows by definition, and Eq. (10) is immediate
since under the intervention σX=do(X=x), the probability
of X being different than the constant x is zero. In general,
P (y;σX) and P (y|x;σX) need not match one another.

Interestingly, while atomic interventions always reduce
the model structure, a policy-maker could envision a new
policy taking into account a wide range of covariates, not
matching the observational regime and previous policies (as
with Examples 1, 2).

4 A Calculus for General Interventions

In this section, we introduce a set of inference rules, in the
spirit of do-calculus (Pearl 2000, Sec. 3.4), capable of han-
dling both atomic and non-atomic interventions, which we
call σ-calculus.
Theorem 1. [Inference Rules – σ-calculus] Let G be a
causal diagram compatible with a structural causal model
M , with endogenous variables V. For any disjoint subsets
X,Y,Z ⊆ V, two disjoint subsets T,W ⊆ V \ (Z ∪ Y)
(i.e., possibly including X), the following rules are valid for
any intervention strategies σX, σZ, and σ′

Z:
Rule 1 (Insertion/Deletion of observations):

P (y | w, t;σX) = P (y | w;σX)

if (Y ⊥⊥T | W) in GσX
. (11)

Rule 2 (Change of regimes under observation):

P (y | z,w;σx, σz) = P (y | z,w;σx, σ
′
z)

if (Y ⊥⊥ Z | W) in GσXσZZ and GσXσ′
ZZ. (12)

Rule 3 (Change of regimes without observation):

P (y | w;σx, σz) = P (y | w;σx, σ
′
z)

if (Y ⊥⊥ Z | W) in G
σXσZZ(W)

and G
σXσ′

ZZ(W)
, (13)
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where Z(W) ⊆ Z is the set of elements in Z that are not
ancestors of W in GσX

.

The rules above follow from the semantics of σX =
{σX1

, . . . , σXk
} as indicator of the change in causal mech-

anism of each variable in X according to a specified strat-
egy. Rule 1 ascertains the validity of the d-separation cri-
terion for reading conditional independence constraints in
the post-interventional distribution P (V;σX) using the in-
terventional graph GσX

. Rule 2 establishes a condition that
guarantees that the corresponding probability distribution is
the same under interventions σ′

Z and σZ while Z = z is
observed. Rule 3 establishes a condition for changing the
regime indicator from σ′

Z to σZ without affecting the asso-
ciated probability. This rule differs from rule 2 since it is
only applicable when Z is not observed.

In particular, these rules can be applied with σ′
Z having

σZi
=∅, to make one or more regime indicators for Zi ∈ Z

idle. When all indicators are idle the expression is estimable
from observational data. Differently than in the case of
atomic interventions and do-calculus, causal diagrams in-
duced by intervened models in this context are not neces-
sarily subgraphs of the original diagram, hence σ-calculus
needs to verify separation conditions in the corresponding
two models. In Appendix. B, we revisit a classical exam-
ple from (Pearl and Robins 1995) that misses this subtlety
and reaches an incorrect conclusion. The same appendix also
provides a more detailed comparison of both calculi.

Comparison between σ-calculus and do-calculus

Independences in do-calculus rules usually include condi-
tioning on X. Notice that in our rules W could include vari-
ables in X, accounting for situations when the expression
has conditioning on X or part of it, but not necessarily the
whole set every time.

The new rule 2 allows one to change across regimes when
the variable under intervention is being observed. This is
consistent with the traditional rule 2 and remark 1 about the
do(.) operator having an implicit conditioning on the inter-
vened variable. Consider the back-door graph in Fig. 1(a)
and an intervention σX = do(g(z)), which is associated
with GσX

= G (same argument in the observational and new
interventional regime). Using the new rule 2, we have:

P (y | x, z;σX) = P (y | x, z),
since (X⊥⊥Y | Z) holds in both GX and GσXX (same graph
in this case, Fig. 2(a)). One may be tempted to apply the new
rule 2 as its do-calculus counterpart, trying to claim that

P (y | z;σX) = P (y | x, z).
However, this is not the case for many models compatible
with the graph (see appendix for details).

Rule 3 licenses the addition or removal of a regime alto-
gether. This rule is not the exact counterpart of the same rule
in do-calculus. Consider again Fig. 1(a) with σZ=P ∗(z|w)
and its effect on W conditioned on Z. Traditional rule 3 tests
for (W ⊥⊥ Z) in GZ which leads to

P (w | do(z)) = P (w | z;σZ) = P (w).

(a) GX (b) GX

(c) GσXX (d) GσXX

Figure 2: Graphs used to test the conditions required by rules
2 and 3 of σ-calculus in the derivation of the query in Ex-
ample 2 where σX = P ∗(x|z, w). Arrows shown in gray
indicate they have been cut.

In contrast, we consider the σZ in σ-calculus:
P (w | z;σZ) = P (w)P (z | w;σZ)/P (z;σZ),

which is almost always different than P (w). The important
distinction to make at this point is that for soft intervention
on Z, we are not necessarily conditioning on it. Without con-
ditioning, rule 3 of σ-calculus and independence (W ⊥⊥ Z)
in GZ (and GσZZ) yield P (w;σZ)=P (w). In contrast

P (w|z;σZ = do(z)) = P (w;σZ = do(z)) = P (w)

can be obtained by applying first rule 1 with (W ⊥⊥ Z) in
GσZ=do(z) and then rule 3 (more discussion in appendix).

Examples of Symbolic Derivations

We illustrate the use of σ-calculus rules by solving the
question in Example 2. Recall that our goal is to identify
P (y;σX) with σX = P ∗(x|w, z). We start by conditioning
on the set {X,Z,W},
P (y;σX) =∑

x,z,w

P (y|x, z, w;σX)P (x|z, w;σX)P (z, w;σX), (14)

Note that Rule 2 can be applied with σ′
X=∅ to infer

P (y|x, z, w;σX) = P (y|x, z, w) following the indepen-
dence (Y ⊥⊥ X | Z,W ) in the GX and GσXX (see
Figs. 2(a) and (c), respectively). Also, Rule 3 (σ′

X=∅) leads
to P (z, w;σX) = P (z, w), licensed by (Z,W ⊥⊥X) in GX
and GσXX (Figs. 2(b), (d)). Next, we replace P (x|z, w;σX)

using Eq. (6) by virtue of σX=P ∗(x|z, w):
P (y;σX) =

∑
x,z,w

P (y|x, z, w)P ∗(x|z, w)P (z, w). (15)

Notice that all terms in the right hand side of Eq. (15) are
either obtainable from P (V) or defined by the new inter-
vention itself, which means the target effect is identifiable
(see appendix B for a more detailed example).

A natural albeit important consequence of Thm. 1 is de-
scribed in the following corollary:
Corollary 1. Considering only atomic (and idle) interven-
tions, σ-calculus reduces to do-calculus.
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Identifying Effects with (Atomic and Non-atomic)
Surrogate Experiments

It’s not uncommon that the effect of a certain interven-
tion is not identifiable from observational data alone when-
ever unobserved confounders are present. It may be the
case that experiments over surrogate variables may be avail-
able for use, which has been called in the literature the
problem of z-identification (Bareinboim and Pearl 2012;
Lee, Correa, and Bareinboim 2019). For instance, experi-
ments over a set of surrogate variables Z may be more ac-
cessible to manipulation than the target effect σX. In this
case, still, experiments are assumed to be the product of con-
trolled trials, that is, of atomic interventions. In this section
we leverage data from surrogate experiments obtained from
general intervention.

Example 3. To illustrate, consider the causal diagram in
Fig. 3(a) and the effect P (y|r, z;σX = P ∗(X|R)), which
is not identifiable from P (V). However, suppose a distribu-
tion P (V;σZ = P ∗(Z|X)) is given as an additional input.
We can then write

P (y|r, z;σX)

= P (y|r, z;σX , σZ=do(z)) (16)
= P (y|r, z;σZ=do(z)) (17)

=
∑
x′

P (y|r, x′, z;σZ=do(z))P (x′|r, z;σz=do(z)). (18)

Eq. (16) follows from Rule 2 and the independence (Y ⊥⊥
Z | R) in GσXσZ=∅Z and GσXσZ=do(z)Z ; Eq. (17) by
Rule 3 with (Y ⊥⊥ X | R,Z) in GσXσZ=do(z)X and
GσX=∅σZ=do(z)X . At this point, note that if the given exper-
iment was randomized (i.e., do(z)), the target effect would
be identifiable. However, the given distribution came from
policy σZ=P ∗(Z|X). Nevertheless, we can condition on X
and obtain Eq. (18). We can then apply Rule 2 to change
the strategy of σZ from do(Z) to P ∗(Z|X) due to (Y ⊥⊥
Z | R,X) in GσZ=do(z)Z and GσZ=P∗(Z|X)Z that license
P (y|r, x′, z;σZ=do(z)) = P (y|r, x′, z;σZ=P ∗(Z|X)).
Finally, the second factor in Eq. (18) can be obtained from
the observational data by applying Rule 1 with (X ⊥⊥ Z) in
GσZ=do(z) to remove the observation on z, followed by Rule
3 and (X ⊥⊥ Z | R) in GσZZ and GσZ=∅Z to change σZ to
the idle regime. Putting the pieces together, we obtain the
following expression:

P (y|r, z;σX)=
∑
x′

P (y|r, x′, z;σZ=P ∗(Z|X))P (x′|r). (19)

5 Identifying the Effect of General

Interventions Systematically

Even though σ-calculus is a great tool for understanding and
reasoning about the logical implications of general interven-
tions, searching for a derivation in moderately-sized causal
models can be a very challenging task given the combina-
torial nature of the problem. Also, the solution of realistic
applications involving models with thousands of variables
requires the use of computers. In this section, we develop an

(a) G (b) GσX

(c) GσZ=P∗(Z|X) (d) GσXσZ=do(z)

Figure 3: (a) is the original diagram for which we want to
identify the effect P (y|r, z;σX=P ∗(X|R)) corresponding
to the diagram in (b). Experimental data is given in the form
of P (V;σZ=P ∗(Z|X)) corresponding to (c). Diagram in
(d) is intermediate in the derivation of the target effect (see
text for details).

algorithmic solution for identifying the (conditional) effect
of general interventions (Table 1) from observational and ex-
perimental data, based on a given causal diagram G.

Consider a query of interest P (y,w;σX) and let D =
An(Y ∪W)GσX

, then from Eq. (7) we can sum out vari-
ables that are not ancestors of (Y ∪W) and obtain

P (y,w;σX) =
∑

v\(y∪w)

P (v;σX)

=
∑

d\(y∪w)

∑
u∗

∏
{i|Vi∈D}

P (vi|pai, ui;σX)P (u∗;σX). (20)

For convenience, and following (Tian and Pearl 2002a),
we define for any C ⊆ V the quantity Q[C](v), called c-
factor, to denote the following function

Q[C;σX](v) =∑
u(C)

∏
{i|Vi∈C}

P (vi|pai, ui;σX)P (u(C);σX), (21)

where U(C) =
⋃

Vi∈C Ui. In particular, note that
Q[V;σX](v)=P (v;σX) and when σX = ∅, Q[C;σX] =
Q[C]. For convenience, we will often write Q[C](v) as
Q[C], and whenever C = {Vi} we will write Q[Vi] in-
stead of Q[{Vi}]. Using c-factors, Eq. (20) translates into
P (y,w;σX) =

∑
d\(y∪w) Q[D;σX]. Now consider the

query P (y|w;σX), we can write

P (y|w;σX)=
P (y,w;σX)∑
y P (y,w;σX)

=

∑
d\(y∪w) Q[D;σX]∑

d\w Q[D;σX]
. (22)

Moreover, Eq. (22) can be further simplified as stated in
the following
Lemma 1. Let Y,X,W ⊂ V with W ∩Y = ∅ and let G
be a causal diagram over the variables V. The effect P (y |
w;σX) is given by:

P (y|w;σX) =
∑

a\(y∪w)
Q[A;σX]

/∑
a\w Q[A;σX] , (23)
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where A is the set of all variables connected to Y (in-
cluding Y) by any path (regardless of the directionality) in
GσX[D]W, with D = An(Y ∪W)GσX

.

The problem we need to solve now is to determine if, and
how, the c-factor Q[A;σX] can be computed from the ob-
served data (i.e., P (V)=Q[V]). To do so, we will lever-
age the machinery developed by (Tian and Pearl 2002a;
Huang and Valtorta 2006) that deals with the identification
of c-factors from other (larger) c-factors. First, note that the
set of observable variables present in a causal diagram G can
be partitioned into sets called c-components (Tian and Pearl
2002a). Two variables are in the same c-component set if
and only if they are connected by a path composed entirely
of bidirected edges in G. Using this notion we state the fol-
lowing results, which will be key for our algorithm:
Lemma 2. Let A be defined relative to X,Y,W as in
lemma 1, then:

Q[A;σX] = Q
[
AX;σX

]
Q
[
A \AX

]
, (24)

where AX is the union of the c-components of GσX[A] con-
taining variables in X.

Note that the factor Q[A\AX] in Eq. (24) corresponds
to the idle regime. Hence, to asses if such c-factor is com-
putable from P (V) or a given P (V;σZ), we can use the
algorithm IDENTIFY from (Tian and Pearl 2002a) and the
following lemma.
Lemma 3. Let σZ indicate any intervention on Z and let
C ⊆ V. Then, Q[C] = Q[C;σZ] if C ∩ Z = ∅.

What is left is to reason about the c-factor Q[AX;σX].
In the case of atomic, conditional and stochastic interven-
tions; AX is simply X because for those interventions,
variables in X do not share unobservable parents with any
other variable under intervention. Therefore, Q[AX;σX] =∏

X∈X Q[X;σX] where each Q[X;σX] = Q[X;σX ] is
obtained by replacing it with the corresponding equation
among (4), (5) or (6).

Following the discussion in this section, we propose the
algorithm σ-IDENTIFY (Alg. 1). This procedure takes as in-
put the variables defining a query, the specification of σX

(i.e., what type of intervention is being applied and its argu-
ments), a set of available distributions (Z = {σ∅} when only
P (V) is known.) and the causal diagram. The subroutine
‘REPLACE’ handles factors of intervened variables, replac-
ing them according to the type of intervention. σ-IDENTIFY
runs in O(n4z) time, where n is the number of nodes in G
and z = |Z| (see Appendix C).

For an illustration, we run σ-IDENTIFY to identify
P (y|r;σX=P ∗(X|R)) in Fig. 3(a), where Y = {Y },
W = {R} and σX = {σX=P ∗(X|R)}; from observa-
tion and experimental data Z = {σ∅, σZ=P ∗(Z|X)}. Here,
A = {R,X,Z, Y } and the c-components of GσX [A] are
A1 = {R, Y }, A2 = {Z} and A3 = {X}. The loop
in line 2 will pick up A1 with σZ = σZ = P ∗(Z|X),
where Bi = {R,X, Y,W} is the c-component of GσZ

(Fig. 3(c)) containing A1, for which IDENTIFY will re-
turn

∑
x′ P (y|r, x′, z;σZ)P (x′, r;σZ). Next, in the same

loop, A2 matches with σZ = σ∅ and IDENTIFY returns

Algorithm 1 σ-IDENTIFY(Y,W, σX,Z,G)
Input: G causal diagram over a set of variables V, Y,W ⊆
V disjoint subsets of variables, an intervention strategy σX

defined over a set X ⊆ V, and a set Z = {σZi
}ni=1 of known

(interventional) distributions.
Output: P (y|w;σX) in terms of available distributions or
FAIL.

1: let A be defined as in lemma 1, and let A1, . . . ,An be
the set of c-components of GσX[A].

2: for each Ai containing no variable in X and every σZ ∈
Z such that Ai ∩ Z = ∅ do

3: let Bi be the c-component of GσZ
such that Ai ⊆ Bi.

4: if IDENTIFY(Ai,Bi, Q[Bi],GσZ
) does not FAIL

then
5: Q[Ai;σX] = IDENTIFY(Ai,Bi, Q[Bi],GσZ

).
6: move to the next Ai.
7: end if
8: end for
9: for each Ai containing variables in X let Q[Ai;σX] =

REPLACE(Ai, σX).
10: if any Q[Ai] was not assigned then return FAIL.
11: let Q[A;σX] =

∏
i Q[Ai;σX].

12: return
∑

a\(y∪w) Q[A;σX]
/∑

a\w Q[A;σX] .

∑
r′,w P (z|r′, w, x)P (r′, w). Line 9 handles A3 and re-

places it with P ∗(x|r) according to the intervention σX. Fi-
nally, the return expression is

P (y|r;σX) = Q[A;σX]
/∑

y
Q[A;σX] , (25)

where

Q[A;σX]=
∑
x,z

P ∗(x|r)(
∑
x′

P (y|r, x′, z;σZ)P (r, x′;σZ))

(
∑
r′,w

P (z|r′, w, x)P (r′, w)) (26)

Theorem 2. The effect P (y | w;σX) is identifiable if σ-
IDENTIFY (Alg. 1) does not fail. Moreover, the expression
returned is a valid estimand for the effect.

6 Conclusions

In this paper, we introduced a set of inference rules for rea-
soning about the effect of general interventions (Thm. 1),
which has been called σ-calculus. The σ-calculus allows one
to discover and verify from the causal graph, logical state-
ments about general interventions generated by an arbitrary
SCM. We showed how these rules can be used to identify
the effect of interventions from a combination of observa-
tional and experimental data. Finally, we developed an algo-
rithm (Alg. 1) that decides in an automated fashion whether
a reduction of the effect of interest to the set of observed
quantities (observational and experimental) exists; if so, it
also returns the corresponding mapping. The algorithm and
σ-calculus were proven sound and efficient for the task of
identification of general interventions (Thm. 2), subsuming
previous treatment for atomic interventions by do-calculus.
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