
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Point-Based Methods for Model Checking
in Partially Observable Markov Decision Processes

Maxime Bouton
boutonm@stanford.edu

Stanford University
Stanford, CA

Jana Tumova
tumova@kth.se

KTH Royal Institute of Technology
Stockholm, Sweden

Mykel J. Kochenderfer
mykel@stanford.edu
Stanford University

Stanford, CA

Abstract

Autonomous systems are often required to operate in partially
observable environments. They must reliably execute a spec-
ified objective even with incomplete information about the
state of the environment. We propose a methodology to syn-
thesize policies that satisfy a linear temporal logic formula in
a partially observable Markov decision process (POMDP). By
formulating a planning problem, we show how to use point-
based value iteration methods to efficiently approximate the
maximum probability of satisfying a desired logical formula
and compute the associated belief state policy. We demonstrate
that our method scales to large POMDP domains and provides
strong bounds on the performance of the resulting policy.

Introduction

Designing decision making strategies for robotic systems in
uncertain environments can be challenging. In many applica-
tions, the agent is equipped with sensors that are not capable
of detecting all the relevant features of the environments.
Sensors may not be able to detect objects through walls or
directly measure the intentions of humans. Algorithms must
generate strategies that are both efficient and reliable even in
situations where all the information about the environment is
not accessible. In addition, the resulting policies must exhibit
strong guarantees on their performance.

A principled way to take into account both stochastic dy-
namics and state uncertainty is to model the environment as a
partially observable Markov decision process (POMDP). The
objective is often specified using a reward function. The agent
seeks to find a strategy that maximizes the expected accumu-
lated reward over time. Defining reward functions can be very
challenging and can lead to a value alignment problem, where
the agent does not behave as expected (Hadfield-Menell et al.
2017). Although existing planning algorithms can generate
approximately optimal policies, it may not be straightfor-
ward how to interpret the performance of the policy through
expected accumulated rewards.

In this work, we focus on the problem of synthesizing
policies that achieve a desired objective expressed by a logi-
cal formula in a POMDP. We consider linear temporal logic

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(LTL) (Pnueli 1977) as the framework for specifying the ob-
jective. We are interested in computing the probability of
satisfying the desired formula when following the resulting
policy. This problem is known as quantitative model check-
ing (Baier and Katoen 2008). In general, the problem of
computing a policy that has the best probability of satisfying
a logical formula in a POMDP is undecidable (Chatterjee,
Chmelik, and Tracol 2013). However, it is possible to de-
rive approximate solutions to the problem with confidence
bounds (Hauskrecht 2000).

We propose a methodology to approximately solve quanti-
tative model checking problems in POMDPs. We show that
the problem of finding a policy maximizing the satisfaction
of the objective can be formulated as a reward maximization
problem. This consideration allows us to benefit from effi-
cient approximate POMDP solvers, such as SARSOP (Kur-
niawati, Hsu, and Lee 2008), to solve the original model
checking problem. In addition, the bounds provided by the
solver constitute strong guarantees on the performance of
the resulting policy. We apply our methodology to classical
POMDP domains and demonstrate that it can scale to larger
environments than previous methods. We empirically verify
that the probability of success of the policy is consistent with
the upper and lower bounds provided by the solver. Finally,
we compare the performance of point-based methods against
previous work (Norman, Parker, and Zou 2017).

Related Work

Model checking in finite state Markov decision processes
(MDPs) has been studied extensively and relies on two main
solving strategies: value iteration and linear programs (Baier
and Katoen 2008; Lahijanian, Andersson, and Belta 2011).
These algorithms scale polynomially in the size of the MDP
and efficient tools for probabilistic model checking can syn-
thesize policies satisfying an LTL formula in MDPs with sev-
eral millions states (Kwiatkowska, Norman, and Parker 2011;
Dehnert et al. 2017). However, these tools have little sup-
port for environments where the state is not observable, and
current methods cannot scale to large POMDPs useful for
robotics applications.

The general problem of finding a policy satisfying an LTL
formula in an infinite horizon POMDP is undecidable (Chat-

10061

terjee, Chmelik, and Tracol 2013). However, one can often
compute approximate solutions by relaxing some aspects
of the problem. A possible approach consists of restricting
the space of policies to finite state controllers. This assump-
tion can significantly reduce the search space. Chatterjee
et al. propose an exact algorithm relying on some heuris-
tics to find policies satisfying a formula with probability
1. This algorithm has been used to synthesize policies in a
drone surveillance problem (Svorenová et al. 2015). Other
algorithms solve the quantitative model checking problem
using parameter synthesis (Junges et al. 2018) or a variant of
value iteration (Sharan and Burdick 2014). The restriction to
classes of policies with a limited number of internal states
allows those approaches to scale to domains with thousands
of states. However, in many applications, finite state policies
might not be expressive enough to solve the problem. Instead,
the policy must be represented as a mapping from a belief
state (a distribution over states) to an action.

Norman, Parker, and Zou addresses the problem of belief
state planning with LTL specifications by discretizing the be-
lief space and formulating an MDP over this space (Norman,
Parker, and Zou 2017). In problems where the state space
has more than a few dimensions, discretizing the belief space
becomes intractable. We demonstrate that our method scales
to problems with an order of magnitude more hidden states.
Similarly, abstraction refinement methods were proposed to
discretize the belief space in linear Gaussian POMDPs (Hae-
saert et al. 2018). Another approach for control in the be-
lief space with LTL specifications linear Gaussian systems
uses sampling based methods (Vasile et al. 2016). Wang,
Chaudhuri, and Kavraki proposed an online search method to
only explore belief points reachable from the current belief
but their approach is limited to safe reachability objectives
where the agent maximizes the probability of reaching a goal
state while avoiding dangerous states (Wang, Chaudhuri, and
Kavraki 2018). Alternative methods can check that a given
belief state policy satisfies a safety or optimality criterion
using barrier certificates but do not allow for policy synthe-
sis (Ahmadi et al. 2018).

In this work, we propose a method to synthesize policies
mapping belief states to actions with an LTL specification in
a POMDP. We show that we can benefit from the advances in
POMDP planning algorithms to solve model checking prob-
lems efficiently and avoid a naive discretization of the belief
space. In contrast with previous work, we do not assume that
the labels constituting the LTL formula are observable. In
addition, our method handles stochastic observation models.

Background

This section reviews partially observable Markov decision
processes and linear temporal logic.

Partially Observable Markov Decision Processes

Sequential decision making problems with state uncertainty
can be modeled as partially observable Markov decision
processes (POMDPs). They are formally defined by the tuple
(S ,A ,O,T,O,R,γ) where S is a finite state space, A a
finite action space, O a finite observation space, T a transition

model, O an observation model, R a reward function, and γ a
discount factor. The transition model describes the probability
of transitioning to a state s′ when taking an action a ∈ A in
a state s: T (s′ | s,a) = Pr(s′ | s,a). When executing an action
a in a state s, the agent receives a scalar reward given by
the function R(s,a). The observation model represents the
probability of observing o ∈ O while having executed action
a and being in state s′: O(o | s′,a) = Pr(o | s′,a).

During the decision process, the agent cannot sense the
true state of the environment. Instead it maintains a belief that
reflects its internal knowledge of the state. The belief state is a
probability distribution over all possible states, b : S → [0,1],
and b(s) represents the probability of being in state s. In
POMDPs with finite states, actions, and observations, the
belief b is updated after taking action a and observing o
using the following equation:

b′(s′) ∝ O(o | s′,a)∑
s

T (s′ | a,s)b(s) (1)

A policy is a mapping from beliefs to actions. Given a
policy π , an induced trajectory is a trajectory generated by
an agent following π from a given belief point. The solution
to a POMDP is a policy π∗ that, if followed, maximizes the
expected discounted sum of immediate rewards. The optimal
policy can be extracted from the optimal belief action utility
function U∗(b,a) as follows:

π∗(b) = argmax
a

U∗(b,a) (2)

where U∗(b,a) represent the accumulated discounted reward
obtained when following the optimal policy after taking ac-
tion a in belief b. We note U∗(b) = maxa U∗(b,a) the belief
state utility function (also called value function).

When performing model checking, a convenient approach
is to label the states of the POMDP and express the property
we wish to verify in terms of these labels. The labels are
atomic propositions that evaluate to true or false at a given
state. We augment the definition of a POMDP with a finite
set of atomic propositions Π, and L a mapping, L : S → 2Π,
giving the set of atomic propositions satisfied at a given state.
We do not assume that the labels are observable. The agent
should infer the labels from the observations.

In this work, we focus on POMDPs with finite states, ac-
tions, and observations. We discuss possible extensions to
continuous spaces in the conclusion.

Linear Temporal Logic

Linear Temporal Logic (LTL) is an extension to propositional
logic with temporal operators. An LTL formula is built of
atomic propositions according to the following grammar:

φ ::= p | φ1 ∧φ2 | φ1 ∨φ2 | ¬φ | Gφ | Fφ | φ1Uφ2 | Xφ (3)

where p is an atomic proposition, φ , φ1, and φ2 are LTL
formulas, ¬ (negation), ∧ (conjunction), and ∨ (disjunction)
are logical operators, and G (globally), F (eventually), U
(until), and X (next) are temporal operators (Baier and Katoen
2008). In this work we use LTL as a language to specify
the objective of the problem. For example, safe-reachability
objectives: “avoid state A and reach state B” are specified

10062

by the formula ¬AUB, persistent tasks: “keep visiting A” are
represented by the formula GFA.

The satisfaction of an LTL formula is evaluated on an in-
finitely long trajectory in the environment. A labelling func-
tion maps each state of the environment to the set of atomic
propositions holding in that state. The satisfaction of the for-
mula can be verified by analyzing the sequence of atomic
propositions generated by a trajectory. Even if the trajectory
is continuous in time, the sequence of atomic propositions
needs to be discrete.

Proposed Approach
This section presents our approach to solve the quantitative
model checking problem using a POMDP formulation. We
first demonstrate how to formulate a planning problem from
a given model checking problem. Then, we explain how to
approximately compute a policy that maximizes the proba-
bility of satisfying a given LTL formula. Finally we discuss
how the convergence error of the solver can be used as a
confidence interval on the resulting performance.

Problem Formulation

The problem of interest consists of computing the maximum
probability of satisfying a given linear temporal logic formula
φ when starting in an initial belief point b in a POMDP.

Given a policy π , Prπ(b |= φ) represents the probability
that a trajectory induced by π starting from belief b will
satisfy the LTL formula φ . The quantity we wish to compute
is expressed as follows:

Prmax(b |= φ) = max
π

Prπ(b |= φ) (4)

Such problem is referred to as quantitative model check-
ing as opposed to qualitative model checking, which con-
sists of finding a policy satisfying the formula with prob-
ability 1 (Chatterjee et al. 2015). In this work, the atomic
propositions forming the LTL formula are defined over the
states of the POMDP. Hence, the value of the atomic proposi-
tions is not observed by the agent. Instead, we will show that
our formulation captures this information in the belief state.

Reachability Problems

Point-based value iteration methods can scale to POMDPs
with many thousands states (Kurniawati, Hsu, and Lee 2008;
Shani, Pineau, and Kaplow 2013). Those solvers have been
designed to solve reward maximization problems. We explain
how to formulate reachability problems as reward maximiza-
tion problems so we can use these solvers.

A reachability problem consists of computing the maxi-
mum probability of reaching a given set of states. If B is a
propositional formula then the reachability problem corre-
sponds to computing Prmax(b |= FB). For simplicity of the
notation, we will also denote B, the set of states where the
propositional formula expressed by B holds true. A reachabil-
ity problem can be interpreted as a planning problem where
the goal is to reach the set B. This problem is addressed by
defining the following reward function:

RReachability(s,a) =
{

1 if s ∈ B
0 otherwise

(5)

In addition, the states in the set B are made terminal states
and the initial value of Prmax(b | FB) is initialized to 0 for
any belief states. We can interpret the reachability problem
as a reward maximization problem as follows:

Prmax(b |= FB) = max
π

E[
∞

∑
t

RReachability(st ,π(bt)) | s0 ∼ b]

(6)
The right side of this equation corresponds to solv-

ing a POMDP planning problem with a value based
method (Kochenderfer 2015). The maximization is over the
policy space. In a POMDP, policies map belief states to ac-
tions rather than states to actions. The search problem be-
comes much harder than in MDPs and the value iteration
algorithm can no longer scale. It has been proven that com-
puting the maximum expected reward in a POMDP is unde-
cidable (Madani, Hanks, and Condon 1999). Instead, we will
rely on approximate methods that scales to POMDP domains
with tens of thousands of states. This step is discussed in
depth in the section on approximate solution techniques. The
next section discusses the generalization to any LTL formula.

From LTL Satisfaction to Reachability

Product POMDPs In this step, we define a new POMDP
such that solving the original quantitative model checking
problem reduces to a reachability problem in this model.

It is known that any LTL formula can be represented by
a deterministic Rabin automaton (Baier and Katoen 2008),
which can be defined as follows:

Deterministic Rabin Automata (DRA): A deterministic
Rabin automaton is a tuple R = (Q,Π,δ ,q0,F) where Q is a
set of states, Π a set of atomic propositions, δ : Q×2Π → Q
is a transition function, q0 is an initial state, and F is an
acceptance condition: F = {(L1,K1), . . . ,(Lk,Kk)} where Li
and Ki are sets of states for all i.

A trajectory of a Rabin automaton is an infinite sequence
of states τ = q0q1 . . ., where qi+1 = δ (qi,σ) for an input
σ ∈ 2Π. We say that a trajectory is accepting if there exists i
such that: inf(τ)∩Ki
= /0 and inf(τ)∩Li = /0 where inf(τ) is
the set of states visited infinitely often in the trajectory. By
converting the LTL formula into a DRA, we have a direct
equivalence between accepting trajectories and trajectories
satisfying the formula.

In general, converting an LTL formula into a DRA results
in a finite state machine with a number of states double expo-
nential in the number of atomic propositions in the formula.
In practice, a lot of heuristics can be used to reduce the num-
ber of states in the automaton to a reasonable number. We
give an example of the automaton resulting from converting
G¬A∧FB in Fig. 1.

Product POMDP: For a POMDP P , and DRA R,
we define a product P ⊗R as a POMDP: P ′ = (S ×
Q,A ,O,T ′,O,L) where the state space is the Cartesian prod-
uct of the state space of P and R and the transition function
satisifies:

T ′((s,q),a,(s′,q′)) =
{

T (s,a,s′) if q′ = δ (q,L(s))
0 otherwise

(7)

10063

1start 2

¬A∧¬B

¬A∧B

¬A

Figure 1: Illustration of an automaton generated by convert-
ing the LTL formula G¬A∧FB. State 2 must be visited in-
finitely often to satisfy the formula. Each propositional for-
mula on the edges represents possibly multiple transitions
labeled with the subsets of atomic propositions that satisfy
the formula on the edge.

all the other elements of the product are the same as in
the original POMDP. In the product, some transitions are
prevented by the automaton. We can notice that the transi-
tion function defined is no longer a probability distribution.
In practice, we can add an additional sink state such that if
δ (q,L(s)) = /0, the system transitions in the sink state with
probability 1. The new transition function ensures that tra-
jectories that end up in the sink state are not accepted by the
automaton (they are violating the specification).

Let aside the model checking problem, the construction of
the product POMDP can be interpreted as a principled way
to augment the state space in order to account for temporal
objective. In addition, one can note that this state space ex-
tension is not always necessary. For formulas involving only
a single until (U) or eventually (F) temporal operators, the
problem can be directly expressed as a reachability problem
and does not require a state space augmentation.

Maximal End Components The next step consists of iden-
tifying a set of states B in the product POMDP, such that
reaching a state in this set guarantees the satisfaction of the
formula. We call those states success states.

From the definition of the DRA, we find that an infinitely
long trajectory satisfying the formula must visit certain states
infinitely often and others only finitely often. We first start
to compute the sets of states that are visited infinitely of-
ten in the product POMDP, that is the maximal end com-
ponent of a POMDP. More precisely, we need to find the
maximal end components of the underlying MDP defined by
(S ×Q,A ,T ′). Starting from any state, with any policy, the
agent will end up in a maximal end component if we consider
infinitely long trajectories. Maximal end components can be
computed by a graph algorithm that scales polynomially with
the size of the state space (Baier and Katoen 2008). Once
the end components have been found, we must identify the
success states.

Success States: (Baier and Katoen 2008) Given a product
POMDP P ′, its underlying MDP is noted M ′. A state con-
tained in a maximal end component EC of M ′ is a success
state if there exists an i such that Ki ∈ EC and Li /∈ EC, where
Ki and Li results from the accepting conditions of the DRA
used to form the product POMDP.

From the previous definition, we can conclude that from
a success state, there is a probability of 1 of satisfying the
LTL formula associated with the Rabin automaton. We can

define a reachability reward function associated to the set of
success states and compute the probability of success at a
given belief point using Eq. (6).

The first steps of the model checking approach (prod-
uct POMDP and reduction to reachability) are identical for
POMDPs and MDPs. They are independent of the structure
of the observation space and are agnostic to partial observabil-
ity. State uncertainty will play a role in the last step, which
consists of solving the reachability problem.

Theorem: Given a POMDP and an LTL formula φ , the
optimal value function of the product POMDP with the reach-
ability reward function associated with the set of success
states satisfies: U∗(b) = Prmax(b |= φ), where b is a belief
state in the product POMDP. In addition, there is a one to one
mapping between the policy maximizing the value function in
the product POMDP and the policy maximizing Pr(b |= φ).

Proof Sketch: The construction of the product POMDP,
and the definition of success states give the following:

Prmax
P (b |= φ) = Prmax

P ′ (b |= FB) (8)

where on both sides, b is a belief of the product states, that
is a belief over both the state of P and the state of the DRA
associated with φ , and B is the set of success states in P ′.
When updating the belief using Eq. (1), the transition model
from the product POMDP is used. Finally, Eq. (6) holds from
the construction of the reachability reward function and the
definition of the belief state value function of a POMDP.
More precisely, Eq. (6) can be proven by formulating a belief
state MDP (Kochenderfer 2015) and use the equivalent result
for MDPs (Baier and Katoen 2008).

The agent cannot observe whether it has reached an end
component or not, but the belief state characterizes the confi-
dence on whether or not it is in an end component. Previous
works often assume that the end components are observed,
our algorithm allows to relax this assumption by maintaining
a belief on both the state of the environment and the state of
the automaton.

Approximate Solution Techniques

The previous sections illustrated how to convert the quanti-
tative model checking problem into a reward maximization
problem. This section describes how to solve this problem
using existing POMDP planning algorithms and how to inter-
pret the convergence bounds with respect to the problem of
interest. As we have shown, Prmax(b |= φ) can be interpreted
as a belief value function for a specific POMDP. This section
discusses how to compute such value function.

Solving POMDPs exactly is generally intractable (Kochen-
derfer 2015; Madani, Hanks, and Condon 1999), however
approximation techniques have been developed. Approxima-
tion methods rely on restricting the policy space, either by
considering finite-state controllers or alpha vector representa-
tions. Previous work addressed the problem of finding finite
state controllers (Junges et al. 2018; Chatterjee et al. 2015).
This paper focuses on alpha vector representations of the
policy and the value function. Alpha vectors can be used to
represent both the policy and the value function. Hence, we
can approximate the quantitative model checking problem
and not only the policy synthesis problem.

10064

Alpha vectors are |S |-dimensional vectors defining a lin-
ear function over the belief space. Given a set of alpha vectors
Γ = {α1, . . . ,αn}, the value function is defined as follows:
U(b) = maxα∈Γ α�b Point based Value Iteration (PBVI) al-
gorithms are a family of POMDP solvers that involves ap-
plying a Bellman backup to a set of alpha vectors in order
to approximate the optimal value function. Shani, Pineau,
and Kaplow survey various PBVI methods. In this work, we
used SARSOP (Kurniawati, Hsu, and Lee 2008), which has
shown state-of-the-art performance in terms of scalability.
PBVI algorithms sample the belief space and compute an
alpha vector associated to each belief point to approximate
the value function at that point. SARSOP differs from other
PBVI algorithms by relying on a tree search to explore the
belief space. It maintains an upper and lower bound on the
value function, which are used to guide the search close to
optimal trajectories. The algorithm is given an initial belief
point and only explores relevant regions of the belief space.
That is, regions that can be reached from the initial belief
point under optimality conditions.

PBVI algorithms, often offer convergence guarantees spec-
ified in upper and lower bound on the value function. A
precision parameter ε is provided and control the tightness
of the convergence (by controlling the depth of the tree in
SARSOP for example) which yields to:

|U∗(b0)−U∗(b0)|< ε (9)

Given a formula φ , we have show how to build a product
POMDP in which we have the equivalence between the value
function U∗(b) and Prmax(b |= φ). As a consequence, for
a given precision parameter, we can directly translate the
bounds on the value function in the product POMDP in terms
of probability of success for our problem of quantitative
model checking:

|Prmax(b0 |= φ)−Prmax(b0 |= φ)|< ε (10)

where Prmax(b0 |= φ) is an upper bound over the actual prob-
ability of satisfaction, Prmax(b0 |= φ) is a lower bound, and
b0 is the initial belief. With an infinite computation time,
an arbitrary ε can be reached. However in practice only a
minimum ε can be achieved within the computation budget.
The original implementation of SARSOP relies on a discount
factor. In this work, the discount factor is set to one such
that the obtained value function matches exactly with the
probability of satisfaction of the LTL formula.

The proposed methodology to solve quantitative model
checking problems in POMDPs is agnostic to the planning
algorithm. Although we focused the discussion on PBVI
solvers, any belief state planner could be used. The strength
of the guarantees are directly dependent on the choice of the
underlying planning algorithm. For example, one could use
the QMDP or FIB approximations to only compute an upper
bound on the probability of success (Hauskrecht 2000). Our
implementation allows the user to easily choose the underly-
ing algorithm among the one available in POMDPs.jl (Egorov
et al. 2017) a POMDP planning library.

Experiments

We evaluate our methodology on three discrete POMDP do-
mains from the literature. The first one is a partially observ-
able slippery grid world, the second one is the rock sample
problem (Smith and Simmons 2004), and the third is a drone
surveillance problem (Svorenová et al. 2015). Those domains
have a grid world like structure and can easily be scaled to
different size of state and observation spaces to evaluate the
scalability of our approach. More details can be found in the
source code and in the supplementary material.

Partially Observable Grid World This domain is an n×
n grid with three labels: A, B, and C associated to some
cells in the grid. The agent can choose to move left, right,
up, and down. It reaches the desired cell with a probability
of 0.7 and moves to another neighboring cell with equal
probability otherwise. The agent receives a noisy observation
of its position generated from a uniform distribution over the
neighboring cells (vanish for distances greater than 1). The
agent is initialized to a cell in the grid world with uniform
probability. We investigated the following specifications:

• φ1 = ¬CUA∧¬CUB: The agent must visit states A and
B in any order while avoiding state C. This formula is a
constrained reachability objective and does not require to
form a product POMDP.

• φ2 = G¬C: The agent must never visit state C.

The precision of the solver is set to 1×10−2.

Drone Surveillance The drone surveillance problem is in-
spired by Svorenová et al. (Svorenová et al. 2015). An aerial
vehicle must survey regions in the corners of a grid like en-
vironment while avoiding a ground agent. The drone can
observe the location of the ground agent only if it is in its
field of view delimited by a 3×3 area centered at the drone
location. We labeled the states as A when the drone is in the
bottom left corner, B when it is in the top right corner, and
det when it can be detected by the ground agent (when it
is on top of it). We analyzed one formula: ¬detUB. The
drone should eventually reach region B without being de-
tected. Note that this is already a reachability objective and
does not require the construction of a product POMDP. The
precision is set to 1×10−2.

Rock Sample The rock sample problem models a rover
exploring a planet and tasked to collect interesting rocks. The
environment consists of a grid world with rocks at a known
location as well as an exit area. The rocks can be either good
or bad and their status is not observable. The robot can move
deterministically in each direction or choose to sample a rock
(when on top of it), or use its long range sensor to check
the quality of a rock. The long range sensor returns the true
status of a rock with a probability decaying exponentially
with the distance to the rock. The problem ends when the
robot reaches the exit area, this state is labeled as exit. In
addition we defined two labels for situations when the robot
pick a good rock or a bad rock respectively labeled good
and bad. This paper considers three different formulas:

10065

• φ1 =G¬bad : This formula expresses that the robot should
never pick up a bad rock. There exist a trivial policy that
satisfies this formula which is to never pick up any rocks.

• φ2 = Fgood∧ Fexit: This formula expresses that the
robot should eventually pick a good rock and eventually
reach the exit. Since the exit is a terminal state, the robot
must pick up a good rock before reaching the exit. This
policy cannot be satisfied with a probability 1 since there
is a possibility that all the rocks present are bad.

• φ3 = Fgood∧Fexit∧G¬bad: This formula is a com-
bination of the two previous specifications. In addition of
bringing a good rock and reaching the exit the robot must
not pick a bad rock. A video demonstrating the resulting
strategy is provided in the supplementary material.

For this domain, the precision of the solver is set to 1×10−3.

Results

We applied the proposed methodology on different sizes of
the proposed domains with different formulas. We use SAR-
SOP as the underlying POMDP planning algorithm to solve
the quantitative model checking problems. Our approach is
agnostic to the choice of the planning algorithm and other
methods could have been used. However, SARSOP is a good
candidate for the task since it is one of the most scalable
offline POMDP planners (Kurniawati, Hsu, and Lee 2008).
In addition, it provides bounds on the results, which can be
translated into guarantees on the probability of success.

We compared the performance of SARSOP with the algo-
rithm used by Norman, Parker, and Zou. It consists of comput-
ing an upper bound by discretizing the belief space and per-
forming Bellman backups on each of the belief points (Love-
joy 1991). The main drawback of this algorithm is that the
belief space is high dimensional (12545 dimensions for the
largest rock sample), and the size of the grid grows expo-
nentially. Fig. 2 illustrates the benefits of using SARSOP
instead of the Lovejoy algorithm. The discretization scheme
is controlled by a granularity parameter m, the bigger m is,
the more belief points are used. The Lovejoy line is obtained
by varying m from 1 to 8, while the SARSOP line is obtained
by specifying different precision targets. In the log scale fig-
ure, we can see that it takes much longer time to reach a
given precision using the Lovejoy algorithm than SARSOP.
In addition, we can see the exponential growth of the number
of belief points. As a reference, we added the precision given
by QMDP (Littman, Cassandra, and Kaelbling 1995) and
FIB (Hauskrecht 2000) which are two algorithms to compute
upper bound on the value of a POMDP. Point-based methods
provide both an upper and desired bound and allow the user
to specify the precision. Hence there is no need to use an
abstraction refinement mechanism to choose the right granu-
larity of the belief space as done in previous work (Norman,
Parker, and Zou 2017).

Table 1 summarizes the performance of our approach in
solving different tasks. In each case, we report the lower
bound on Prmax(b0 |= φ) as well as the precision ε described
in previous sections. The upper bound is the sum of the two.
In addition, we report the solving time, it takes into account
both the time to compute the maximal end components in

the product POMDP as well as the time taken by SARSOP
to solve the problem. The MEC column reports the time
needed to identify the success states and construct the product
POMDP (if needed). To control the number of iterations used
by SARSOP, we used a threshold on the precision, ε i.e. after
each iteration we check if the precision is lower than the
threshold and return the policy and the probability of success
if it is. The |Γ| columns reports the number of belief points
used by the point-based method.

1 10 100
10−4

10−3

10−2

10−1

Time (s)

Pr
ec

is
io

n

SARSOP

Lovejoy

QMDP

FIB

100 101 102 103 104 105

10−4

10−3

10−2

10−1

Number of belief points

Pr
ec

is
io

n

SARSOP

Lovejoy

QMDP

FIB

Figure 2: Illustration of the time precision trade-off for differ-
ent algorithms providing upper bounds on the value function
in a POMDP. Lovejoy is the algorithm used by Norman,
Parker, and Zou. To compute the precision, we used the lower
bound computed using SARSOP as a reference. The experi-
ments are carried on a 3×3 partially observable grid world
domain.

0 0.5 1 1.5 2

·104

0.8

0.85

0.9

Number of simulations

Pr
ob

ab
ili

ty
of

su
cc

es
s

MC estimate

SARSOP lower bound

SARSOP upper bound

Figure 3: Estimate of the probability of success of a policy
generated by SARSOP. We simulated 10000 episodes esti-
mated the probability of success. We compare this result with
the upper and lower bound provided by SARSOP.

10066

Table 1: Performance of POMDP model checker.
Domain |S | / |A | / |O| LB ε |Γ| MEC (s) Time (s)

PO Grid World

[10,10] φ1 101 / 4 / 101 0.904 9.9×10−3 3452 0.64 207.2
[10,10] φ2 0.0099 0 1 0.13 0.4

Drone Surveillance

[5,5] 626 / 5 / 10 0.96 9×10−3 4812 0.73 95.5
[5,5] (U) 0.94 8×10−3 4277 0.73 78.3
[7,7] (U) 2402 / 5 / 10 0.94 1.9×10−2 41799 4.8 12587.5

Rock Sample
[4,4] φ1 65 / 7 / 3 1.0 0.0 1 0.03 0.02
[4,4] φ2 0.749 9.2×10−5 13 0.09 0.3
[4,4] φ3 0.744 2×10−4 23 0.10 0.4
[5,5] φ1 201 / 8 / 3 1.0 0.0 1 0.19 0.11
[5,5] φ2 0.879 2.8×10−4 24 0.70 0.5
[5,5] φ3 0.865 9×10−4 56 0.70 0.8
[7,7] φ1 12545 / 13 / 3 1.0 0.0 1 11.3 13.4
[7,7] φ2 0.990 9×10−4 378 50.6 77.5
[7,7] φ3 0.979 9×10−4 301 53.5 87.2

We empirically verify the correctness of the bound
provided by SARSOP by simulating the resulting policy
in the partially observable grid world with the formula
¬CUA∧¬CUB. Fig. 3 illustrates the convergence of the esti-
mated probability of success with the number of simulation
of the policy. The probability of success is estimated using a
Monte Carlo estimator. We can see that the estimated value
converges towards the lower bound provided by SARSOP
(dotted line). In this particular example, the value of the prob-
ability of success is around 0.90. The gap between the upper
and lower bound provided by the solver can be controlled
with the precision, in expense of a longer time to solve. Fig. 3
shows that the resulting policy has an empirical performance
consistent with the lower bound given by SARSOP.

Discussion

We have illustrated in the previous section that our approach
scales to POMDP domains with many thousands states and
supports different LTL specifications. We can see from Ta-
ble 1, that the model checker is able to provide an approxi-
mate solution in a reasonable time. In contrast with previous
work (Svorenová et al. 2015; Chatterjee et al. 2015), solving a
quantitative model checking problem instead of a qualitative
problem allows us to find a policy even in cases where satis-
fiability cannot be guaranteed with probability 1. Moreover,
our technique scales to larger state spaces.

In a few cases, the solver returned a policy with perfect
precision in a very short time. This is the case for G¬C in grid
world, and G¬bad in rock sample. In those two cases, the
probability of success can be directly extracted from the max-
imum end components. In the grid world example, the whole
grid world is a maximal end component. The state space is
fully connected under any policy because of the probabilistic
transitions. As a consequence, there exists no trajectory that
would not eventually visit the state C in an infinite time. This
problem does not have any success states. In the rock sam-
ple problem, the transition is deterministic, there exist many
trivial policies to not pick a bad rock. The robot can just stay
idle, or reach the exit. In those two examples, computing the
maximum end component and performing one iteration of
SARSOP is enough to solve the model checking problem.

For the large version of the drone surveillance problem, the
computation reached a maximum memory limit on the size
of the policy and was not able to reach the desired precision.
Although this problem is smaller than rock sample, the belief
space has a much denser support. The drone maintains a
belief over the location of the agent outside its field of view.
This characteristic of the belief space makes this problem
harder to approximate (Hsu, Lee, and Rong 2007).

The solution provided by our approach is approximate. Al-
though it provides mathematical bounds on the performance,
it is not possible to compute the solution exactly. Reaching
an arbitrary precision would require exploring the full belief
space and take an infinite time. As a consequence, for smaller
domains, approaches like the one proposed by Chatterjee et
al. might be more suitable (Chatterjee et al. 2015). However,
our approach does allow us to find approximate solutions
in domains that were intractable for previous belief state ap-
proaches to model checking in POMDPs. The formulation
of the reward function in the product POMDP makes it a
goal-oriented POMDP (Kolobov, Mausam, and Weld 2012).
Our methodology would allow one to replace the POMDP
planner by a goal-oriented POMDP solver. It would require
extending the algorithm from Kolobov, Mausam, and Weld to
POMDPs. A comparison with traditional POMDP planners
would be an interesting future direction. The dead end frame-
work could be a useful theoretical framework to analyze the
convergence of the solvers in the product POMDPs.

Contrary to previous work (Norman, Parker, and Zou
2017), we do not assume that the labels are observable. The
computed policy maps a belief in the product space (POMDP
state and automaton state) to an action. In problems where
the automaton state is observable, our approach could still
be applied and leverage this mixed observability assumption.
This property would certainly help improve the results on
the large drone surveillance problem. It has been shown that
PBVI algorithms can scale to even larger domains when part
of the state is fully observable (Ong et al. 2009).

Conclusion
This paper proposed a methodology to solve quantitative
model checking problems in POMDPs. Given an LTL for-
mula and a POMDP model, our approach approximates the
maximum probability of satisfying the formula as well as the
corresponding belief state policy. We first convert the LTL
formula into an automaton and construct a product POMDP
between the automaton and the original POMDP model. By
formulating a reward maximization problem, we have shown
how to benefit from approximate POMDP planning algo-
rithms to compute a solution to the model checking prob-
lem. Our method provides strong convergence bounds on
the result. We have shown empirically that our approach
applies to a variety of discrete POMDP domains, for differ-
ent LTL formulas, and scales to larger problem than previ-
ous belief state techniques (Norman, Parker, and Zou 2017;
Svorenová et al. 2015). We provide a Julia package for
POMDP model checking available at https://github.com/sisl/
POMDPModelChecking.jl.

The main limitation of the methodology is that it only
applies to POMDPs with discrete state spaces. The two bot-

10067

tlenecks are the computation of the maximal end components
and the choice of the planning algorithms. For some LTL for-
mula, like constrained reachability (Baier and Katoen 2008),
or if one is interested in policy synthesis only, the reward
maximization problem can be formulated without having to
compute maximal end components (Sadigh et al. 2014). Our
approach provides a flexible way to integrate LTL objectives
in POMDP planning and allows to use any planning algo-
rithm to allow a trade-off between convergence guarantees
and scalability. Online POMDP planning algorithms could be
used instead of PBVI methods to generate policies from an
LTL objective at the price of lacking convergence guarantees.

Acknowledgment

This work was supported by the Honda Research Institute.
The authors thank Sebastian Junges, Nils Jansen, and Emma
Brunskill for their advice on the early stages of this work.

References

Ahmadi, M.; Cubuktepe, M.; Jansen, N.; and Topcu, U. 2018.
Verification of uncertain POMDPs using barrier certificates. In
Allerton Conference on Communication, Control, and Computing,
115–122.
Baier, C., and Katoen, J. 2008. Principles of model checking. MIT
Press.
Chatterjee, K.; Chmelik, M.; Gupta, R.; and Kanodia, A. 2015.
Qualitative analysis of POMDPs with temporal logic specifications
for robotics applications. In IEEE International Conference on
Robotics and Automation (ICRA), 325–330.
Chatterjee, K.; Chmelik, M.; and Tracol, M. 2013. What is decidable
about partially observable markov decision processes with omega-
regular objectives. In Computer Science Logic (CSL), 165–180.
Dehnert, C.; Junges, S.; Katoen, J.; and Volk, M. 2017. A storm is
coming: A modern probabilistic model checker. In International
Conference on Computer-Aided Verification, 592–600.
Egorov, M.; Sunberg, Z. N.; Balaban, E.; Wheeler, T. A.; Gupta,
J. K.; and Kochenderfer, M. J. 2017. POMDPs.jl: A framework for
sequential decision making under uncertainty. Journal of Machine
Learning Research 18:26:1–26:5.
Hadfield-Menell, D.; Milli, S.; Abbeel, P.; Russell, S. J.; and Dra-
gan, A. D. 2017. Inverse reward design. In Advances in Neural
Information Processing Systems (NIPS), 6768–6777.
Haesaert, S.; Nilsson, P.; Vasile, C. I.; Thakker, R.; Agha-
mohammadi, A.; Ames, A. D.; and Murray, R. M. 2018. Temporal
logic control of POMDPs via label-based stochastic simulation re-
lations. In IFAC Conference on Analysis and Design of Hybrid
Systems, ADHS, 271–276.
Hauskrecht, M. 2000. Value-function approximations for partially
observable markov decision processes. Journal of Artificial Intelli-
gence Research 13:33–94.
Hsu, D.; Lee, W. S.; and Rong, N. 2007. What makes some POMDP
problems easy to approximate? In Advances in Neural Information
Processing Systems (NIPS), 689–696.
Junges, S.; Jansen, N.; Wimmer, R.; Quatmann, T.; Winterer, L.; Ka-
toen, J.; and Becker, B. 2018. Finite-state controllers of POMDPs
using parameter synthesis. In Conference on Uncertainty in Artifi-
cial Intelligence (UAI), 519–529.
Kochenderfer, M. J. 2015. Decision Making Under Uncertainty:
Theory and Application. MIT Press.

Kolobov, A.; Mausam; and Weld, D. S. 2012. A theory of goal-
oriented mdps with dead ends. In Conference on Uncertainty in
Artificial Intelligence (UAI), 438–447.
Kurniawati, H.; Hsu, D.; and Lee, W. S. 2008. SARSOP: effi-
cient point-based POMDP planning by approximating optimally
reachable belief spaces. In Robotics: Science and Systems.
Kwiatkowska, M. Z.; Norman, G.; and Parker, D. 2011. PRISM
4.0: Verification of probabilistic real-time systems. In International
Conference on Computer-Aided Verification, 585–591.
Lahijanian, M.; Andersson, S.; and Belta, C. 2011. Control of
markov decision processes from PCTL specifications. In American
Control Conference (ACC), 311–316. IEEE.
Littman, M. L.; Cassandra, A. R.; and Kaelbling, L. P. 1995. Learn-
ing policies for partially observable environments: Scaling up. In
International Conference on Machine Learning (ICML), 362–370.
Lovejoy, W. S. 1991. Computationally feasible bounds for par-
tially observed markov decision processes. Operations Research
39(1):162–175.
Madani, O.; Hanks, S.; and Condon, A. 1999. On the undecidability
of probabilistic planning and infinite-horizon partially observable
markov decision problems. In AAAI Conference on Artificial Intelli-
gence (AAAI), 541–548.
Norman, G.; Parker, D.; and Zou, X. 2017. Verification and control
of partially observable probabilistic systems. In Real-Time Systems,
volume 53, 354–402.
Ong, S. C. W.; Png, S. W.; Hsu, D.; and Lee, W. S. 2009. POMDPs
for robotic tasks with mixed observability. In Robotics: Science and
Systems.
Pnueli, A. 1977. The temporal logic of programs. In Symposium on
Foundations of Computer Science, 46–57.
Sadigh, D.; Kim, E. S.; Coogan, S.; Sastry, S. S.; and Seshia, S. A.
2014. A learning based approach to control synthesis of markov
decision processes for linear temporal logic specifications. In IEEE
Conference on Decision and Control (CDC), 1091–1096.
Shani, G.; Pineau, J.; and Kaplow, R. 2013. A survey of point-based
POMDP solvers. Journal of Autonomous Agents and Multi-Agent
Systems 27(1):1–51.
Sharan, R., and Burdick, J. W. 2014. Finite state control of POMDPs
with LTL specifications. In American Control Conference (ACC),
501–508.
Smith, T., and Simmons, R. G. 2004. Heuristic search value iteration
for POMDPs. In Conference on Uncertainty in Artificial Intelligence
(UAI), 520–527.
Svorenová, M.; Chmelik, M.; Leahy, K.; Eniser, H. F.; Chatterjee,
K.; Cerná, I.; and Belta, C. 2015. Temporal logic motion planning
using POMDPs with parity objectives: case study paper. In Inter-
national Conference on Hybrid Systems: Computation and Control
(HSCC), 233–238.
Vasile, C. I.; Leahy, K.; Cristofalo, E.; Jones, A.; Schwager, M.;
and Belta, C. 2016. Control in belief space with temporal logic
specifications. In IEEE Conference on Decision and Control (CDC),
7419–7424.
Wang, Y.; Chaudhuri, S.; and Kavraki, L. E. 2018. Bounded
policy synthesis for POMDPs with safe-reachability objectives. In
International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 238–246.

10068

