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Abstract

Text simplification (TS) rephrases long sentences into sim-
plified variants while preserving inherent semantics. Tradi-
tional sequence-to-sequence models heavily rely on the quan-
tity and quality of parallel sentences, which limits their appli-
cability in different languages and domains. This work in-
vestigates how to leverage large amounts of unpaired cor-
pora in TS task. We adopt the back-translation architecture
in unsupervised machine translation (NMT), including de-
noising autoencoders for language modeling and automatic
generation of parallel data by iterative back-translation. How-
ever, it is non-trivial to generate appropriate complex-simple
pair if we directly treat the set of simple and complex cor-
pora as two different languages, since the two types of sen-
tences are quite similar and it is hard for the model to cap-
ture the characteristics in different types of sentences. To
tackle this problem, we propose asymmetric denoising meth-
ods for sentences with separate complexity. When modeling
simple and complex sentences with autoencoders, we intro-
duce different types of noise into the training process. Such
a method can significantly improve the simplification perfor-
mance. Our model can be trained in both unsupervised and
semi-supervised manner. Automatic and human evaluations
show that our unsupervised model outperforms the previous
systems, and with limited supervision, our model can per-
form competitively with multiple state-of-the-art simplifica-
tion systems.

Introduction

Text simplification reduces the complexity of a sentence in
both lexical and structural aspects in order to increase its
intelligibility. It brings benefits to individuals with low lan-
guage skills and has abundant usage scenarios in education
and journalism fields (De Belder and Moens 2010). Also, a
simplified version of a text is easier to process for down-
stream tasks, such as parsing (Chandrasekar, Doran, and
Srinivas 1996), semantic role labeling (Woodsend and La-
pata 2011), and information extraction (Jonnalagadda and
Gonzalez 2010).

∗Kai Yu is the corresponding author.
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Most of the prior works regard this task as a mono-
lingual machine translation problem and utilize sequence-
to-sequence architecture to model this process (Nisioi et
al. 2017; Zhang and Lapata 2017). These systems rely on
large corpus containing pairs of complex and simplified sen-
tences, which severely restrict their usage in different lan-
guages and the adaptation to downstream tasks in different
domains. So, it is essential to explore unsupervised or semi-
supervised learning paradigm which can effectively work
with unpaired data.

In this work, we adopt back-translation (Sennrich, Had-
dow, and Birch 2016a) framework to perform unsupervised
and semi-supervised text simplification. Back-translation
converts the unsupervised task into a supervised one by on-
the-fly sentence pair generation. It has been successfully
used in unsupervised neural machine translation (Artetxe et
al. 2018; Lample et al. 2018b), semantic parsing (Cao et
al. 2019) and natural language understanding (Zhao, Zhu,
and Yu 2019). Denoising autoencoder (DAE) (Vincent et
al. 2008) plays an essential part in back-translation model.
It performs language modeling and helps the system learn
useful structures and features from the monolingual data.
In NMT task, the translations between different languages
are equal, and the denoising autoencoders have a symmet-
ric structure, which means different languages use the same
types of noise (mainly word dropout and shuffle). However,
if we treat the set of simple and complex sentences as two
different languages, the translation processes are asymmet-
ric: Translation from simple to complex is an extension pro-
cess requires extra generations, while information distilla-
tion is needed during the inverse translation. Moreover, text
simplification is a monolingual translation task. The inputs
and outputs are quite similar, which makes it more difficult
to capture the different features in complex and simple sen-
tences. As a result, symmetric denoising autoencoders may
not very helpful in modeling sentences with diverse com-
plexity and make it non-trivial to generate appropriate par-
allel data.

To tackle this problem, we propose asymmetric denoising
autoencoders for sentences with different complexity. We
analyze the effects of denoising type on the simplification
performance and show that separate denoising methods is
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beneficial for decoders to generate suitable sentences with
different complexity. Besides, we set several criteria to eval-
uate the generated sentences and use policy gradient to op-
timize these metrics. We use this as an additional method
to improve the quality of the generated sentences. Our ap-
proach relies on two unpaired corpora – one is statistically
simpler than another. In summary, our contributions include:
• We adopt the back-translation framework to utilize large

amounts of unpaired sentences for text simplification.
• We propose asymmetric denoising autoencoders for sen-

tences with different complexity and analyze the corre-
sponding effects.

• We develop methods to evaluate both simple and com-
plex sentences derived from back-translation and use re-
inforcement learning algorithms to promote the quality of
the back-translated sentences.

Related Works

As a monolingual translation task, early text simplification
systems usually based on statistical machine translation such
as PBMT-R (Wubben, Van Den Bosch, and Krahmer 2012)
and Hybrid (Narayan and Gardent 2014). Xu et al. (2016)
achieved state-of-the-art performance by leveraging para-
phrases rules extracted from bilingual texts. Recently, neu-
ral network models have been widely used in simplification
systems. Nisioi et al. (2017) first applied Seq2Seq archi-
tecture to model text simplification. Several extensions are
also proposed for this architecture such as augmented mem-
ory (Vu et al. 2018) and multi-task learning (Guo, Pasunuru,
and Bansal 2018). Furthermore, Zhang and Lapata (2017)
proposed DRESS, a Seq2Seq model trained in a reinforce-
ment learning framework. Sentences with high fluency, sim-
plicity and adequacy are rewarded during the training pro-
cess. Zhao et al. (2018) utilized Transformer (Vaswani et
al. 2017) integrated with external knowledge and achieved
state-of-the-art performance in automatic evaluation. Kriz et
al. (2019) proposed complexity-weighted loss and a rerank-
ing system to improve the simplicity of the sentences. Sys-
tems all above require large amounts of paralleled data.

In terms of unsupervised simplification, several systems
only perform lexical simplification (Narayan and Gardent
2016; Paetzold and Specia 2016) by replacing compli-
cated words with their simpler synonyms, which ignored
other operations such as reordering and rephrasing. Surya et
al. (2018) proposed an unsupervised method for neural mod-
els. They utilized adversarial training to enforce a similar at-
tention distribution between complex and simple sentences.
They also tried back-translation with normal denoising tech-
niques but did not achieve preferable results. We think it is
inappropriate to apply back-translation framework mechan-
ically into simplification task. So in this work, we make sev-
eral improvements and achieve promising results.

Our Approach

Overview

The architecture of our simplification system is illustrated in
Figure 1. The system consists of a shared encoder E and a

pair of independent decoders: Ds for simple sentences and
Dc for complex sentences. Denote the corresponding sen-
tence spaces by S and C. The encoder and decoders are first
pre-trained as asymmetric denoising autoencoders (See be-
low) on separated data. Next, the model goes through an it-
erative process. At each iteration, simple sentence x ∈ S
is translated to a relatively complicated one Ĉ(x) via cur-
rent model E and Dc. Similarly, complex sentence y ∈ C
is translated to a relatively simple version Ŝ(y) via E and
Ds. The pairs (Ĉ(x), x) and (Ŝ(y), y) are automatically-
generated parallel sentences which can be used to train the
model in a supervised manner with cross entropy loss. Dur-
ing the supervised training, our current model can also be
regarded as translation policies. Let x̃, ỹ denote the simple
and complex sentences sampled from the current policies.
Corresponding rewards Rs and Rc is calculated according
to their quality. The model parameters are updated with both
cross entropy loss and policy gradient.

Back-Translation Framework

In the back-translation framework, the shared encoder aims
to represent both simple and complex sentences in a same
latent space, and the decoders need to decompose this rep-
resentation into sentences with corresponding types. We up-
date the model by minimizing the cross entropy loss:

Lce =Ex∼S
[
− logPc→s(x|Ĉ(x))

]
+

Ey∼C
[
− logPs→c(y|Ŝ(y))

] (1)

Where Pc→s and Ps→c represent the translation models
from complex to simple and vice versa. The updated model
tends to generate better synthetic sentence pairs for the next
training process. Through such iterations, the model and
back-translation process can promote mutually and finally
lead to a good performance.

Denoising

Lample et al. (2018a) showed that denoising strategies such
as word dropout and shuffle have a critical impact on un-
supervised NMT systems. We argue that these symmetric
noises in NMT may not be very effective in simplification
task. So in this section, we will describe our asymmetric
noises for simple and complex corpus.

Noise for Simple Sentences Sentence with low com-
plexity tends to have simple words and structures. We
introduce three types of noise to help the model capture
these characteristics.

Substitution: We replace the relatively simple words
into advanced expressions with the guidance of Simple
PPDB (Pavlick and Callison-Burch 2016). Simple PPDB is
a subset of the Paraphrase Database (PPDB) (Ganitkevitch,
Durme, and Callison-Burch 2013) adapted for the simpli-
fication task. It contains 4.5 million pairs of complex and
simplified phrase. Each pair constitutes a simplification rule
and has a score to indicate the confidence.
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Figure 1: Overview of the our proposed system. Back-translated sentences Ĉ(x), Ŝ(y) and their original inputs x, y form
sentences pairs. (Ĉ(x), x) is used to train complex-simple model, and (Ŝ(y), y) is used to train simple-complex model. The
model parameters are updated with both cross entropy loss and policy gradient.

Table 1 shows several examples, where advance expres-
sion such as “fatigued” and “wary” can be simplified to
“tired”. However, in this situation, we utilize these rules in
the reverse direction, meaning if “tired” appears in the sen-
tence, it can be replaced by one of the candidates above with
probability Prep. In our experiments, Prep is set to 0.9. Rules
with scores lower than 0.5 will be discarded, and we only
choose the top five phrases with the highest confidence score
as the candidates for each word. During the substitution pro-
cess, a substitute expression is randomly sampled from the
candidates and replace the original phrases.

Score Rules

0.95516 completely exhaust → tired
0.82977 fatigued → tired
0.79654 weary → tired
0.57126 tiring → tired

Table 1: Examples from the Simple PPDB

Substitution helps the model learn words distribution
from the simplified sentences. To some extent, it also
simulates the lexical simplification process, which can
encourage decoder Ds to generate simpler words from the
shared latent space.

Additive: Additive noise inserts additional words into
the input sentences. Fevry and Phang (2018) used autoen-
coder with additive noise to perform sentence compression,
and generate imperfect but valid sentence summaries.
Additive noise forces the model to subsample words from
the corrupt inputs and generate reasonable sentences. It can
help the model capture sentence trunk in simplification task.

For an original input, we randomly select another
sentence from the training set and sample a subsequence
without replacement. We then insert the subsequence to

the original input. Instead of sampling independent words,
we sample bigrams from the additional sentence. The
subsequence length depends on the length of the original
input. In our experiments, the sampled sequence serving as
noise accounts for 25%-35% of the whole noised sentence.

Shuffle: Word shuffling is a common noising method
in denoising autoencoders. It is proven to be helpful for
the model to learn useful structure in sentences (Lample et
al. 2018a). To make the additive words evenly distributed
in the noised simple sentence, we concatenate the original
sentence and the additive subsequence and complete shuffle
the bigrams, keeping all word pairs together.

An example noising process on simple sentence is illus-
trated in Table 2.

Original Their voices sound tired
+ substitution Their voices sound exhausted

+ additive & shuffle sound exhausted he knows
Their voices

Table 2: Example of the noising process on simple sen-
tences. The italic words is the additive noise sampled from
another sentence.

Noise for Complex Sentences Substitution is also per-
formed for complex sentences. Here, we use the rules in
Simple PPDB normally to rewrite the complicated words
into their simpler versions. Rest of the process is the same
as the substitution method for simple sentences. Apart from
this, we applied other two noising methods.

Drop: Word dropping discards several words from the
sentences. During the reconstruction, the decoder has to
recover the removed words through the context. Translation
from simple to complex usually include sentence expansion,
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which needs the decoder to generate extra words and
phrases. Word dropping can align autoencoding task closer
with sentence expansion and promote the quality of the
generated sentences.

Since words with lower frequency usually contain more
semantic information, we only delete the “frequent word”
with probability Pdel. We define “frequent word” as the
word with more than 100 occurrences in the entire corpus.
A similar approach has also been used in unsupervised
language generation (Freitag and Roy 2018). We set
Pdel = 0.6 in our experiments.

Shuffle: Different from the complete shuffle process
for simple sentences, we only slightly shuffle the complex
sentences. This is because complex sentences don’t have
additive noise, and when the sentences get longer and more
complex, it is hard for the decoder to reconstruct the sen-
tences with the complete shuffled inputs. Similar to Lample
et al.(2018a), the max distance k between shuffled word and
its original position is limited.

Figure 2: Training process of the asymmetric denoising au-
toencoders

We train the denoising autoencoders by minimizing the
loss function:

Lauto =Ex∼S [− logPs→s(x|Ns(x))] +

Ey∼C [− logPc→c(y|Nc(y))]
(2)

Where Ns and Nc is the noising function for simple and
complex sentences. Ps→s and Pc→c denote the correspond-
ing autoencoders. Figure 2 illustrated the training process.

Reward in Back-Translation

In order to further improve the training process and generate
more appropriate sentences for the following iterations, we
proposed three ranking metrics as the reward and directly
optimize these metrics through policy gradient:

Fluency: The fluency of a sentence is measured by
language models. We trained two LSTM language mod-
els (Mikolov et al. 2010) for both types of sentences with
the corresponding data. For sentence x, The fluency reward
rf is derived from its perplexity and scaled to [0 ∼ 1]:

rf (x) = exp

⎧⎨
⎩

1

|x|
|x|∑
i=1

logPLM (xi|x0:i−1)

⎫⎬
⎭

Relevance: Relevance score rs indicate how well the
meaning is preserved during the translation. For inputs and

sampled sentences, we generate sentence vectors by taking
a weighted average of word embeddings (Arora, Liang, and
Ma 2017) and calculate the cosine similarity.

Complexity: Complexity reward rc is derived from
Flesch–Kincaid Grade Level index (FKGL). FKGL (Kin-
caid et al. 1975) refers to the level that must be reached
to understand a specific text. Typically, FKGL score is
positively correlated to sentence complexity. We normalize
the score with the mean and variance calculated from the
training data. For complex sentences, rc is equal to the
normalized FKGL, while for simple sentences, rc = 1
− FKGL, because the model is encouraged to generate
sentences with low complexity.

Regard Ps→c and Pc→s as translation policies. Let x̃ and
ỹ denote the simple and complex sentences obtained by sam-
pling from the current policies. The total reward for sampled
sentences can be calculated as:

Rc(ỹ) = H
[
rf (ỹ), rs(Ŝ(y), ỹ), rc(ỹ)

]
(3)

Rs(x̃) = H
[
rf (x̃), rs(Ĉ(x), x̃), rc(x̃)

]
(4)

Where H(·) is the harmonic average functions. Comparing
with the arithmetic average, the harmonic average can opti-
mize these metrics more equitably. To reduce the variance,
sentences obtained by greedy decoding x̂ and ŷ are used as
baselines in the training process:

Rs = Rs(x̃)−Rs(x̂) (5)
Rc = Rc(ỹ)−Rc(ŷ) (6)

The loss function is the sum of the negative expected reward
for sampled sentence x̃ and ỹ:

Lpg = −Ex̃∼Pc→s(·|Ĉ(x)) [Rs]−
Eỹ∼Ps→c(·|Ŝ(y)) [Rc]

(7)

To optimize this objective function, we estimate the gradient
with REINFORCE (Williams 1992) algorithm:

∇ΘLpg ≈ −Rs

|x̃|∑
i=1

logPc→s(x̃i|x̃0:i−1, Ĉ(x))−

Rc

|ỹ|∑
i=1

logPs→c(ỹi|ỹ0:i−1, Ŝ(y))

(8)

The final loss is a weighted sum of the cross entropy loss
and the policy gradient loss:

Lf = (1− γ)Lce + γLpg (9)

Where γ is the parameter to balance the two loss. The com-
plete training process is described in Algorithm 1.

Experiments

Data

We use the UNTS dataset (Surya et al. 2018) to train our
unsupervised-model. The UNTS dataset is extracted from
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the English Wikipedia dump. It uses automatic metrics1 to
measure the text complexity and categorize the sentences
into complex and simple part. It contains 2M unparalleled
sentences.

Algorithm 1: Our Simplification System
Input: Unpaired dataset S , C, Iterations N, parallel data

D (optional).
Output: Simplification model Pc→s.

1 Train denoising autoencoders Ps→s and Pc→c with S
and C respectively;

2 Initialize the translation model P (0)
s→c and P

(0)
c→s;

3 for i=1 to N do
4 Training with parallel data D (optional);
5 Back-translation: Generate simple and complex

sentences with current model P (i−1)
c→s , P (i−1)

s→c ;
6 Use Generated sentences as training pairs, calculate

Lce;
7 Sample corresponding sentences with current

policy, calculate Lpg;
8 Update model with Lce and Lpg , get new model

P
(i)
c→s and P

(i)
s→c;

9 end

10 return P
(N)
c→s;

For semi-supervised training and evaluation, we also use
two parallel datasets: WikiLarge (Zhang and Lapata 2017)
and Newsela dataset (Xu, Callison-Burch, and Napoles
2015). WikiLarge comprise 359 test sentences, 2000 devel-
opment sentences and 300k training sentences. Each source
sentences in test set has 8 simplified references. Newsela is
a corpus extracted from news articles and simplified by pro-
fessional editors, which is considered to have higher qual-
ity and harder than Wiki-Large. Following the settings of
Zhang and Lapata (2017), we discarded the sentence pairs
with adjacent complexity. The first 1,070 articles are used
for training, next 30 articles for development and others for
testing.

Training Details

Our model is built upon Transformer (Vaswani et al. 2017).
Both encoder and decoders have 3 layers with 8 multi-
attention heads. To reduce the vocabulary size and restrict
the frequency of unknown words, we split the words into
sub-units with byte-pair encoding (BPE) (Sennrich, Had-
dow, and Birch 2016b). The sub-word embeddings are 512-
dimensional vectors pre-trained on the entire data with Fast-
Text (Bojanowski et al. 2017). In the training process, we use
Adam optimizer (Kingma and Ba 2015); the first momen-
tum was set to 0.5 and batch size to 16. For reinforcement
training, we dynamically adjust the balance parameter γ. At
the start of the training process, γ is set to zero, which can
help model converge rapidly and shrink the search space. As
training progresses, γ is gradually increased and finally con-

1Mainly by Flesch Readability Ease

verge to 0.9. We use the sigmoid function to perform this
process.

The system is trained in both unsupervised and semi-
supervised manner. We pre-train the asymmetric denoising
autoencoders for 200,000 steps with a learning rate of 1e-4,
After that, we add back-translation training with a learning
rate of 5e-5. As for semi-supervised training, we randomly
select 10% data from the corresponding parallel corpus and
the model is trained alternately between denoising autoen-
coders, back-translation, and parallel sentences.

Metrics and Model Selection

Following the previous studies, we use corpus level
SARI (Xu et al. 2016) as our major metrics. SARI measures
whether a system output can correctly keep, delete and add
from the complex sentence. It calculates the N-gram overlap
of these three aspects between system outputs and reference
sentences. SARI is the arithmetic mean of F1-scores of three
rewrite operations2. We also use BLEU score as an auxiliary
metric. Although BLEU is reported to have a negative corre-
lation with simplicity (Sulem, Abend, and Rappoport 2018),
it often positively correlates with grammaticality and ade-
quacy. This may help us give a comprehensive evaluation
for different systems.

For model selection, we mainly use SARI to tune our
model. However, SARI rewards deletion, which means large
differences may lead to good SARI even though the output
is ungrammatical or irrelevant. To tackle this problem, we
introduce BLEU score threshold similar to Vu et al. (2018).
epochs with BLEU score lower than threshold ξ will be ig-
nored. We set ξ to 20 on Newsela dataset and 70 on Wiki-
Large dataset.

Comparing Systems and Model Variants

We compare our system with several baselines. For unsu-
pervised model, we considered UNTS(Surya et al. 2018)
—- a neural encoder-decoder model based on adversar-
ial training; and a rule-based lexical simplification system
called LIGHT-LS (Glavaš and Štajner 2015). Multiple su-
pervised systems are also used as baselines, including Hy-
brid (Narayan and Gardent 2014), PBMT-R (Wubben, Van
Den Bosch, and Krahmer 2012) and DRESS3 (Zhang and
Lapata 2017). We also trained a Seq2Seq model based on
vanilla Transformer.

Using our approach, we also propose three different vari-
ants for experiments. (1) Basic Back-Translation based un-
supervised TS model (BTTS). (2) Model integrated with
reinforcement learning (BTTSRL). (3) Semi-Supervised
model with limited supervision using 10% labelled data

2For corpus level SARI, the original script provided by Xu et
al. (2016) is only for 8 references WikiLarge dataset. We confirmed
this fact with the author. So in our experiments, we use the orig-
inal script for WikiLarge corpus and our own script for 1 refer-
ence Newsela corpus. Several previous works misused the original
scripts on the 1 reference dataset which may lead to a very low
score.

3The system outputs of PBMT-R, Hybrid, and DRESS are pub-
licly available.
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(BTTS+10%) and with full supervision using all labelled
data (BTTS+full).

Results

In this section, we present the comparison results on both
standard automatic evaluation and human evaluation. We
also analyze the effects of different noising type in back-
translation with ablation study.

Newsela SARI Component of SARI BLEU
Fkeep Fdel Fadd

Supervised Model
PBMT-R 26.95 37.63 39.38 3.84 18.10
Hybrid 35.09 30.08 73.48 1.71 14.45
Seq2Seq(10%) 34.16 14.86 86.26 1.34 2.34
Seq2Seq(full) 39.18 34.26 80.76 2.52 12.50
DRESS 38.91 41.37 71.52 3.84 23.19
DRESS-LS 38.63 41.97 69.91 4.02 24.25

Unsupervised Model
LIGHT-LS 28.41 35.70 48.47 1.08 14.69
UNTS 34.01 39.98 60.15 1.90 19.26
BTTS 37.07 38.76 69.55 2.91 19.67
BTRLTS 37.69 37.15 73.22 2.71 19.55

Semi-supervised Model
BTTS(+10%) 38.69 40.88 71.13 4.07 20.89
BTRLTS(+10%) 38.62 40.34 71.81 3.72 21.48
BTTS(+full) 39.69 40.75 73.89 4.26 23.05

WikiLarge SARI Component of SARI BLEU
Fkeep Fdel Fadd

Supervised Model
PBMT-R 38.55 73.03 36.90 5.72 81.05
Hybrid 31.40 46.87 45.48 1.84 48.67
Seq2Seq(10%) 28.06 30.71 50.96 2.51 19.86
Seq2Seq(full) 36.53 74.48 32.35 2.79 87.75
DRESS 37.08 65.16 43.13 2.94 77.35
DRESS-LS 37.27 66.78 42.19 2.81 80.38

Unsupervised Model
LIGHT-LS 35.12 63.93 39.61 1.81 59.69
UNTS 37.04 65.21 44.33 1.60 74.54
BTTS 36.98 70.88 37.46 2.59 78.36
BTRLTS 37.06 70.44 37.96 2.78 77.37

Semi-supervised Model
BTTS(+10%) 37.25 68.82 40.06 2.87 80.06
BTRLTS(+10%) 37.00 71.41 36.62 2.97 83.39
BTTS(+full) 36.92 72.79 35.93 2.04 87.09

Table 3: Results on Newsela and Wiki-Large dataset

Automatic Evaluation

We report the results in Table 3. For unsupervised sys-
tems, our model outperforms previous unsupervised base-
lines on both datasets. Compared to LIGHT-LS and UNTS,
our model achieves a large improvement (+9.28, +3.68 on
SARI) on Newsela dataset. On Wiki-Large dataset, our
model still outperforms the LIGHT-LS and gets similar re-
sults with UNTS on SARI, but achieves higher BLEU score.

This means our model can generate more fluently and the
outputs are more relevant to the source sentences. Further-
more, our unsupervised models perform closely to the state-
of-the-art supervised systems. The results also show that re-
inforcement training is helpful to unsupervised systems. It
brings 0.62 SARI improvement on Newsela and 0.08 on
Wiki-Large corpus.

In addition, the results of the semi-supervised systems
show that our model can greatly benefit from small amounts
of parallel data. Model trained with 10% of the parallel sen-
tences can perform competitively with state-of-the-art super-
vised systems on both datasets. With the increase of parallel
data, all metrics can be further improved on Newsela corpus.
Semi-supervised model trained with full parallel sentences
significantly outperform the state-of-the-art TS models such
as DRESS-LS (+1.03 SARI). On Wiki-Large dataset, the
BLEU score has 3.7 point improvement with the full par-
allel sentences, but we cannot observe any improvements on
SARI metrics. This might because the simplified sentences
in Wiki-Large are often too closed to the source sentences
or even not simpler at all (Xu, Callison-Burch, and Napoles
2015). This defect may motivate the system to copy directly
from the source sentences, which cause a decline on SARI
score.

Both unsupervised and semi-supervised model achieve
better improvement on Newsela dataset, showing that by
leveraging large amount of unpaired data, our models can
learn simplification better on harder and smaller datasets.

Newsela Fluency Adequacy Simplicity Avg.

Hybrid 2.35** 2.37** 2.61 2.44*
Seq2Seq 2.26** 1.82** 2.34* 2.14**
DRESS 3.13 2.72 2.71 2.85
BTTS(+10%) 3.12 2.87 2.58 2.86
BTTS(+full) 3.08 2.59 2.85* 2.84

Reference 3.62** 2.85 3.17** 3.21*

WikiLarge Fluency Adequacy Simplicity Avg.

Hybrid 2.98* 2.68** 3.0* 2.89
Seq2Seq 3.13 3.24 2.75 3.04
DRESS 3.43 3.15 2.86 3.15
BTTS(+10%) 3.39 3.35 2.59 3.11
BTTS(+full) 3.42 3.36 2.61 3.13

Reference 3.42 3.34 3.02* 3.26

Table 4: Human evaluation on Newsela and Wiki-Large.
Ratings significantly different from our model are marked
with ∗ (p < 0.05) and ∗∗ (p < 0.01). We use student t-test
to perform significance tests

Human Evaluation

Due to the limitations in automatic metrics, we also conduct
human evaluation on two datasets. We randomly select 200
sentences generated by our systems and the baselines as test
samples. Similar to previous work (Zhang and Lapata 2017),
we ask native English speakers to evaluate the fluency, ad-
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Newsela WikiLarge

Noise Type SARI Fkeep Fdel Fadd SARI Fkeep Fdel Fadd

original(drop & shuffle) 33.63 38.60 59.28 3.01 35.91 70.74 34.97 2.03
+ additive 35.94 39.10 65.11 3.59 36.85 70.93 36.99 2.63

+ substitution 38.69 40.88 71.13 4.07 37.25 68.82 40.06 2.87

Table 5: SARI score of models with different noise. All models are trained in semi-supervised manner with 10% parallel corpus.

equacy, and simplicity of the test samples via Amazon Me-
chanical Turk. The three aspects are rated on a 5-point Likert
Scale. We use our semi-supervised model to perform human
evaluation. The results are illustrated in Table 4.

On Newsela dataset, our model gets comparable re-
sults with DRESS and substantially outperforms Hybrid
and fully supervised sequence-to-sequence model. Although
sequence-to-sequence model has obtained promising scores
on SARI (see in Tab 3), it performs the worst on adequacy
and rather poor on fluency. This also proved that SARI
only weakly correlates with judgments on fluency and ad-
equacy (Xu et al. 2016). We have similar results on Wiki-
Large dataset and our model achieves the highest score on
adequacy.

Ablation Study

We perform ablation study to analyze the effects of denois-
ing type on simplification performance. We test three types
of noise:

a. Original noise in machine translation including word
dropout and shuffling (denoted as original)

b. Original noise plus with additive noise on simple sen-
tences.

c. Substitution noise introduced on top of (b), which is our
proposed noise type above.

Note that denoising autoencoders with different noise
type may have varied convergence rate. To make a better
comparison, we pre-train these autoencoders with different
steps until they reach similar training loss. In our experi-
ment, we pre-train 20,000 steps for autoencoders with noise
type (a), 50,000 steps for noise type (b) and 200,000 steps
for noise type (c). Figure 3 shows the variation of SARI
on the development set with the change of back-translation
epoch in semi-supervised training. The model with only
word dropout and shuffle remains at low scores during the
training process, while our proposed model has made a sig-
nificant improvement.

Furthermore, we analyze the insights of SARI score in de-
tail. Table 5 illustrate SARI score and its components under
different types of noise. Additive noise in simple sentences
can significantly promote the delete and add operation. Sub-
stitution also has a similar effect and makes a further im-
provement. Model with original noise tend to copy directly
from the source sentence, resulting a relative higher F-score
in keep operation, but much lower scores on other aspects.

Figure 3: SARI variation in semi-supervised training process
under different types of noise.

Conclusions

In this paper, we adopt back-translation architecture to per-
form unsupervised and semi-supervised text simplification.
We propose a novel asymmetric denoising autoencoder to
model simple and complex corpus separately, which can
help the system learn structures and features from the sen-
tence with different complexity. Ablation study demon-
strates that our proposed noise type can significantly pro-
mote the system performance comparing with basic denois-
ing method. We also integrate reinforcement learning and
achieve better SARI score on unsupervised models. Auto-
matic evaluation and human judgment show that with lim-
ited supervision, our model can perform competitively with
multiple full supervised systems. We also find the automatic
metrics cannot correlate well with the human evaluation. We
plan to investigate a better method in future work.
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