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Abstract

We study the novel problem of blackbox optimization of multi-
ple objectives via multi-fidelity function evaluations that vary
in the amount of resources consumed and their accuracy. The
overall goal is to appromixate the true Pareto set of solutions
by minimizing the resources consumed for function evalu-
ations. For example, in power system design optimization,
we need to find designs that trade-off cost, size, efficiency,
and thermal tolerance using multi-fidelity simulators for de-
sign evaluations. In this paper, we propose a novel approach
referred as Multi-Fidelity Output Space Entropy Search for
Multi-objective Optimization (MF-OSEMO) to solve this prob-
lem. The key idea is to select the sequence of candidate in-
put and fidelity-vector pairs that maximize the information
gained about the true Pareto front per unit resource cost. Our
experiments on several synthetic and real-world benchmark
problems show that MF-OSEMO, with both approximations,
significantly improves over the state-of-the-art single-fidelity
algorithms for multi-objective optimization.

1 Introduction

Multi-objective optimization of expensive black-box func-
tions has many real-world applications. For example, creating
hardware to optimize performance, reliability, and thermal
objectives. There are two key challenges in solving these
problems. First, the objective functions are unknown and we
need to select from experiments of different fidelity to eval-
uate each candidate input. These multi-fidelity experiments
vary in the amount of resources consumed and the accuracy
of evaluation. Second, all the objectives cannot be optimized
simultaneously due to their conflicting nature. Hence, we re-
sort to finding the Pareto optimal set of solutions. A solution
is called Pareto optimal if it cannot be improved in any of
the objectives without compromising some other objective.
The overall goal is to approximate the optimal Pareto set by
minimizing the overall resource cost of function evaluations.

Bayesian optimization (BO) (Shahriari et al. 2016) is a pop-
ular framework for solving blackbox optimization problems.
BO methods build a surrogate statistical model, e.g., Gaus-
sian process, from the training data of function evaluations;

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

employ a acquisition function (AF) that is parameterized by
the model, e.g., upper-confidence bound, to score the utility
of evaluating candidate inputs; and select the highest scoring
input for evaluation in each iteration. Existing AFs can be
broadly classified into two categories. First, myopic AFs rely
on improving a “local” measure of utility (e.g., expected im-
provement). Second, non-myopic AFs measure the “global”
utility of evaluating a candidate input for solving the black-
box optimization problem (e.g., predictive entropy search).
Prior work has shown the advantages of non-myopic AFs over
myopic AFs in terms of both theory and practice (Jiang et al.
2017; Hernández-Lobato, Hoffman, and Ghahramani 2014;
Wang and Jegelka 2017; Hoffman and Ghahramani 2015).

In this paper, we propose a novel and principled approach
referred as Multi-Fidelity Output Space Entropy Search
for Multi-objective Optimization (MF-OSEMO) to solve
multi-objective optimization problems via multi-fidelity func-
tion evaluations. To the best of our knowledge, this is the
first work to study this problem within ML literature. MF-
OSEMO employs an output space entropy based non-myopic
acquisition function to select the candidate inputs and fi-
delity vectors for evaluation. Output space entropy search
has many advantages over other non-myopic AFs based
on input space entropy (Hoffman and Ghahramani 2015;
Wang and Jegelka 2017): a) allows much tighter approxima-
tion; b) significantly cheaper to compute; and c) naturally
lends itself to robust optimization. We provide two quali-
tatively different approximations to efficiently compute the
entropy, which is a key step for MF-OSEMO. These approxi-
mations make different trade-offs in terms of accuracy and
computational-efficiency: one has a closed-form expression
and another employs numerical integration.
Contributions. We make the following key contributions.

• Developing a principled approach referred as MF-OSEMO
to solve multi-fidelity multi-objective blackbox optimiza-
tion problems. MF-OSEMO employs an output space en-
tropy based acquisition function to select the sequence of
candidate inputs and fidelity vectors for evaluation. Pro-
viding two different approximations within MF-OSEMO.

• Experimental evaluation on synthetic and real-world
benchmark problems to show the effectiveness of MF-
OSEMO over state-of-the-art single-fidelity algorithms.
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Figure 1: Current state of knowledge for generic BO methods.

2 Problem Setup

Let X ⊆ �d be an input space. In the multi-objective op-
timization problem, our goal is to minimize K ≥ 2 expen-
sive objective functions f1(x), f2(x), · · · , fK(x). Evalua-
tion of a candidate input x ∈ X produces a vector of K
function values y = (y1, y2, · · · , yK), where yi = fi(x) for
all i ∈ {1, 2, · · · ,K}. A point x is said to Pareto-dominate
another point x′ if fi(x) ≤ fi(x

′) ∀i and there exists some
j ∈ {1, 2, · · · ,K} such that fj(x) < fj(x

′). The optimal
solution of MOO problem is a set of points X ∗ ⊂ X such
that no point x′ ∈ X \ X ∗ Pareto-dominates a point x ∈ X ∗.
The solution set X ∗ is called the optimal Pareto set and the
corresponding set of function values Y∗ is called the optimal
Pareto front. In the multi-fidelity version of MOO problem,
we have access to Mi fidelities for each function fi that vary
in the amount of resources consumed and the accuracy of eval-
uation. Let λ(mi)

i be the cost of evaluating ith function fi at
mi ∈ [Mi] fidelity, where mi=Mi corresponds to the highest
fidelity for fi. Evaluation of an input x ∈ X with fidelity vec-
tor m = [m1,m2, · · · ,mK ] produces an evaluation vector
of K values denoted by ym ≡ [y

(m1)
1 , · · · , y(mK)

K ], where
y
(mi)
i = f

(mi)
i (x) for all i ∈ {1, 2, · · · ,K}, and normal-

ized cost of evaluation is λ(m) ≡ ∑K
i=1

(
λ
(mi)
i /λ

(Mi)
i

)
. We

normalize the total cost since the cost units can be different
for different objectives(e.g. cost unit for f1 is computation
time while cost unit for f2 could be memory space size). Our
goal is to approximate X ∗ by minimizing the overall cost of
function evaluations. For the sake of reader, Table 1 contains
all the mathematical notations used in this paper.

3 Related work

Multi-fidelity single-objective optimization. AFs for
single-fidelity and single-objective BO has been exten-
sively studied (Shahriari et al. 2016). Canonical examples
of myopic AFs include expected improvement (EI) and
upper-confidence bound (UCB). EI was extended to multi-
fidelity setting (Huang et al. 2006; Picheny et al. 2013;
Lam, Allaire, and Willcox 2015). The popular GP-UCB
method (Srinivas et al. 2009) was also extended to multi-

fidelity setting with discrete fidelities (Kandasamy et al. 2016)
and continuous fidelities (Kandasamy et al. 2017).

Entropy based methods fall under the category of non-
myopic AFs Some examples include entropy search (ES)
(Hennig and Schuler 2012) and predictive entropy search
(PES) (Hernández-Lobato, Hoffman, and Ghahramani 2014).
Their multi-fidelity extensions include MT-ES (Swersky,
Snoek, and Adams 2013; Klein et al. 2017) and MF-
PES(Zhang et al. 2017; McLeod, Osborne, and Roberts 2017).
Unfortunately, they inherit the computational difficulties of
the original ES and PES. Max-value entropy search (MES)
and output space predictive entropy search (Wang and Jegelka
2017; Hoffman and Ghahramani 2015) are recent approaches
that rely on the principle of output space entropy (OSE)
search. Prior work (Wang and Jegelka 2017) has shown ad-
vantages of OSE search in terms of compute-time, robustness,
and accuracy over input space entropy search methods. A
recent work (Takeno et al. 2019) extended MES to multi-
fidelity setting and showed its effectiveness over MF-PES.
Recent work (Song, Chen, and Yue 2019) proposed a general
approach based on mutual information.
Single-fidelity multi-objective optimization. Multi-
objective algorithms can be classified into three families.
Scalarization methods are model-based algorithms that
reduce the problem to single-objective optimization. ParEGO
method (Knowles 2006) employs random scalarization for
this purpose. ParEGO is simple and fast, but more advanced
approaches often outperform it. Pareto hypervolume
optimization methods optimize the Pareto hypervolume
(PHV) metric (Emmerich and Klinkenberg 2008) that
captures the quality of a candidate Pareto set. This is done
by extending the standard acquisition functions to PHV
objective, e.g., expected improvement in PHV (Emmerich
and Klinkenberg 2008) and probability of improvement in
PHV (Picheny 2015). Unfortunately, algorithms to optimize
PHV based acquisition functions scale very poorly and are
not feasible for more than three objectives. To improve
scalability, methods to reduce the search space are also
explored (Ponweiser et al. 2008). A common drawback of
this family is that reduction to single-objective optimization
can potentially lead to more exploitative behavior.

Uncertainty reduction methods like PAL (Zuluaga et al.
2013), PESMO (Hernández-Lobato et al. 2016) and the con-
current works USeMO (Belakaria et al. 2020) and MESMO
(Belakaria, Deshwal, and Doppa 2019) are principled algo-
rithms based on information theory. In each iteration, PAL
selects the candidate input for evaluation towards the goal
of minimizing the size of uncertain set. PAL provides theo-
retical guarantees, but it is only applicable for input space X
with finite set of discrete points. USeMO is a general frame-
work that iteratively generates a cheap Pareto front using
the surrogate models and then selects the point with highest
uncertainty as the next query. PESMO relies on input space
entropy search and iteratively selects the input that maxi-
mizes the information gained about the optimal Pareto set
X ∗. Unfortunately, optimizing this acquisition function poses
significant challenges: a) requires a series of approximations,
which can be potentially sub-optimal; and b) optimization,
even after approximations, is expensive c) performance is
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Notation Meaning

x,y, f ,m bold notation represents vectors
[n] set of first n natural numbers {1, 2, · · · , n}

f1, f2, · · · , fK true objective functions
M1,M2, · · · ,MK no. of fidelities for each function

x input vector
m = [m1,m2, · · · ,mK ] fidelity vector where each fidelity mj ∈ [Mj ]

y
mj

j jth function fj evaluated at mj th fidelity where mj ∈ [Mj ]

ym output vector equivalent to [y
(m1)
1 , · · · , y(mK)

K ]

Y∗ true Pareto front of the highest fidelities [y(M1)
1 , y

(M2)
2 , · · · , y(MK)

K ]

λ
(mj)
j cost of evaluating jth function fj at mj th fidelity

λ(m) total normalized cost λ(m) ≡ ∑K
j=1

(
λ
(mj)
j /λ

(Mj)
j

)

f̃
(mj)
j function sampled from jth gaussian process model at mj th fidelity

Table 1: Table describing the mathematical notations used in this paper.

strongly dependent on the number of Monte-Carlo samples.
MESMO (Belakaria, Deshwal, and Doppa 2019) is a concur-
rent work that improves over PESMO by extending MES to
the multi-objective setting.
Application-specific multi-fidelity multi-objective opti-
mization. Prior work outside ML literature has considered
domain-specific methods that employ single-fidelity multi-
objective approaches in the context of multi-fidelity setting
by using the lower fidelities only as an initialization (Konto-
giannis et al. 2018; Ariyarit and Kanazaki 2017). Specifically,
(Ariyarit and Kanazaki 2017) employs the single-fidelity
algorithm based on expected hypervolume improvement ac-
quisition function and (Kontogiannis et al. 2018) employs an
algorithm that is very similar to SMSego. Additionally, both
these methods model all fidelities with the same GP and as-
sume that higher fidelity evaluation is a sum of lower-fidelity
evaluation and offset error. These are strong assumptions and
may not hold in general multi-fidelity settings including the
problems we considered in our experimental evaluation.

4 MF-OSEMO Algorithm

In this section, we explain the technical details of our pro-
posed MF-OSEMO algorithm.

4.1 Surrogate models

Let D = {(xi,y
(m)
i )}t−1

i=1 be the training data from past t−1

function evaluations, where xi ∈ X is an input and y
(m)
i =

[y
(m1)
1 , y

(m2)
2 , · · · , y(mK)

K ] is the output vector resulting from
evaluating functions f (m1)

1 , f
(m2)
2 , · · · , f (mk)

K at xi.
Gaussian processes (GPs) are known to be effective sur-

rogate models in prior work on single and multi-objective
BO (Srinivas et al. 2009; Hernández-Lobato et al. 2016).
We learn K surrogate models GP1,GP2, · · · ,GPK from D,
where each GPj corresponds to the jth function fj . In our
setting, each function has multiple fidelities. So one ideal
property desired for the surrogate model of a single function
is to take into account all the fidelities in a single model.
Multi-fidelity GPs (MF-GP) are capable of modeling func-

tions with multiple fidelities in a single model. Hence, each
of our surrogate model GPj is a multi-fidelity GP.

Specifically, we use the MF-GP model as proposed
in (Kennedy and O’Hagan 2000). We describe the com-
plete details of the MF-GP model below. One key thing
to note about MF-GP model is that the kernel function
(k((xi,mi), (xj,mj))) is dependent on both the input and
the fidelity. For a given input x, the MF-GP model returns
a vector (one for each fidelity) of predictive mean, a vector
of predictive variance, and a matrix of predictive covariance.
The MF-GP model has two advantages: 1) All fidelities are
integrated into one single GP; and 2) Difference among fideli-
ties are adaptively estimated without any additional feature
representation for fidelities. It should be noted that we employ
an independent multi-fidelity GP for each function.
Multi-fidelity Gaussian process model. We describe full
details of a MF-GP model for one objective function fj (with-
out loss of generality) below:

Let y(1)j (x), . . . , y
(Mj)
j (x) represent the values obtained

by evaluating the function fj at its 1st, 2nd, . . . ,Mj th fidelity
respectively.

In a MF-GP model, each fidelity is represented by a gaus-
sian process and the observation is modeled as

y
(mj)
j (x) = f

(mj)
j (x) + ε, ε ∼ N (0, σ2

noise).

Let f (1)
j ∼ GP (0, k1(x,x

′)) be a gaussian process for the
1st fidelity i.e. mj = 1, where k1 : Rd × Rd → R is a
suitable kernel. The output for successively fidelities mj =
2, . . . ,Mj is recursively defined as

f
(mj)
j (x) = f

(mj−1)
j (x) + f

(mj−1)
je

(x), (4.1)

where, f (mj−1)
je

∼ GP (0, ke(x,x
′)) with ke : Rd ×Rd →

R. It is assumed that f (mj−1)
je

is conditionally independent
from all fidelities lower than mj . As a result, the kernel for a
pair of points evaluated at the same fidelity becomes:

kmj (x,x
′) ≡ k1(x,x

′) + (mj − 1)ke(x,x
′) (4.2)
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and as a result, the output for mj th fidelity is also modeled
as a gaussian process:

f
(mj)
j ∼ GP (0, kmj

(x,x′)).
The kernel function for a pair of inputs evaluated at differ-

ent fidelities mj and m′
j is given as:

k((x,mj), (x
′,m′

j)) = cov
(
f
(mj)
j (x), f

(m′
j)

j (x′)
)

= kmj (x,x
′),

where mj ≤ m′
j and cov represents covariance. Using a ker-

nel matrix K ∈ Rn×n in which the p, q element is defined
by k((x,mp

j ), (x
′,mq

j)), all fidelities f (1)
j , . . . , f

(Mj)
j can be

integrated into one common gaussian process by which pre-
dictive mean and variance are obtained as

μ(mj)(x) = K + σ2
noiseI

−1Y, (4.3)

σ2(mj)

(x) = k((x,mj), (x,mj))

− k(mj)
n (x)�K + σ2

noiseI
−1k(mj)

n (x), (4.4)

where Y = (y
(mj1 )
1 (x1), . . . , y

(mjn )
n (xn))

� and k
(mj)
n (x)

≡ (k((x,mj), (x1,mj1)), . . . , k((x,mj), (xn,mjn)))
�.

We also define σ2
(mjm

′
j)

(x) as the predictive covariance
between (x,mj) and (x,m′

j), i.e., covariance for identical x
at different fidelities:

σ2(mjm
′
j)(x) = k((x,mj), (x,m

′
j))

− k(mj)
n (x)�K + σ2

noiseI
−1k

(m′
j)

n (x).
(4.5)

4.2 Multi-fidelity output space entropy based
acquisition function

We describe our proposed acquisition function for multi-
fidelity multi-objective setting in this section. We leverage
the information-theoretic principle of output space informa-
tion gain to develop an efficient and robust acquisition func-
tion. The proposed method is applicable for the general case,
where at each iteration the objective functions can be evalu-
ated at different fidelities.

The key idea behind the proposed acquisition function is
to find the pair {x,m} that maximizes the information gain
about the Pareto front of the highest fidelities (denoted by
Y∗) per unit cost, where {x,m} represents a candidate input
x evaluated at a vector of fidelities m = [m1,m2, · · · ,mK ].

This idea can be expressed mathematically as given below:

α(x,m) = I({x,y(m)},Y∗ | D)/λ(m) (4.6)

where λ(m) is the total normalized cost of evaluating the
objective functions at m and D is the data collected so far.
Figure 2 provides an overview of the MF-OSEMO algorithm.
The information gain in equation 4.6 is defined as the ex-
pected reduction in entropy H(.) of the posterior distribution
P (Y∗ | D) as a result of evaluating x at fidelity vector m:

I({x,y(m)},Y∗ | D)

= H(Y∗ | D)− Ey(m) [H(Y∗ | D ∪ {x,y(m)})] (4.7)

= H(y(m) | D,x)− EY∗ [H(y(m) | D,x,Y∗)] (4.8)

Multiple  Blackbox functions 
with Multiple fidelities
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Figure 2: Overview of the MF-OESMO algorithm for two
objective functions (k=2). We build multi-fidelity statisti-
cal models MFGP1, MFGP2 for the two objective func-
tions f1(x) and f2(x) with M1 and M2 fildelities respec-
tively. First, we sample highest fidelity functions from the
statistical models. We compute sample pareto fronts by solv-
ing a cheap MO problem over the sampled functions. Sec-
ond, we select the best candidate input xt and fidelity vector
mt = (m1,m2) that maximizes the information gain per unit
cost . Finally, we evaluate the functions for xt at fidelities mt

to get (y(m1)
1 , y

(m2)
2 ) and update the statistical models using

the new training example.

Equation 4.8 follows from equation 4.7 as a result of the
symmetric property of information gain. The first term in
the r.h.s of equation 4.8 is the entropy of a factorizable K-
dimensional gaussian distribution P (y(m) | D,x)) which
can be computed in closed form as shown below:

H(y(m) | D,x) =
K(1 + ln(2π))

2
+

K∑
j=1

ln(σ
(mj)
j (x))

(4.9)

where σ
(mj)
j (x) is the predictive variance of jth surrogate

model GPj at input x and fidelity mj . The second term in the
r.h.s of equation 4.8 is an expectation over the Pareto front of
the highest fidelities Y∗. We can approximately compute this
term via Monte-Carlo sampling as shown below:

EY∗ [H(y(m) | D,x,Y∗)] 
 1

S

S∑
s=1

[H(y(m) | D,x,Y∗
s )]

(4.10)

where S is the number of samples and Y∗
s denote a sam-

ple Pareto front obtained over the highest fidelity functions
sample from K surrogate models. The main advantages of
our acquisition function are: cost efficiency, computational-
efficiency, and robustness to the number of samples. Our
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experiments demonstrate these advantages over state-of-the-
art single fidelity AFs for multi-objective optimization.

There are two key algorithmic steps to compute Equation
4.10: 1) Computing Pareto front samples Y∗

s ; and 2) Comput-
ing the entropy with respect to a given Pareto front sample
Y∗
s . We provide solutions for these two steps below.
1) Computing Pareto front samples via cheap multi-

objective optimization. To compute a Pareto front sample
Y∗
s , we first sample highest fidelity functions from the poste-

rior MF-GP models via random fourier features (Hernández-
Lobato, Hoffman, and Ghahramani 2014; Rahimi and Recht
2008) and then solve a cheap multi-objective optimization
over the K sampled high fidelity functions. It is important to
note that we are sampling only the highest fidelity function
from each MF-GP surrogate model.

Sampling functions from the posterior of MF-GP model.
Similar to prior work (Hernández-Lobato, Hoffman, and
Ghahramani 2014; Hernández-Lobato et al. 2016; Wang and
Jegelka 2017), we employ random fourier features based sam-
pling procedure. We approximate each GP prior of the highest
fidelity as f̃ (M) = φ(x)T θ, where θ ∼ N(0, I). The key idea
behind random fourier features is to construct each function
sample f̃ (M)(x) as a finitely parametrized approximation:
φ(x)T θ, where θ is sampled from its corresponding poste-
rior distribution conditioned on the data D obtained from
past function evaluations: θ|D ∼ N(A−1ΦTyn, σ

2A−1),
where A = ΦTΦ+ σ2I and ΦT = [φ(x1), · · · , φ(xt−1)].

Cheap MO solver. We sample f̃
(Mi)
i from each surro-

gate model MF − GPi as described above. A cheap multi-
objective optimization problem over the K sampled functions
f̃
(M1)
1 , f̃

(M2)
2 , · · · , f̃ (MK)

K is solved to compute the sample
Pareto front Y∗

s . This cheap multi-objective optimization also
allows us to capture the interactions between different ob-
jectives. We employ the popular NSGA-II algorithm (Deb
et al. 2002) to solve the MO problem with cheap objective
functions noting that any other algorithm can be used.

2) Entropy computation with a sample Pareto front.
Let Y∗

s = {z1, · · · , zl} be the sample Pareto front, where l is
the size of the Pareto front and each zi = {zi1, · · · , ziK} is a
K-vector evaluated at the K sampled high fidelity functions.
The following inequality holds for each component y(mj)

j

of the K-vector y(m) = {y(m1)
1 , · · · , y(mk)

K } in the entropy
term H(y(m) | D,x,Y∗

s ):

y
(mj)
j ≤ y∗js ∀j ∈ {1, · · · ,K} (4.11)

where y∗js = max{zj1, · · · zjl }. The inequality essentially says
that the jth component of ym (i.e., ymj

j ) is upper-bounded by
a value obtained by taking the maximum of jth components
of all l vectors {z1, · · · , zl} in the Pareto front Y∗

s . The proof
of 4.11 can be divided into two cases:

Case I. If yj is evaluated at its highest fidelity (i.e mj =
Mj), inequality 4.11 can be proven by a contradiction argu-
ment. Suppose there exists some component y(Mj)

j of y(M)

such that y(Mj)
j > y∗js . However, by definition, y(M) is a

non-dominated point because no point dominates it in the jth

dimension. This results in y(M) ∈ Y∗
s which is a contradic-

tion. Therefore, our hypothesis that y(Mj)
j > y∗js is incorrect

and inequality 4.11 holds.
Case II. If yj is evaluated at one of its lower fidelities (i.e,

mj �= Mj), the proof follows from the assumption that the
value of lower fidelity of a objective is usually smaller than
the corresponding higher fidelity, i.e., y(mj)

j ≤ y
(Mj)
j ≤ y∗js .

This is especially true for most real-world experiments. For
example, in optimizing a neural network’s accuracy with re-
spect to its hyperparameters, a commonly employed fidelity is
the number of data samples used for training. It is reasonable
to believe that the accuracy is always higher for the higher
fidelity (more data samples to train on) when compared to a
lower fidelity (less data samples to train on).

By combining the inequality 4.11 and the fact that each
function is modeled as an independent MF-GP, a common
property of entropy measure allows us to decompose the
entropy of a set of independent variables into a sum over
entropies of individual variables (Cover and Thomas 2012):

H(y(m) | D,x,Y∗
s ) 


K∑
j=1

H(y
(mj)
j |D,x, y∗js) (4.12)

The computation of 4.12 requires the computation of the
entropy of p(y(mj)

j |D,x, y∗js). This is a conditional distribu-
tion that depends on the value of mj and can be expressed
as H(y

(mj)
j |D,x, y

(mj)
j ≤ y∗js). This entropy is dealt with

in two cases:
First, for mj = Mj, the density function of this probabil-

ity is a truncated Gaussian distribution and its entropy can be
expressed as (Michalowicz, Nichols, and Bucholtz 2013):

H(y
(Mj)
j |D,x, y

(Mj)
j ≤ y∗js) =

(1 + ln(2π))

2
+

ln(σ
(Mj)
j (x)) + lnΦ(γ(Mj)

s (x))− γ
(Mj)
s (x)φ(γ

(Mj)
s (x))

2Φ(γ
(Mj)
s (x))

(4.13)

where γ
(Mj)
s (x) =

y∗
js

−μ
(Mj)

j (x)

σ
(Mj)

j (x)
, and φ and Φ are the p.d.f

and c.d.f of a standard normal distribution respectively.
Second, for mj �= Mj, the density function of

p(y
(mj)
j |D,x, y∗js) can be computed using two differ-

ent approximations as described below:
Approximation 1 (MF-OSEMO-TG): As a conse-

quence of Case II, which states that y(mj)
j ≤ y∗js also holds

for all lower fidelities, the entropy of p(y(mj)
j |D,x, y∗js) can

also be approximated by the entropy of a truncated gaussian
distribution and expressed as follow:

H(y
(mj)
j |D,x, y

(mj)
j ≤ y∗js) =

(1 + ln(2π))

2
+

ln(σ
(mj)
j (x)) + lnΦ(γ(mj)

s (x))− γ
(mj)
s (x)φ(γ

(mj)
s (x))

2Φ(γ
(mj)
s (x))

(4.14)
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where γ
(mj)
s (x) =

y∗
js

−μ
(mj)

j (x)

σ
(mj)

j (x)
.

Approximation 2 (MF-OSEMO-NI): Although equa-
tion 4.14 is sufficient for computing the entropy for mj �=
Mj , it can be improved by conditioning on a tighter in-
equality y

(Mj)
j ≤ y∗js as compared to the general one, i.e.,

y
(mj)
j ≤ y∗js . As we show below, this improvement comes at

the expense of not obtaining a final closed-form expression,
but it can be efficiently computed via numerical integration.
Now, for calculating H(y

(mj)
j |D,x, y

(mj)
j ≤ y∗js) by replac-

ing p(y
(mj)
j |D,x, y

(mj)
j ≤ y∗js) with p(y

(mj)
j |D,x, y

(Mj)
j ≤

y∗js) and using Bayes’ theorem, we have:

p(y
(mj)
j |D,x, y

(Mj)
j ≤ y∗js)

=
p(y

(Mj)
j ≤ y∗js |y

(mj)
j , D,x)p(y

(mj)
j , D,x)

p(y
(Mj)
j ≤ y∗js |D,x)

(4.15)

Both the densities, p(y(Mj)
j ≤ y∗js |D,x) and p(y

(mj)
j , D,x)

can be obtained from the predictive distribution of MF-GP
model and is given as follows:

p(y
(mj)
j , D,x) =

φ(γ
(mj)
j (x))

σ
(mj)
j

(4.16)

p(y
(Mj)
j ≤ y∗js |D,x) = Φ(γ(Mj)

s (x))) (4.17)

where γ
(mj)
j (x) =

y
(mj)

j −μ
(mj)

j (x)

σ
(mj)

j (x)
.

Since MF-GP represents all fidelities as one uni-
fied Gaussian process, the joint marginal distribution
p(y

(Mj)
j , y

(mj)
j |D,x) can be immediately obtained from the

posterior distribution of the corresponding surrogate model
GPj as given below:

p(y
(Mj)
j |y(mj)

j ,x, D) ∼ N (μj(x), s
2
j (x)) (4.18)

where μj(x) =
σ2

(mjMj)

j (x)(y
(mj)

j −μ
mj
j (x))

σ2
(mj)

j (x)

and s2j (x) = σ2(Mj)

j (x) − (σ2
(mjMj)

j (x))2

σ2
(mj)

j (x)
. As a result,

p(y
(Mj)
j ≤ y∗js |y

(mj)
j , D,x) is expressed as the cumulative

distribution of the Gaussian in 4.18:

p(y
(Mj)
j ≤ y∗js |y

(mj)
j , D,x) = Φ(

y∗js − μj(x)

sj(x)
) (4.19)

By substituting 4.16, 4.17, and 4.19 into 4.15 we get:

H(y
(mj)
j |D,x, y

(Mj)
j ≤ y∗js) =

−
∫

Ψ(y
(mj)
j ) log(Ψ(y

(mj)
j ))dy

(mj)
j (4.20)

With Ψ(y
(mj)
j ) = Φ(

y∗
js

−μj(x)

sj(x)
)
Φ(γ

(Mj)
s (x)))φ(γ

(mj)

j (x))

σ
(mj)

j

Since this integral is over one-dimension variable y
(mj)
j ,

numerical integration can result in a tight approximation.
A complete description of the MF-OESMO algorithm is

given in Algorithm 1. Steps 3 through 6 correspond to com-
putation of our acquisition function via sampling.

5 Experiments and Results

In this section, we describe our experimental setup, and
present results of MF-OSEMO and baseline methods.

5.1 Experimental Setup

Baselines. We compare MF-OSEMO with state-of-the-art
single-fidelity MO algorithms: ParEGO (Knowles 2006),
PESMO (Hernández-Lobato et al. 2016), SMSego (Pon-
weiser et al. 2008), EHI (Emmerich and Klinkenberg 2008),
and SUR (Picheny 2015). We employ the code for these
methods from the BO library Spearmint1.
Statistical models. We use MF-GP models as described in
section 4.1. We employ squared exponential (SE) kernels
in all our experiments. The hyper-parameters are estimated
after every 5 function evaluations. We initialize the MF-GP
models for all functions by sampling initial points at random
from a Sobol grid. We Initialise each of the lower fidelities
with 5 points and the highest fidelity with only one point.
Synthetic benchmarks. We construct two synthetic bench-
mark problems using a combination of commonly employed
benchmark functions for multi-fidelity and single-objective
optimization 2, and two of the known general MO bench-
marks (Habib, Singh, and Ray 2019). Their complete details
are provided in Table 2.
Real-world benchmarks. We consider two challenging
problems that are described below.

1) Rocket launching simulation. We consider the simu-
lation study of a rocket (Hasbun 2012) being launched from
the Earth’s surface. Input variables for simulation are mass
of fuel, launch height, and launch angle. Output objectives
are the time taken to return to Earth’s surface, the angular
distance travelled with respect to the centre of the Earth, and
the absolute difference between the launch angle and the ra-
dius at the point of launch. However, these simulations are
computationally expensive and can take up to several hours.
The simulator has a tolerance parameter that can be adjusted
to perform multi-fidelity simulations: small tolerance means
accurate simulations, but long runtime. We employ two toler-
ance parameter values to create two fidelities for each objec-
tive: cost of two fidelities are 0.05 minutes and 30 minutes
respectively.

2) Network-on-chip (NOC) optimization. Designing
good communication infrastructure is important to improve
the quality of hardware designs. This is typically done using
cycle-accurate simulators that imitate the real hardware. We
consider a design space of NoC dataset consisting of 1024
implementation of a network-on-chip (Che et al. 2009). Each
configuration is defined by ten input variables (d=10). We
optimize two objectives: latency and energy. This benchmark
has two fidelities with costs 3 mins and 45 mins respectively.

1https://github.com/HIPS/Spearmint/tree/PESM
2https://www.sfu.ca/ ssurjano/optimization.html
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Algorithm 1 MF-OESMO Algorithm
Input: input space X; K blackbox objective functions where each function fj has multiple fidelities Mj(
{f (1)

1 (x), · · · , f (M1)
1 (x)}, · · · , {f (1)

K (x), · · · , f (MK)
K (x)}

)
; and total cost budget λTotal

1: Initialize multi-fidelity gaussian process surrogate models GP1, · · · ,GPK by evaluating at initial points D
2: While λt ≤ λtotal do
3: for each sample s ∈ 1, · · · , S:
4: Sample highest-fidelity functions f̃ (Mi)

i ∼ GPi, ∀i ∈ {1, · · · ,K}
5: Y∗

s ← Pareto front of cheap multi-objective optimization over (f̃ (M1)
1 , · · · , f̃ (MK)

K )
6: Find the next point to evaluate: select (xt,mt)← argmaxx∈X,m αt(x,m,Y∗)
7: Update the total cost consumed: λt ← λt + λ(mt)

8: Aggregate data: D ← D ∪ {(xt,y
m
t )}

9: Update models GP1, · · · ,GPK

10: t← t+ 1
11: end while
12: return Pareto front and Pareto set of f1(x), · · · , fK(x) based on D
13: end
14: Procedure αt(x,m,Y∗

s )
15: // Computes information gain (IG) about the posterior of true Pareto front (Y∗) posterior as a result of evaluating x

16: // IG = H1 - H2; where H1 = Entropy of y(m) conditioned on D and x

// and H2 = Expected entropy of y(m) conditioned on D, x and (Y∗)

17: Set H1 = H(y(m) | D,x) = K(1 + ln(2π))/2 +
∑K

j=1 ln(σ
(mj)

j (x)) (entropy of K-factorizable Gaussian)

18: To compute H2 	 1
S

∑S
s=1

∑K
j=1 H(y

(mj)

j |D,x, y∗
js), initialize H2 = 0

19: for each sample Y∗
s do

20: for j ∈ 1 · · ·K do
21: Set y∗

js = maximum of jth component of all vectors in Y∗
s

22: If mj = Mj // if evaluating jth function at highest fidelity
23: H2 += H(y

(Mj)

j |D,x, y
(Mj)

j ≤ y∗
js) (entropy of truncated Gaussian p(y

(Mj)

j |D,x, y
(Mj)

j ≤ y∗
js))

24: Else if mj 
= Mj // if evaluating jth function at lower fidelity
25: // two approximations are provided
26: If approximation = TG
27: H2 += H(y

(mj)

j |D,x, y
(mj)

j ≤ y∗
js) (entropy of truncated Gaussian p(y

(Mj)

j |D,x, y
(mj)

j ≤ y∗
js))

28: Else If approximation = NI
29: H2 += H(y

(mj)

j |D,x, y
(Mj)

j ≤ y∗
js) (entropy computed via numerical integration)

30: end for
31: end for
32: Divide by number of samples: H2 = H2/S
33: return H1 −H2

Name k d Benchmark functions p Costs

BC 2 2 Branin
Currin

2
2

[1, 10]
[1, 10]

SPP 3 4
Shekel
Park 1
Park 2

3
2
2

[0.1, 1, 10]
[1, 10]
[1, 10]

ZDT3 2 6 Zitzler,Deb,Thiele 22 [1, 10]2

DTLZ1 6 5 Deb,Thiele,Laumanns,Zitzler 36 [0.1, 1, 10]6

Table 2: Details of synthetic benchmarks: Name, benchmark
functions, no. of objectives k, input dimension d, number
fidelities p, and costs of different fidelities for each function.

5.2 Results and Discussion

To evaluate the performance of MF-OSEMO, we employ a
common multi-objective metric used in practice. The Pareto
hypervolume (PHV) metric measures the quality of a given
Pareto front (Zitzler 1999). PHV is defined as the volume be-
tween a reference point and the given Pareto front (set of non-

dominated points). As a function of the cost of evaluations,
we report the difference between the hypervolume of the ideal
Pareto front (Y∗) and hypervolume of the best reached Pareto
front estimated by optimizing the posterior mean of the mod-
els at the highest fidelities (Hernández-Lobato et al. 2016).
The posterior means are optimized over a randomly gener-
ated grid of 10,000 points. We also provide the cost reduction
factor, which is the ratio between the worst cost at which
MF-OSEMO converges (worst case for MF-OSEMO), and
the earliest cost for which any of the single-fidelity baselines
converge (best case for baseline) after running all algorithms
for very large costs. We run all experiments 10 times. The
mean and variance of the PHV metrics across different runs
are reported as a function of the total cost consumed. Since
in all our experiments, the costs of different functions are on
the same scale, we plot results against the sum of the costs.

MF-OSEMO vs. State-of-the-art. We compare the perfor-
mance of MF-OSEMO-TG and MF-OSEMO-NI with single-
fidelity MO methods. Figure 3 and Figure 4 show the results
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Figure 3: Results of MF-OSEMO and single-fidelity multi-
objective BO algorithms on synthetic benchmarks. The log
of the hypervolume difference is shown with varying cost.

of all multi-objective BO algorithms including MF-OSEMO
for synthetic and real-world benchmarks respectively. We
observe that: 1) MF-OSEMO consistently performs better
than all baselines. Both the variants of MF-OSEMO con-
verge at a much lower cost. 2) Rates of convergence of
MF-OSEMO-TG and MF-OSEMO-NI are slightly differ-
ent. However, in all cases, MF-OSEMO performs better than
baseline methods. We notice that in few cases (e.g., both
real-world benchmarks), MF-OSEMO-TG converges earlier
than MF-OSEMO-NI. This demonstrates that even with loose
approximation, using the MF-OSEMO-TG can provide con-
sistently competitive results using less computation time.
Cost reduction factor. Some of the baselines will eventually
converge if they are run for a much larger cost. In table 3, we
provide the cost reduction factor to show the percentage of
cost-gain achieved by using MF-OSEMO when compared to
single-fidelity baselines. Although the metric gives advantage
to baselines, the results in the table show a consistently high

Figure 4: Results of MF-OSEMO and single-fidelity multi-
objective BO algorithms on real-world problems. The log of
the hypervolume difference is shown with varying cost.

Name BC SPP ZDT3 DTLZ1 Rocket NOC

λ 4.2 190 380 100 250 1200

λB 2000 1950 2000 800 4000 10000

Λ 99.79% 90.25% 81% 87.5% 93.75% 88%

Table 3: Convergence costs for MF-OSEMO and baselines,
and cost reduction factor achieved by MF-OSEMO: worst
convergence cost for MF-OSEMO λ, best convergence cost
from all baselines methods λB , and cost reduction factor Λ.

gain ranging from 81% to 99.8%.
Robustness of MF-OSEMO. We evaluate the performance
of MF-OSEMO and PESMO with different number of Monte-
Carlo samples (MCS). We provide results for two synthetic
benchmarks BC and ZDT3 in figure 3 with 1, 10, and 100
MCS for PESMO, MF-OSEMO-TG, and MF-OSEMO-NI.
For clarity of figures, we provided those results in two diffrent
figures side by side. We notice that the convergence rate of
PESMO is dramatically affected by the number of Monte-
Carlo samples: 100 samples lead to better results than 10 and
1. However, MF-OSEMO-TG and MF-OSEMO-NI maintain
a better performance consistently even with a single sample.
These results strongly demonstrate that our proposed method
is much more robust to the number of MCS.

6 Summary and Future Work

We introduced a novel and principled approach referred as
MF-OESMO to solve multi-fidelity multi-objective Bayesian
optimization problems. The key idea is to employ an output
space entropy based acquisition function to efficiently select
inputs and fidelity vectors for evaluation. Our experimental
results on both synthetic and real-world benchmarks showed
that MF-OESMO yields consistently better results than state-
of-the-art single-fidelity methods. Immediate future work will
be to apply MF-OESMO to novel real-world applications.
Acknowledgements. This research is supported by National
Science Foundation grants IIS-1845922 and OAC-1910213.
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Póczos, B. 2016. Gaussian process bandit optimisation with multi-
fidelity evaluations. In Advances in Neural Information Processing
Systems, 992–1000.
Kandasamy, K.; Dasarathy, G.; Schneider, J.; and Poczos, B. 2017.
Multi-fidelity bayesian optimisation with continuous approxima-
tions. ICML.
Kennedy, M. C., and O’Hagan, A. 2000. Predicting the output from
a complex computer code when fast approximations are available.
Biometrika 87(1):1–13.

Klein, A.; Falkner, S.; Bartels, S.; Hennig, P.; and Hutter, F. 2017.
Fast bayesian optimization of machine learning hyperparameters on
large datasets. In Artificial Intelligence and Statistics, 528–536.
Knowles, J. 2006. Parego: a hybrid algorithm with on-line landscape
approximation for expensive multiobjective optimization problems.
IEEE Transactions on Evolutionary Computation 10(1):50–66.
Kontogiannis, S. G.; Demange, J.; Kipouros, T.; and Savill, A. M.
2018. A comparison study of two multifidelity methods for aero-
dynamic optimization. In Structures, Structural Dynamics, and
Materials Conference, 0415.
Lam, R.; Allaire, D. L.; and Willcox, K. E. 2015. Multifidelity opti-
mization using statistical surrogate modeling for non-hierarchical
information sources. In 56th AIAA/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, 0143.
McLeod, M.; Osborne, M. A.; and Roberts, S. J. 2017. Practical
bayesian optimization for variable cost objectives. arXiv preprint
arXiv:1703.04335.
Michalowicz, J. V.; Nichols, J. M.; and Bucholtz, F. 2013. Handbook
of differential entropy. Chapman and Hall/CRC.
Picheny, V.; Ginsbourger, D.; Richet, Y.; and Caplin, G. 2013.
Quantile-based optimization of noisy computer experiments with
tunable precision. Technometrics 55(1):2–13.
Picheny, V. 2015. Multi-objective optimization using gaussian
process emulators via stepwise uncertainty reduction. Statistics and
Computing 25(6):1265–1280.
Ponweiser, W.; Wagner, T.; Biermann, D.; and Vincze, M. 2008.
Multiobjective optimization on a limited budget of evaluations using
model-assisted s-metric selection. In International Conference on
Parallel Problem Solving from Nature, 784–794. Springer.
Rahimi, A., and Recht, B. 2008. Random features for large-scale
kernel machines. In Advances in Neural Information Processing
Systems, 1177–1184.
Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R. P.; and De Freitas,
N. 2016. Taking the human out of the loop: A review of bayesian
optimization. Proceedings of the IEEE 104(1):148–175.
Song, J.; Chen, Y.; and Yue, Y. 2019. A general framework for multi-
fidelity bayesian optimization with gaussian processes. AISTATS.
Srinivas, N.; Krause, A.; Kakade, S. M.; and Seeger, M. 2009.
Gaussian process optimization in the bandit setting: No regret and
experimental design. arXiv preprint arXiv:0912.3995.
Swersky, K.; Snoek, J.; and Adams, R. P. 2013. Multi-task bayesian
optimization. In Advances in neural information processing systems,
2004–2012.
Takeno, S.; Fukuoka, H.; Tsukada, Y.; Koyama, T.; Shiga, M.;
Takeuchi, I.; and Karasuyama, M. 2019. Multi-fidelity bayesian
optimization with max-value entropy search. arXiv preprint
arXiv:1901.08275.
Wang, Z., and Jegelka, S. 2017. Max-value entropy search for
efficient bayesian optimization. In Proceedings of International
Conference on Machine Learning (ICML).
Zhang, Y.; Hoang, T. N.; Low, B. K. H.; and Kankanhalli, M. 2017.
Information-based multi-fidelity bayesian optimization. In NIPS
Workshop on Bayesian Optimization.
Zitzler, E. 1999. Evolutionary algorithms for multiobjective opti-
mization: Methods and applications, volume 63. Citeseer.
Zuluaga, M.; Sergent, G.; Krause, A.; and Püschel, M. 2013. Ac-
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