
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Reinforcement Learning of
Risk-Constrained Policies in Markov Decision Processes

Tomáš Brázdil,1 Krishnendu Chatterjee,2 Petr Novotný,1 Jiřı́ Vahala1

1Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xbrazdil, petr.novotny, xvahala1}@fi.muni.cz

2Institute of Science and Technology Austria, Klosterneuburg, Austria
Krishnendu.Chatterjee@ist.ac.at

Abstract

Markov decision processes (MDPs) are the defacto frame-
work for sequential decision making in the presence of
stochastic uncertainty. A classical optimization criterion for
MDPs is to maximize the expected discounted-sum pay-
off, which ignores low probability catastrophic events with
highly negative impact on the system. On the other hand,
risk-averse policies require the probability of undesirable
events to be below a given threshold, but they do not account
for optimization of the expected payoff. We consider MDPs
with discounted-sum payoff with failure states which repre-
sent catastrophic outcomes. The objective of risk-constrained
planning is to maximize the expected discounted-sum payoff
among risk-averse policies that ensure the probability to en-
counter a failure state is below a desired threshold. Our main
contribution is an efficient risk-constrained planning algo-
rithm that combines UCT-like search with a predictor learned
through interaction with the MDP (in the style of AlphaZero)
and with a risk-constrained action selection via linear pro-
gramming. We demonstrate the effectiveness of our approach
with experiments on classical MDPs from the literature, in-
cluding benchmarks with an order of 106 states.

1 Introduction

MDPs with discounted-sum objectives. A classical prob-
lem in artificial intelligence is sequential decision mak-
ing under uncertainty. The standard model incorporating
both decision-making choices and stochastic uncertainty are
Markov decision processes (MDPs) (Howard 1960; Puter-
man 1994). MDPs have a wide range of applications, from
planning (Russell and Norvig 2010), to reinforcement learn-
ing (Kaelbling, Littman, and Moore 1996), robotics (Kress-
Gazit, Fainekos, and Pappas 2009), and verification of prob-
abilistic systems (Baier and Katoen 2008), to name a few.
The objective in decision making under uncertainty is to
optimize a payoff function. A fundamental payoff function
is the discounted-sum payoff, where every transition of the
MDP is assigned a reward, and for an infinite path (that con-
sists of an infinite sequence of transitions) the payoff is the
discounted-sum of the rewards of the transitions.
Expectation optimization and risk. In the classical studies of
MDPs with discounted-sum payoff the objective is to obtain

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

policies that maximize the expected payoff. However, this
ignores that low probability failure events can have highly
negative impact on the system. In particular, in safety critical
systems, or systems with high cost for failures, policies with
high expected reward can be associated with risky actions
with undesirable chances of failure.
CCMDPs and risk-reward tradeoff. Chance- (or risk-) con-
strained MDPs (CCMDPs) introduce chance constraint or
risk bound which provides a bound on the allowed probabil-
ity of failure of a policy (Rossman 1977; Santana, Thiébaux,
and Williams 2016; Ayton and Williams 2018). In particu-
lar, we consider MDPs equipped with a set of failure states
which represent catastrophic outcomes. The probability to
encounter any failure state represents the risk. Given a de-
sired probability threshold for the risk bound, a risk-averse
policy ensures that the probability of failure does not ex-
ceed the given bound. On one hand, policies with low-risk
may ensure little expected payoff; on the other hand, policies
with high expected payoff can be associated with high risk.
Thus the relevant question to study is the interplay or the
tradeoff of risk and expected payoff. In this work we study
the following risk-constrained planning problem: given a
risk bound, the objective is to maximize the expected payoff
among all risk-averse policies that ensure the failure proba-
bility is at most the risk bound.
Motivating scenarios. Risk-constrained planning is natural
in several scenarios. For example, in planning under uncer-
tainty (e.g., autonomous driving) certain events (e.g., the dis-
tance between two cars, or the distance between a car and an
obstacle, being less than a specified safe distance) must be
ensured with low probability. Similarly, in scenarios such as
a robot exploring an unknown environment for natural re-
sources a significant damage of the robot ends the mission,
and must be ensured with low probability. However, the goal
is to ensure effective exploration within the specified risk
bounds, which naturally gives rise to the risk-constrained
planning problem we consider.
Our contributions. The risk-constrained planning problem
(or CCMDPs) have been considered in previous works
such as (Santana, Thiébaux, and Williams 2016; Ayton and
Williams 2018). However these works consider only de-
terministic policies, and randomized (or mixed) policies
are strictly more powerful for the risk-constrained planning
problem (Altman 1999). A possible approach for the risk-

9794

constrained planning problem is via linear programming or
dynamic programming methods, however, they scale poorly
and are unsuitable for large state spaces (Ayton and Williams
2018). Our main contribution is an efficient risk-constrained
planning algorithm that combines UCT-like search with a
predictor learned through interaction with the MDP and with
a risk-constrained action selection via linear programming
over a small sampled tree-shaped MDP. Since the linear
programming is over a sampled sub-MDP, our algorithm is
scalable as compared to linear programming over the en-
tire MDP, while the use of predictor significantly enhances
the search. By using the predictor we lose formal guaran-
tees on the solution, but gain in performance. We also show
that despite the lack of guarantees, our method converges to
well-behaved policies in practice. We demonstrate this with
experiments on classical MDPs from the literature, includ-
ing benchmarks with an order of 106 states.

Related Work. Discounted-payoff MDPs are a well-
established model (Puterman 1994; Filar and Vrieze 1997).
The notion of ensuring risk constraints is also well-
studied (Rossman 1977; Hou, Yeoh, and Varakantham
2016). Moreover, CCMDPs can be considered as a spe-
cial case of constrained MDPs (CMDPs) (Altman 1999).
CMDPs are often solved using linear programming ap-
proaches which do not scale to large MDPs (Ayton and
Williams 2018). The works most closely related to the prob-
lem we consider are as follows: First, the risk-constrained
planning for partially-observable MDPs (POMDPs) with
deterministic policies has been considered in (Santana,
Thiébaux, and Williams 2016), and risk-constrained MDPs
with deterministic policies have been considered in (Ay-
ton and Williams 2018). In contrast, we consider random-
ized policies, which are more powerful for risk-constrained
planning. Another related approach for POMDPs are con-
strained POMDPs (Undurti and How 2010; Poupart et al.
2015), where the objective is to maximize the expected pay-
off ensuring that the expected payoff of another quantity
is bounded. Risk-constrained MDP optimization with ran-
domized policies was considered in (Teichteil-Königsbuch
2012). There they consider optimization under formally
guaranteed PCTL constraints via an iterative linear program-
ming (LP) over the whole state space. The largest bench-
mark reported in the referenced paper has 752 states, while
we report MDPs with up to ca. 6.5 · 106 states. Hence, the
method of (Teichteil-Königsbuch 2012) is preferable where
guarantees are a priority while RAlph is preferable where
scalability is a priority. The paper (Baumgartner, Thiébaux,
and Trevizan 2018) considers stochastic shortest path under
PLTL constraints, i.e. the rewards are positive costs and we
minimize the expected cost of reaching a target. In contrast,
we consider arbitrary rewards under safety constraints.

Several problems related to risk-constrained planning
with other objectives have been considered, such as: (a) risk
threshold 0 for long-run average and stochastic shortest path
problems MDPs (Bruyère et al. 2014; Randour, Raskin, and
Sankur 2015); (b) general risk threshold for long-run aver-
age payoff in MDPs (Chatterjee, Komárková, and Kretı́nský
2015). (c) risk bound 0 for discounted-sum POMDPs (Chat-

terjee et al. 2017); and (d) general risk bound for discounted-
sum POMDPs (Chatterjee et al. 2018). In all these works
the risk is formulated as risk of the payoff being below a
given value rather than of reaching failure states. Moreover,
these works (apart from d)) focus on dynamic programming
methods, rather than scalable algorithms for large MDPs.
Although d) also uses linear programming over a sampled
sub-MDP, it does not use predictors and its tree-search pro-
cedure is closer to the original UCT (Kocsis and Szepesvári
2006) than to its more sophisticated version used by Alp-
haZero (Silver et al. 2017; 2018). While the algorithm of
d) can be adapted to risk-constrained MDPs with reachabil-
ity risk, our experiments show that our new algorithm scales
much better.

2 Preliminaries

Definition 1 A Markov decision process (MDP) is a tuple
M = (S,A, δ, rew , s0, γ) where S is a set of states, A is a
set of actions, δ : S×A → D(S) is a probabilistic transition
function that given a state s ∈ S and an action a ∈ A
gives the probability distribution over the successor states,
rew : S × A → R is a reward function, s0 is the initial
state, and γ ∈ (0, 1] is the discount factor. We abbreviate
δ(s, a)(s′) by δ(s′|s, a).
Policies. The interaction with an MDP starts in the initial
state s0 and proceeds sequentially through a policy π, a com-
putable function which acts as a blueprint for selecting ac-
tions, producing longer and longer history of actions and ob-
servations. Formally, a history is an alternating sequence of
states and actions starting and ending with a state. The ini-
tial history is H0 = s0. In every time step i ∈ {0, 1, 2, . . .}
the interaction already produced some history Hi whose last
state last(Hi) is the current state Si of the system. In such a
situation, π selects an action Ai ∈ A to play in step i. The
choice may depend on the whole past history, and it might
also be randomized, i.e. Ai ∼ π(Hi). The agent then gets an
immediate reward Rew i = rew(Si, Ai) and proceeds to the
next state Si+1, which is sampled according to the transition
function, i.e. Si+1 ∼ δ(Si, Ai). Thus, the current history is
now Hi+1 = HiAiSi+1, obtained from the previous his-
tory by appending the last selected action and the resulting
state. Throughout the text we denote by Si, Ai, Hi the ran-
dom variables returning the state, action, and current history
in step i, while the notation s, a, h, etc. is reserved for con-
crete states/actions/histories (i.e. elements of the co-domains
of Si/Ai/Hi).

We denote by P
π(E) the probability of an event E un-

der policy π, and by E
π[X] the expected value of a random

variable X under π.
Payoffs. The expected payoff of a policy π from state s is
the value Payoff (π, s) = E

π
s [
∑∞

i=0 γ
i · Rew i].

Risk-Constrained Optimization. To encompass the no-
tion of an undesirable event, we equip each MDP M =
(S,A, δ, rew , s0, γ) with a set FM ⊆ S of failure states.
A risk of a policy π is then the probability that a failure state
is encountered: Risk(π) = P

π
s

(⋃∞
i=0{Si ∈ FM}

)
.We as-

sume that each s ∈ FM is a sink, i.e. δ(s|s, a) = 1 and

9795

rew(s, a) = 0 for all a ∈ A. Hence, FM models failures
after which the agent has to cease interacting with the envi-
ronment (e.g. due to being destroyed).

The risk-constrained planning problem is defined as fol-
lows: given an MDPM and a risk threshold Δ ∈ [0, 1], find
a policy π which maximizes Payoff (π) subject to the con-
straint that Risk(π) ≤ Δ. If there is no feasible policy, i.e. a
policy s.t. Risk(π) ≤ Δ, then we want to find a policy that
minimizes the risk and among all such policies optimizes the
expected payoff.

In this paper, we present RAlph (a portmanteau of “Risk”
and “Alpha”), an online algorithm for risk-constrained plan-
ning. Inspired by the successful approach of AlphaZero,
RAlph combines a UCT-like tree search with evaluation
of the leaf nodes via a suitable predictor learned through
a repeated interaction with the system. On top of this, we
augment the algorithm’s action-selection phase with a risk-
constrained mechanism based on evaluation of a linear pro-
gram over the constructed search tree.

3 The Algorithm

Predictor. First we formally define the notion of a predictor.
A predictor is a θ-parameterized function fθ : S → R ×
[0, 1] × [0, 1]|A| assigning to each state s the tuple fθ(s) =
(v, r,p) which predicts the parameters of some policy π: v is
the predicted expected payoff of π from s, r is the predicted
risk of π from s, and p is the vector of prior probabilities
over the set A in s. We defer the details of the predictor
implementation, its parameters, and the learning technique
used to update them, to Subsection 3.2.
RAlph: Overall Structure. The main training and evalua-
tion loops of RAlph are given in Algorithm 1. As in other
algorithms based on search through the search tree, termi-
nation is ensured by searching only up to a given finite
horizon H . In the training phase, RAlph repeatedly sam-
ples episodes of the agent-environment interaction, using the
RAlph-episode procedure described in Subsection 3.1.
After each batch of episodes is sampled, the gathered data
are used to retrain the predictor via the procedure Train,
described in Subsection 3.2. Once the training is finished,
we fix the predictor and continue to the evaluation phase.

3.1 Risk-Constrained Tree Search

In this subsection we describe the procedure
RAlph-episode (Algorithm 2). We first describe
the conceptual elements of the algorithm, then the data
structures it operates on, and finally the algorithm itself.
Overview. The algorithm interacts with the MDP for H
steps, each step i resulting in the (randomized) choice of
some action ai to be played. In every step, RAlph first ex-
pands the search tree T by iterating the usual 4-phase MCTS
simulations (node selection, tree expansion, leaf evaluation,
backpropagation, see procedure Simulate). We follow the
spirit of (Silver et al. 2018) and use the predictor fθ to eval-
uate the leaf nodes. Using the data stored within the tree, we
then compute the distribution from which ai is sampled.

To accommodate the risk, we extend the AlphaZero-like
MCTS with several conceptual changes, outlined below.

Algorithm 1: Training and evaluation of RAlph.
1 procedure RAlph-train

Input: MDPM (with a horizon H), risk bound Δ,
no. of training episodes m, batch size n

2 episodes ← 0; mod ← “train”; initialize fθ;
3 while episodes < m do
4 batch ← 0; Data ← ∅;
5 while batch < n do
6 E ← RAlph-episode (M,H ,fθ,Δ,mod);
7 batch ← batch + 1;
8 episodes ← episodes + 1;
9 Data ← Data ∪ {E};

10 θ ← Train (θ, Data)

11 procedure RAlph-evaluate
Input: MDPM (with a horizon H), risk bound Δ,

pre-trained predictor fθ
12 mod ← “eval”;
13 while true do RAlph-episode (M,H ,fθ,mod)

Risk-constrained sampling of ai. In the action selection
phase, we solve a linear program (LP) over T , which yields
a local policy that maximizes the estimated payoff while
keeping the estimated risk below the threshold Δ (line 9;
described below). The distribution ξi used by the local pol-
icy in the first step is then used to sample ai.

Risk-constrained exploration. Some variants of Alp-
haZero enable additional exploration by selecting each ac-
tion with a probability proportional to its exponentiated visit
count (Silver et al. 2017). Our algorithm use a technique
which perturbs the distribution computed by the LP while
keeping the risk estimate of the perturbed distribution below
the required threshold (line 11; described below).

Risk predictor. In our algorithm, the predictor is extended
with risk prediction.

Estimation of alternative risk. The risk threshold must be
updated after playing an action, see Example 2, since each
possible outcome of the action has a potential contribution
towards the global risk. We use linear programming and the
risk predictor to obtain an estimate of these contributions.
Data Structures. The search tree (Silver and Veness 2010),
denoted by T , is a dynamic tree-like data structure whose
nodes correspond to histories ofM. We name the nodes di-
rectly by the corresponding histories. Each child of a node
h is of the form hat, where a ∈ A and t ∈ S are s.t.
δ(t|last(h), a) > 0. Each node h has these attributes:
• h.N , the visit count of h;
• h.v and h.r; the last predictions of payoff and risk ob-

tained by fθ for last(h).
Moreover, for each action a ∈ A we have the attributes:
• h.Na, counting the number of uses of a during visits of h;
• h.Va, the average payoff accumulated by past simulations

after using a in h;
• h.pa, the last prediction of a prior probability of a ob-

tained by fθ in last(h).

9796

We also have the following derived attributes: h.Vmin =
mina∈A h.Va; and h.Vmax = maxa∈A h.Va. These are re-
computed to match the defining formulae whenever some
h.Va is changed. Every newly created node is initialized
with zero attributes.

We denote by root(T) the root of T and by leaf (T) the
set of leafs of T . Also, for a node h we denote by T (h) the
sub-tree rooted in h.
Episode Sampling: Overall Structure. In Algorithm 2, a
single search tree T is used as a global dynamic structure. In
this paragraph, we provide a high-level description; the fol-
lowing paragraphs contain details of individual components
of the algorithm. The main loop (lines 4–19) has a UCT-like
structure. In every decision step i, the tree is extended via
a sequence of simulations (described below); the number of
simulations being either fixed in advance or controlled by
setting a timeout. After that, we solve a linear program over
T defined below (line 9). This gives us a distribution ξi over
actions as well as a risk distribution τi over the child nodes
of the root node ν. Informally, τ(νbt) is the estimated future
risk of hitting a failure state after playing b and transition-
ing into t. After solving the program, we sample an action
ai to play and then the corresponding successor state si+1,
obtaining an immediate reward ρi. The risk threshold is then
updated to by the formula on lines 16–18, where altrisk is
the probability placed by the risk distribution on all the histo-
ries not consistent with the current history νaisi+1. Finally,
we prune away all parts of the tree not consistent with the
current history and continue into a next iteration.
Simulations & UCT Selection. Simulations also follows
the standard UCT scheme. In every simulation, we traverse
the tree from top to bottom by selecting, in every node h, an
action a = argmaxa∈A UCT(h, a), where

UCT(h, a) =
h.Va − h.Vmin

h.Vmax − h.Vmin
+ C · h.pa ·

√
ln(h.N)

h.Na + 1
.

Here C is a suitable exploration constant, a parameter fixed
in advance of the computation.

Upon reaching a leaf node h, we expand T by adding all
possible child nodes of h (lines 28–31). Finally, we perform
a bottom-up traversal from h to the root, updating the node
and action statistics with the data from the current simulation
(lines 35–40). Note that the payoff and risk from h (which
was not visited by a simulation before) is estimated via the
predictor, unless h corresponds either to being trapped in a
failure state (in which case its risk is clearly one and future
payoff 0) or to running out of the horizon without hitting
FM, in which case the risk and future payoff are both 0.
Linear Program. We first fix some notation. For a history
h = s0a0s1a1 . . . an−1sn we define its length len(h) to be n
and its payoff to bePayoff (h) =

∑len(h)−1
i=0 γi ·rew(si, ai).

The procedure Solve-LP(T ,Δ) constructs a linear pro-
gram L, which has variables xh, xh,a for every node h ∈ T
and every a ∈ A, and is pictured in Figure 1.

The LP L encodes a probabilistic flow induced by some
policy (constraints (1)–(4), which we together denote by
Flow(T)), xh being the probability that the policy pro-
duces a history h and xh,a the probability that h is pro-

max
∑

h∈leaf (T)

xh · (Payoff (h) + γlen(h) · h.v) subject to

xroot(T) = 1 (1)

xh =
∑
a∈A

xh,a for h ∈ T \ leaf (T) (2)

xhbt = xh,b · δ(t | last(h), b) for h, hbt ∈ T (3)

0 ≤ xh ≤ 1, 0 ≤ xh,a ≤ 1 for h ∈ T , a ∈ A (4)∑
h∈leaf (T)

xh · h.r ≤ Δ (5)

Figure 1: The Linear program L.

duced and afterwards a is selected. We aim to maximize
the expected payoff of such a policy (with payoffs outside
the tree estimated by predictions stored in h.v) while keep-
ing the (estimated) risk below Δ (constraint (5)). Hence, the
procedure Solve-LP returns an action distribution ξi s.t.
ξi(a) = xroot(T),a for each a ∈ A.

If Δ = 1, there is no need for constrained sampling.
Hence, in such a case we omit the LP step altogether and
make the selection based on the action visit count.

Example 1 Consider an MDPM = (S,A, δ, rew , s, γ)
with S = {s, t, u} and A = {a, b} s.t.

δ(s|s, a) = δ(t|s, a) = 1
2 , δ(u|s, b) = 1. The states t, u are

sinks, FM = {t}, and rew(s, a) = 1 (all other rewards are
0). We put γ = 0.95, and Δ = 0.6. Assume, for the sake of
simplicity, that we have just one simulation per step, which,

in the initial step, yields the following tree:
s

sas sat sbu Next, assume that the current predictor
predicts risk 0.4 for s, and 0.1 for u, while the predicted

payoffs are 0 for t, u and 1 for s. Then L asks to maximize
xsas · 1.95 + xsat under the following constraints: xs = 1,

xs = xs,a + xs,b, xsas = 0.5 · xs,a, xsat = 0.5 · xs,a,
xsbu = xs,b, 0.4 · xsas + xsat + 0.1 · xsbu ≤ 0.6 (and all

variables in [0, 1]).

Risk Distribution. The choice of actions according to ξi
is randomized, as is the subsequent sample of the succes-
sor state. Each outcome of these random choices contributes
some risk to the overall risk of our randomized policy.

Example 2 ConsiderM as in Example 1, with Δ = 0.6. If
the agent selects action a and the system transitions into the
non-failure state s, the agent made the risk in the root node
s equal to r0 = 1

2 · 1 + 1
2 · r1, where r1 is the probability

of hitting a failure state after continuing the play from s. To
ensure that r0 ≤ Δ, we must ensure r1 ≤ 0.2. Hence, in the
next step, Δ must be updated to 0.2.

Hence, when making a step, we need to compute a risk
distribution τi which assigns to each possible outcome (i.e.
each child of root(T)) an estimate of its risk contribution.

9797

Algorithm 2: The episode sampling of RAlph.
1 procedure RAlph-episode (M,H ,fθ,Δ,mod)
2 global T ;
3 initialize T to one node s0; E ← empty sequence;
4 for i← 0 to H − 1 do
5 ν ← root(T); si ← last(ν);
6 repeat
7 Simulate (M, H − i,T) ; // build T
8 until timeout;
9 ξi, τi ← Solve-LP(T ,Δ);

10 if mode = “train” then
11 ξi ← RiskAwareExplore(T , ξi)
12 ai ← sample from ξi;
13 ρi ← rew(si, ai);
14 si+1 ← sample from δ(si, ai);
15 append (si, ξi, ρi) to E;
16 alt ← {ν′ ∈ T |ν′ child of ν s.t. ν′
= νaisi+1};
17 altrisk ←

∑
ν′∈alt τi(ν

′);
18 Δ← (Δ− altrisk)/τi(νaisi+1) ;
19 T ← sub-tree of T rooted in νaisi+1

20 return E

21 procedure Simulate(M, steps, T)
22 h← root(T); depth ← 0;
23 while h is not a leaf of T do
24 a← argmaxa∈A UCT(h, a);
25 s← sample from δ(last(h), a);
26 h← has; depth ← depth + 1;
27 if last(h)
∈ FM ∧ depth < steps then
28 foreach b ∈ A do
29 foreach t ∈ S s.t. δ(t|last(h), b) > 0 do
30 initialize a new leaf hbt, add it to T as a

child of h ;
31 Predict (hbt)

32 else if last(h) ∈ FM then h.r ← 1;
33 else h.r ← 0;
34 val ← h.v; h.N ← h.N + 1;
35 while h
= root(T) do
36 let h = h′bt where b ∈ A, t ∈ S;
37 h′.N ← h′.N + 1; h′.Nb ← h′.Nb + 1;
38 val ← rew(last(h′), b) + γ · val ;
39 h′.Vb ← h′.Vb + (val − h′.Vb)/h

′.Nb;
40 h← h′

41 procedure Predict (h, fθ)
42 (h.v, h.r, (h.pa)a∈A)← fθ(last(h))

This distribution used to update the risk threshold Δ af-
ter a concrete outcome of the choices is observed (lines 16
– 18). In our experiments, we use the optimistic risk esti-
mate, which assigns to each child h of the root the mini-
mal risk achievable in the sub-tree rooted in h (the risk of
leafs being estimated by fθ). Formally, we set τi(h) to be
the optimal value of a linear program Lrisk (h) with con-
straints Flow(T (h)) and with the objective to minimize

∑
h′∈leaf (T (h)) xh′ · h′.r.

Infeasible LP. The linear program L might be infeasible,
either because there is no policy satisfying the risk thresh-
old or because the risk estimates are too imprecise (and pes-
simistic). In such a case, we relax the overall risk constraint
while trying to stay as risk-averse as possible. Formally, we
reset Δ to be the minimal risk achievable in the current tree,
i.e. the optimal value of Lrisk (root(T)). (Note that Lrisk (h)
is feasible for each node h.) We then again solve L, which is
guaranteed to be feasible under the new Δ.
Exploration. The exploration-enhancing procedure
RiskAwareExplore (line 11) uses a pre-set function
expl which, given an integer j, returns a value from [0, 1].
When called, the procedure performs a Bernoulli trial with
parameter expl(j), where j is the number of past calls of
the procedure. Depending on outcome, it either decides to
not explore (entailing no change of ξi); or to explore, in
which case we modify ξi in a way depending on whether
the computation of ξi required just one call of the linear
solver (i.e. if L was feasible without relaxing Δ) or not.

If L was feasible on the first try, we perturb ξi us-
ing the standard Boltzmann (softmax) formula (Kaelbling,
Littman, and Moore 1996), i.e. the perturbed probabilities
are proportional to an exponential function of the origi-
nal probabilities. The perturbed distribution ξ̃i might be too
risky, which is indicated by violating the risk constraint∑

b∈A,t∈S τi(root(T)bt) · ξ̃i(root(T)bt) ≤ Δ. If this is the
case, we find, using the method of Lagrange multipliers, a
distribution which satisfies the risk constraint and minimizes
the squared distance from ξ̃i; such a distribution is then out-
put by RiskAwareExplore.

If we needed to relax Δ to solve L, we assume the pre-
dictions to be too pessimistic and opt for a more radical
exploration. Hence, we ignore L altogether and instead se-
lect actions proportionally to their UCT values, i.e. we put
ξi(a) = UCT(root(T), a)/

∑
b∈A UCT(root(T), b).

3.2 Predictor & Training

In principle any predictor (e.g. a neural net) can be used with
RAlph. In this paper, as a proof of concept, we use a simple
table predictor, directly storing the estimates for each state
s (the parameter θ can then be identified with the table, i.e.
θ(s) = fθ(s)).

Each episode produces a data element η =
(s0, ξ0, ρ0) · · · (sH−1, ξH−1, ρH−1), where si, ξi, ρi
are the current state, the distribution on actions used, and
the reward obtained in step i, respectively. For every step
i of this episode we compute the discounted accumu-
lated payoff Gi

η =
∑H−1

j=i γi−j · ρj from that step on;
similarly, for risk we set Ri

η to 1 if some sj ∈ FM for
j ≥ i, and to 0 otherwise; for action probabilities we
denote P i

η = ξi. For each state s encountered on η we put
Iη(s) = {i | 0 ≤ i ≤ H − 1 ∧ si = s}.

The state statistics across all episodes in Data are gath-
ered in an every-visit fashion (Sutton and Barto 2018). I.e.,
we compute the quantities N(s) =

∑
η∈Data |Iη(s)| (the to-

tal visit count of s), G(s) =
∑

η∈Data,i∈Iη(s)
Gi

η , R(s) =

9798

1 1 1 1 1 1
1 A B x 1
1 D C E g 1
1 1 1 1 1 1

Figure 2: Example of a Hallway MDP. Symbols ’1’, ’x’, ’g’
represent wall/trap/gold cell respectively; the other symbols
are empty cells. The agent starts in B facing east.

∑
η∈Data,i∈Iη(s)

Ri
η , and P (s) =

∑
η∈Data,i∈Iη(s)

P i
η .

These are then averaged to G̃(s) = G(s)/N(s), R̃(s) =

R(s)/N(s), and P̃ (s) = P (s)/N(s) (operations on
probability distributions are componentwise). Together,
these averages form a target table θ̃ such that θ̃(s) =

(G̃(s), R̃(s), P̃ (s)). Finally, we perform the update θ ←
θ + α(θ̃ − θ), where α is a pre-set learning rate.

This scheme can be generalized to more sophisticated pre-
dictors, which only requires replacing the final update with a
gradient descent in the parameter space. The implementation
and evaluation of these predictors is left for future work.

4 Experiments

Benchmarks. We implemented RAlph and evaluated it on
two sets of benchmarks. The first one is a modified, per-
fectly observable version of Hallway (Pineau et al. 2003;
Smith and Simmons 2004) where we control a robot nav-
igating a grid maze using three possible moves: forward,
turn right, turn left. Depending on the instance, the forward
movement might be subject to random perturbations (the
robot shifted to the right or left of the target cell). For every
step the robot incurs a (fixed) negative penalty. Some cells
of the maze contain “gold,” collection of which yields a pos-
itive reward. Cells may also contain traps. Entering a trap
entails a small chance of destroying the robot (i.e. going to a
failure state). Each gold piece can be only collected once, so
each additional gold cell doubles the size of the state space.

As a second benchmark, we consider a controllable ran-
dom walk (RW). The state space here are integers in a fixed
0-containing interval, representing the agent’s wealth. At
each step, the agent can chose between two actions - safer
and riskier. Each action has a probabilistic outcome: either
the wealth is increased or lost. The riskier action has higher
expected wealth gain, but greater chance of loss. We start
with a small positive wealth, and the failure states are those
where the wealth is lost, i.e. non-positive numbers. In each
step, the agent receives a reward/penalty equal to wealth
gained/lost. The goal is to surpass a given wealth level L
as fast as possible: the agent incurs a small penalty for every
step up to the first step when she surpasses L.
Comparison. For comparison, we reimplemented the on-
line RAMCP algorithm from (Chatterjee et al. 2018) slightly
modified (per suggestion in the source paper) so as to al-
low for state-based risk. This should allow us to evaluate the
effect of RAlph’s crucial features (learning and prediction,
risk-averse exploration) on the performance. To get a fair
comparison, our implementation of RAMCP shares as much
common code with RAlph as possible. In particular, both al-

Figure 3: Action probabilities learned by RAlph for each
wealth level of the RW benchmark. Blue line with boxes -
safe action; red line with circles - unsafe action.

gorithms employ UCT-like simulations. We denote by sim
the number of these simulations invoked per decision.
Evaluation. We evaluate RAlph and RAMCP on four in-
stances of the Hallway (called Hallway 1, 2, 3, 4) of dimen-
sions 2x3, 3x5, 5x8, 5x5. The corresponding MDPs have
state-spaces of sizes |S| equal to 20, 44, 1136, 6553600, re-
spectively. For the random walk, we consider benchmarks
with 50 and 200 wealth levels (i.e. states).

The test configuration was: CPU: Intel Xeon E5-2620
v2@2.1GHz (24 cores); 8GB heap size; Debian 8. A training
phase of RAlph is executed on 23 parallel threads, evalua-
tion is single-threaded. Both algorithms were evaluated over
1000 episodes, with a timeout of 1 hour per evaluation. 1

Metrics. For both RAMCP and RAlph, we report the aver-
age payoff and risk. To account for bias caused by runs that
ended in failure, we also consider payoff averaged over runs
that avoided a failure state (“Succ avg payoff” in Table 1).
We also measured the training time of RAlph and, for both
algorithms, an average time per evaluation episode. We also
use the total node expansion metric, tracking the number of
search tree nodes created throughout the whole experiment
on a given benchmark. For RAlph, this includes both train-
ing and evaluation; hence it is a relevant indicator of how
much searching both methods require to produce the results.
Results. The results are summarized in Table 1. Even in
smaller benchmarks, RAlph is much faster and makes up
to two orders of magnitude less node expansions. This is
because RAMCP lacks the knowledge that RAlph acquires
during the training phase and thus RAMCP often keeps hit-
ting walls or blunder in circles. Also, RAlph’s risk-averse
exploration improves the chance of finding promising paths.
Although the learning is an advantage to RAlph, the total
number of node expansions (including the learning phase)
is much smaller than in RAMCP, which tends to construct
large search trees. In Hallway 3, the average payoff of so-
lutions found by RAMCP are inferior to those found by
RAlph in approximately half of the time; and while the

1Implementation can be found at https://github.com/snurkabill/
MasterThesis/releases/tag/AAAI release

9799

Algo Δ sim
Avg

payoff
Stdev
payoff Risk

Succ
avg

payoff

Succ
stdev
payoff

Training
time[s]

Time per
episode

(avg)[ms]

Total node
expansions

H 1 RAMCP 0 25 12.79 23.93 0.0 12.79 29.93 N/A 252.3 23,837,630
0.1 25 30.78 34.77 0.082 35.76 31.74 N/A 174.7 16,219,205

0.25 25 45.08 36.86 0.193 61.80 14.43 N/A 80.8 8,405,505

RAlph 0 25 40 0.0 0.0 40 0 1.8 7.8 120,830
0.1 25 46.78 25.80 0.094 53.70 14.95 1.2 5.9 96,748

0.25 25 52.36 35.74 0.196 70 0.0 1.6 3.3 27,054

H 2 RAMCP 0 50 N/A N/A N/A N/A N/A N/A Timeout N/A
0.1 50 N/A N/A N/A N/A N/A N/A Timeout N/A
1 50 60.15 39.27 0.15 73.57 24.44 N/A 134,534 123,943,098

RAlph 0 50 61.0 0 0.0 61.0 0.0 103 137 29,739,512
0.1 50 65.75 26.11 0.075 72.28 12.79 65 90 18,317,217
1 50 70.11 32.25 0.136 82.84 3.11 5 6 8,625,983

H 3 RAMCP 0 100 92.53 137.02 0.651 278.67 6.83 N/A 294 138,800,592
0.1 100 93.18 137.24 0.649 279.19 6.90 N/A 287 145,421,231
1 100 21.71 83.49 0.906 285.70 2.24 N/A 59 59,666,989

0.1 500 161.84 142.50 0.411 280.62 5.92 N/A 1,582 651,055,909

RAlph 0 100 281.169 5.02 0.0 281.169 5.02 16 108 8,069,542
0.1 100 281.723 9.51 0.001 281.169 5.02 73 154 45,766,309
1 100 280.00 20.80 0.005 281.46 2.72 16 26 42,912,980

0.1 50 279.32 29.14 0.01 282.24 2.41 8 63 3,733,503

H 4 RAlph 0 50 1270.0 0.0 0.0 1270.0 0.0 631 903 107,845,003
0.1 50 1311.11 149.57 0.062 1349.54 2.09 821 1,034 123,007,131
1 50 1276.45 130.61 0.110 1307.06 11.10 26 36 53,565,317

RW 1 RAMCP 0.05 50 17.78 19.38 0.234 27.03 10.75 N/A 548 77,713,072
RAlph 0.05 50 23.32 13.55 0.035 24.92 10.69 34 68 23,077,790

RW 2 RAMCP 0.05 50 N/A N/A N/A N/A N/A N/A Timeout N/A
RAlph 0.05 50 97.33 24.38 0.007 98.18 22.24 62 113 104,871,114

Table 1: Summary of the Hallway benchmark. Here H 1,...,4 correspond to Hallway 1,...,4, respectively. RW 1 is a random walk
with 50 states, RW 2 with 200 states. Parameter sim denotes the number of simulations per step.

failure-avoiding runs of RAMCP perform similarly to those
of RAlph, RAMCP is not able to consistently avoid failures
and its risk is well above Δ (the same holds for the RW
benchmark). The reason is that RAMCP is too slow to find
a competitive solution in the given time limit. Enlarging the
number of expanded nodes in every step (sim) of RAMCP
is not sufficient to beat RAlph. On the other hand, changing
sim from 100 to 50 in RAlph does not have a significant ef-
fect on solution quality. The results for Hallway 4 show that
RAlph scales well for larger state spaces. RAMCP is omitted
for Hallway 4, as each of its executions timed out.
Discussion. We observed an interesting connection between
RAlph and AlphaZero. The behavior of RAlph with Δ = 1
is close in nature to the behavior of AlphaZero. If RAlph
is invoked with Δ small or zero, it explores the state space
much faster (measured by node expansion count) than with
Δ = 1. The reason is that the risk-averse exploration of
RAlph typically visits much smaller part of the state-space.
Hence, in cases when risky paths are sub-optimal, RAlph
may find a solution faster than algorithms ignoring the risk.

RAlph also exhibited interesting behavior on the Hallway
instance shown in Figure 2. For Δ = 0, the only way to

reach the gold is by exploiting the move perturbations: since
the robot cannot to move east from C without risking a shift
to the trap, it must keep circling through A, B, C, D until it is
randomly shifted to E. RAlph is able, with some parameter
tuning, to find this policy.

In the random walk benchmark, RAlph finds a common-
sense solution of playing the safe action when the wealth
is low and the riskier one otherwise. Figure 3 depicts the
probabilities of choosing the respective actions at all wealth
levels (up to the level L = 200). The differences of the prob-
abilities for larger levels (≥ 50) are due to the step penalty
equal to −1. For a larger penalty, the difference would be
larger as the agent would be motivated to reach the top level
L faster. The wiggliness for wealths close to L is caused
by the specific structure of the optimal strategy. Indeed, for
some specific wealth values close to L it is beneficial to take
the safer action, and RAlph exploits this peculiarity.

5 Conclusions & Future Work

We introduced RAlph, an online algorithm for risk-
constrained MDPs. Our experiments show that even with a
simple predictor, RAlph performs and scales significantly

9800

better than a state-of-the-art algorithm. As an interesting fu-
ture work we see extension of the method to POMDPs and
incorporation of more sophisticated predictors.

Acknowledgements

Krishnendu Chatterjee is supported by the Austrian Science
Fund (FWF) NFN Grant No. S11407-N23 (RiSE/SHiNE),
and COST Action GAMENET. Tomáš Brázdil is supported
by the Grant Agency of Masaryk University grant no.
MUNI/G/0739/2017 and by the Czech Science Foundation
grant No. 18-11193S. Petr Novotný and Jiřı́ Vahala are sup-
ported by the Czech Science Foundation grant No. GJ19-
15134Y.

References

Altman, E. 1999. Constrained Markov decision processes,
volume 7. CRC Press.
Ayton, B. J., and Williams, B. C. 2018. Vulcan: A monte
carlo algorithm for large chance constrained mdps with risk
bounding functions. CoRR abs/1809.01220.
Baier, C., and Katoen, J.-P. 2008. Principles of Model
Checking. Cambridge, Massachusetts: The MIT Press.
Baumgartner, P.; Thiébaux, S.; and Trevizan, F. W. 2018.
Heuristic search planning with multi-objective probabilistic
LTL constraints. In KR 2018, 415–424. AAAI Press.
Bruyère, V.; Filiot, E.; Randour, M.; and Raskin, J.-F. 2014.
Meet Your Expectations With Guarantees: Beyond Worst-
Case Synthesis in Quantitative Games. In Mayr, E. W.,
and Portier, N., eds., STACS, volume 25 of LIPIcs, 199–213.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.
Chatterjee, K.; Novotný, P.; Pérez, G. A.; Raskin, J.; and
Zikelic, D. 2017. Optimizing expectation with guarantees
in POMDPs. In AAAI 2017, 3725–3732. AAAI Press.
Chatterjee, K.; Elgyütt, A.; Novotný, P.; and Rouillé, O.
2018. Expectation optimization with probabilistic guaran-
tees in pomdps with discounted-sum objectives. In IJCAI
2018, 4692–4699.
Chatterjee, K.; Komárková, Z.; and Kretı́nský, J. 2015. Uni-
fying Two Views on Multiple Mean-Payoff Objectives in
Markov Decision Processes. In LICS, 244–256. IEEE Com-
puter Society.
Filar, J., and Vrieze, K. 1997. Competitive Markov Decision
Processes. Springer-Verlag.
Hou, P.; Yeoh, W.; and Varakantham, P. 2016. Solving Risk-
Sensitive POMDPs With and Without Cost Observations. In
AAAI 2016, 3138–3144. AAAI Press.
Howard, H. 1960. Dynamic Programming and Markov Pro-
cesses. MIT Press.
Kaelbling, L. P.; Littman, M. L.; and Moore, A. W. 1996.
Reinforcement learning: A survey. Journal of Artificial In-
telligence Research 4:237–285.
Kocsis, L., and Szepesvári, C. 2006. Bandit Based
Monte-Carlo Planning. In Fürnkranz, J.; Scheffer, T.; and
Spiliopoulou, M., eds., ECML, volume 4212 of LNCS, 282–
293. Springer.

Kress-Gazit, H.; Fainekos, G. E.; and Pappas, G. J. 2009.
Temporal-Logic-Based Reactive Mission and Motion Plan-
ning. IEEE Transactions on Robotics 25(6):1370–1381.
Pineau, J.; Gordon, G.; Thrun, S.; et al. 2003. Point-based
value iteration: An anytime algorithm for POMDPs. In IJ-
CAI, volume 3, 1025–1032.
Poupart, P.; Malhotra, A.; Pei, P.; Kim, K.; Goh, B.; and
Bowling, M. 2015. Approximate Linear Programming
for Constrained Partially Observable Markov Decision Pro-
cesses. In AAAI 2015., 3342–3348. AAAI Press.
Puterman, M. 1994. Markov Decision Processes. Wiley.
Randour, M.; Raskin, J.-F.; and Sankur, O. 2015. Variations
on the Stochastic Shortest Path Problem. In VMCAI, volume
8931 of LNCS, 1–18. Springer.
Rossman, L. A. 1977. Reliability-constrained dynamic pro-
graming and randomized release rules in reservoir manage-
ment. Water Resources Research 13(2):247–255.
Russell, S. J., and Norvig, P. 2010. Artificial Intelligence -
A Modern Approach (3. internat. ed.). Pearson Education.
Santana, P.; Thiébaux, S.; and Williams, B. C. 2016. RAO*:
An Algorithm for Chance-Constrained POMDP’s. In AAAI
2016, 3308–3314. AAAI Press.
Silver, D., and Veness, J. 2010. Monte-Carlo planning in
large POMDPs. In NIPS 23. Curran Associates, Inc. 2164–
2172.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676):354.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; Lillicrap, T.; Simonyan, K.; and Hassabis, D. 2018. A
general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science 362(6419):1140–
1144.
Smith, T., and Simmons, R. 2004. Heuristic search value
iteration for POMDPs. In UAI, 520–527. AUAI Press.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. MIT press.
Teichteil-Königsbuch, F. 2012. Path-constrained markov
decision processes: bridging the gap between probabilistic
model-checking and decision-theoretic planning. In ECAI
2012, 744–749. IOS Press.
Undurti, A., and How, J. P. 2010. An online algorithm for
constrained POMDPs. In Robotics and Automation (ICRA),
2010 IEEE International Conference on, 3966–3973. IEEE.

9801

