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Abstract

Relation Extraction (RE) is one of the fundamental tasks in
Information Extraction. The goal of this task is to find the se-
mantic relations between entity mentions in text. It has been
shown in many previous work that the structure of the sen-
tences (i.e., dependency trees) can provide important infor-
mation/features for the RE models. However, the common
limitation of the previous work on RE is the reliance on some
external parsers to obtain the syntactic trees for the sentence
structures. On the one hand, it is not guaranteed that the inde-
pendent external parsers can offer the optimal sentence struc-
tures for RE and the customized structures for RE might help
to further improve the performance. On the other hand, the
quality of the external parsers might suffer when applied to
different domains, thus also affecting the performance of the
RE models on such domains. In order to overcome this issue,
we introduce a novel method for RE that simultaneously in-
duces the structures and predicts the relations for the input
sentences, thus avoiding the external parsers and potentially
leading to better sentence structures for RE. Our general strat-
egy to learn the RE-specific structures is to apply two differ-
ent methods to infer the structures for the input sentences (i.e.,
two views). We then introduce several mechanisms to encour-
age the structure and semantic consistencies between these
two views so the effective structure and semantic representa-
tions for RE can emerge. We perform extensive experiments
on the ACE 2005 and SemEval 2010 datasets to demonstrate
the advantages of the proposed method, leading to the state-
of-the-art performance on such datasets.

Introduction

Relation Extraction (RE) is an important task in Informa-
tion Extraction (IE) that aims to identify the semantic rela-
tions between entity mentions in text. Finding such seman-
tic relations could be beneficial for many downstream ap-
plications in Natural Language Processing, including Ques-
tion Answering and Knowledge Base Population. Due to its
importance, RE has gained much attention from the natural
language processing (NLP) community, demonstrated by a
sheer amount of research on RE in the last decades.

The early methods for RE have involved the feature-
based approach and the kernel-based approach (Zelenko,
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Aone, and Richardella 2003; Zhou et al. 2005) where ex-
tensive feature engineering is necessary to produce effec-
tive RE models. Recently, the research in RE has essentially
transformed from such feature engineering approaches to
the deep learning models that have helped to significantly
advance our performance on the RE benchmark datasets.
Among different techniques introduced by deep learning
for RE, the syntactic tress (i.e., dependency trees and con-
stituent trees) have been shown to be a useful resource to
impose the structures over the computational graphs of the
network architectures (Socher et al. 2012; Xu et al. 2015;
Zhang, Qi, and Manning 2018). The major benefits of such
syntactic structures involve the incorporation of the se-
mantic/syntactic hierarchies in the sentence representations
(Socher et al. 2012) and the capacity to directly capture the
important context words for RE (i.e., via the dependency
paths) (Zhang, Qi, and Manning 2018).

Despite such advantages of the syntactic structures for the
deep learning models for RE, a major limitation in this ap-
proach is the reliance on some high-quality external parsers
to produce the effective parse trees for the models. There
are at least three issues originated from this parser reliance.
First, the high-quality external parsers might only be avail-
able for some domains and languages, thus restricting the
application of the RE models to those specific scenarios in
practice. Second, as the external parsers are often trained
only for the parsing purposes, the tree structures provided
by these syntactic parsers might not be the optimal ones for
RE, calling for more customized or task-specific structures
for the RE problem. In fact, the syntactic trees generated
by the external parsers cannot be used directly by the re-
cent deep learning models for RE, necessitating some addi-
tional post-processing or controling mechanisms (i.e., prun-
ing and graph attention) (Zhang, Qi, and Manning 2018;
Guo, Zhang, and Lu 2019). Finally, the external parsers are
often trained for some general or specific domains for which
their performance might degrade if they are applied to new
domains (i.e., the domain shift problem) (Plank 2011). Such
performance loss of the parsers on the new domains might
eventually propagate to the RE models that critically de-
pends on the quality of the tree structures for the sentences
to perform well.



In order to overcome the reliance on the external parsers,
in this work, we propose to learn the implicit structures
for the input sentences along with the relationship predic-
tion for the entity metions for RE. This would help to avoid
the external parsers for RE, making it possible to apply the
RE models for different domains and languages, providing
the task-specific sentence structures for RE, and potentially
improving the RE performance on new domains. To this
goal, we propose to learn the sentence structures for RE
by applying two different methods to generate the depen-
dencies/hierarchies between the words in the sentences (i.e.,
the two views). We would then introduce the constraints be-
tween the structures and representations learned by these
two views to promote their consistencies. Our expectation
is that such consistency constraints, once enforced under the
relation prediction task in RE, can help to reveal the effective
task-specific structures and representations for RE, a prop-
erty that is impossible if the structures are pre-determined
with some external parsers.

In particular, the two views for inducing the structures
of the sentences involve Ordered Neurons Long-short Term
Memory (ON-LSTM) (Shen et al. 2019) and self-attention
(Vaswani et al. 2017) (i.e., Transformers). ON-LSTM is an
extended version of the popular Long-short Term Mem-
ory networks (LSTM) that, via its internal forget and in-
put mechanisms, can assign an importance score for each
word in the sentence. Such importance scores indicate how
close the words should be to the root of the tree structure
induced by On-LSTM for the input sentence (i.e., the root
would have highest importance score), thus implicitly form-
ing a tree structure for the sentence. In order to perform its
computation, ON-LSTM manipulates the life cycle of each
neurons so the high-ranking neurons would be maintained
for a larger number of steps (words) while the low-ranking
neurons would be discarded more rapidly. In contrast to the
word order schema for structure induction in ON-LSTM, the
seft-attention mechanism induces the structure for an input
sentence by estimating the connection scores between every
pair of words in the sentence (i.e., a fully connected graph
structure). The score for one pair of word reflects how influ-
ential one word is with respect to the semantic understanding
for the other word. Finally, in order to encourage the struc-
ture consistency between ON-LSTM and seft-attention, we
transforms the pairwise scores between the words in self-
attention into the importance scores for the words and pro-
mote the similarity between the two importance score se-
quences (i.e., from ON-LSTM and self-attention) using the
KL divergence in the loss function.

In the baseline version of the aforementioned similarity
promotion, we consider the importance scores of every word
in the input sentence for both ON-LSTM and self-attention.
However, for RE, it is possible that only a subset of the
words in the sentence are necessary to correctly recognize
the relationships for the entity mentions. It is thus desirable
to perform the similarity promotion only on the importance
scores of those relevant context words to avoid any poten-
tial noise. Consequently, in this work, we propose a filtering
technique that predicts which context words in the sentence
are relevant for the RE problem, and incorporates such in-
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formation into the similarity promotion process to further
improve the induced structures for RE.

A potential issue with the word representations induced
by ON-STM and self-attention is that such word representa-
tions are excessively constrained to achieve the importance
score similarity for the structure consistency, thereby loos-
ing the important semantic information for RE. In order to
alleviate this problem, in addition to the structure consis-
tency, we also introduce the constraints to preserve the im-
portant semantic information in the representation vectors
produced by ON-LSTM and self-attention. In particular, we
first use a bidirectional LSTM (BiLSTM) model to encode
the semantic representations of the words in the its hidden
vectors. We would then enrich the semantic content of the
hidden vectors from ON-LSTM and self-attention via the
semantic consistency between those vectors. In particular,
we consider two mechanisms to achieve such semantic con-
sistencies between the hidden/representation vectors in this
work. The first mechanism is inspired by the control mecha-
nism in (Veyseh, Nguyen, and Dou 2019) that retains the se-
mantic content in the representation vectors of self-attention
via the control vector computed from the BiLSTM vectors
of the two entity mentions. The second mechanism (newly
proposed in this work), on the other hand, exploits the mu-
tual information (MI) between the high dimension represen-
tation vectors from ON-LSTM and BiLSTM to enable their
semantic consistency.

We conduct extensive experiments on the ACE 2005 and
SemEval 2010 datasets that demonstrate the effectiveness of
the proposed model for RE. Our model significantly outper-
forms the competitive baselines and achieves the state-of-
the-art performance on the datasets.

Related Work

The early works have used the feature or kernel based ap-
proaches for RE (Zelenko, Aone, and Richardella 2003;
Zhou et al. 2005; Sun, Grishman, and Sekine 2011; Chan
and Roth 2010; Nguyen and Grishman 2014; Nguyen,
Plank, and Grishman 2015c). These approaches often per-
form extensive feature engineering and might not general-
ize well on challenging datasets. Recently, deep learning
models have been proposed to address such issues, lead-
ing to the state-of-the-art results for RE (Zeng et al. 2014;
Wang et al. 2016; Nguyen and Grishman 2016; Zhang et
al. 2017). These deep learning models can be further cate-
gorized into the sequence based or structure based models.
In the sequence based models, the sequential order of the
words are preserved in the processing flow of the models
(e.g., CNN (Nguyen and Grishman 2015a), RNN (Zhang
et al. 2017) or Transformer (Verga, Strubell, and McCal-
lum 2018)). In contrast, the structure-based models utilize
the syntactic trees of the input sentences to structure the
computational graphs of the deep learning models, thereby
being able to capture the longer-term dependencies for the
words. (Peng et al. 2017; Tai, Socher, and Manning 2015;
Song et al. 2018; Xu et al. 2015; Liu et al. 2015; Miwa
and Bansal 2016; Nguyen and Grishman 2018a; Zhang, Qi,
and Manning 2018). However, in practice, such syntactic
trees often require post-processing step (i.e., rule-based or



attention-based) to customize them for RE (Zhang, Qi, and
Manning 2018; Guo, Zhang, and Lu 2019). Our work differs
from these prior works as we introduce a new mechanism to
automatically induce the structures for RE from the context.
The learned structures are customized for RE and do not re-
quire post-processing steps.

Method
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Figure 1: Model overview. The green vectors represent input
word representations while the circles indicate the element-
wise product.

The RE task can be seen as a multi-class classification
problem. Given a sentence W = wy, ws, ..., wn (N is the
number of words/tokens in 1) and two entity mentions of
interest located at tokens wy and w, (1 < s < 0 < N), we
need to predict the semantic relationship between the two
entity mentions in this case.

Motivated by the prior word on RE (Shi et al. 2018;
Veyseh, Nguyen, and Dou 2019), we represent each word
w; in the sentence using the concatenation vector e; of its
pre-trained word embeddings, position embeddings (to in-
dicate the positions of the two entity mentions), and entity
type embeddings (to capture the entity mentions in the sen-
tence)'. After this word-to-vector transformation, the input
sentence W is converted into a sequence of word represen-
tation vectors ¥ = eq, e, ..., e that would be used as the
inputs for the next neural computations.

In order to avoid the external parsers, we propose to in-
duce the task-specific structures during the relation predic-
tion process for RE. Given the input sentence for RE, we
employ two different network architectures to obtain the im-
plicit structure and semantic representations for the words
in the sentence. Several constraints are then introduced to
ensure the consistencies between the structures and seman-
tic representations learned by the two views. As mentioned

"Note that different from (Veyseh, Nguyen, and Dou 2019), we
do not include the binary feature vectors for w; obtained from the
dependency trees (i.e., from the dependency relations and paths) as
we would like to avoid the parse trees in this work.
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in the introduction, the ON-LSTM and self-attention net-
works are used for the two views (called as the word-order
view and the graph-based view respectively). Figure 1 shows
the overall architecture of the proposed model. The details
about the network architectures and consistency constraints
are presented below.

The word-order structure view The strategy to induce a
structure in the word-order view with ON-LSTM is to assign
an importance score w?™'*!™ for every word w; in the input
sentence to implicitly form a binary tree structure for W.
The words with higher importance scores would be closer to
the root of the tree, reflecting the levels of the words in the
tree. Consequently, the word w;, with the highest score w;,
would be considered as the tree root, from which two sub-
trees are recursively constructed based on the words before
w;, for the left child and the words after w;, for the right
child.

ON-LSTM computes the importance scores for the words
by introducing two additional master gates (i.e., forget and
input) into the original computation of LSTM (Shen et al.
2019) (i.e., ON-LSTM is thus similar to LSTM in that both
consume a sequence of vectors to produce a new sequence of
hidden vectors). Basically, the hidden vectors for the input
and forget gates (called the gate vectors) in both LSTM and
ON-LSTM are computed for each word/step in the sentence
and determine how much information of the context should
be updated or forgotten respectively in the current step.
However, the forget and input gate vectors in ON-LSTM dif-
fer from those in LSTM because the gates in LSTM treat
every neurons/dimensions in their hidden vectors indepen-
dently, imposing no hierarchy over such neurons and as-
suming the activity of each neuron for every word in the
sentence/sequence. This is in contrast to the forget and in-
put gates in ON-LSTM that enforce a hierarchy for the neu-
rons/dimensions in their hidden vectors and only allow each
neuron to be activated for a portion of words in the sentence.
The rationale is that higher-ranking neurons would have
a longer life time (i.e., being activated for more words in
the sentence) to encode long-term information while lower-
ranking neurons would be canceled more rapidly to focus on
the short-term information (i.e., the structural bias).

In order to achieve such ranking mechanisms for the
neurons in the master gates, ON-LSTM employs the cum-
max activation function in the computation for the hid-
den vectors of the forget and input gates: cumaz(x) =
cumsum(softmaz(z))?. cummax essentially aggregates
the softmax output of some input vector x along the dimen-
sions that can be seen as the expectation of some binary vec-
tor of the form (0,...,0,1,...,1) (i.e., divided into two
consecutive segments: the 0-segment and the 1-segment).
Similar to the forget and input gates in LSTM, the input
for the cummax activation function to compute the gate vec-
tors for ON-LSTM at the current step/word also involves
the hidden vector from the previous step and the input vec-
tor for the current step. At one word/step, the 1-segments
of the hidden vectors of the master gates cover the neurons

Zeumsum(ur, uz, . .., un) = (ul,ub, ..., ul) where u

Zj:lhi uj-



that are activated for the gates at that step. Consequently, in
ON-LSTM, the lengths of the 1-segments, or more precisely
the sums of the weights of the neurons in the 1-segments
of the gate vectors for a word are used to determine the
importance of that word in the sentence. Following (Shen
et al. 2019), we use the hidden vectors of the master for-
get gate in ON-LSTM to obtain the importance scores the
words. In particular, let f; = fi1, fi2, ..., fip be the hidden
vector for the master forget gate at the ¢-th word w; € W
from ON-LSTM (D is the dimension of the hidden vec-

tor), the importance score w¢™**™ for w; is computed by:
wonletm

gttt =D — Zj:l..D fij-

In this work, we feed the input vector sequence £ =
ey, €es,...,en into two layers of ON-LSTM. We use the
master forget gates of the second layer to generate the im-
portance sores w?™!5!™ for the words in W, serving as the
encoding of the tree structure induced by ON-LSTM in this
work. For convenience, we denote the output hidden vectors
produced by the second layer of ON-LSTM for the words in
the input sentence as H' = h), hl, ..., hy.

1>

The graph-based structure view Different from the word
importance scores via the number of active neurons in
ON-LSTM, the graph-based structure view represents the
structure for the input sentence via a fully connected
graph between the words. The weight a;; for the edge
between w; and w; would indicate the level of connec-
tions/dependencies of these two words, thus implicitly defin-
ing a hierarchy among the words.

As presented previously, we obtain the graph-based struc-
ture for the input sentence in this work via the self-attention
mechanisms in Transformers (Vaswani et al. 2017). In par-
ticular, starting from the input representation vectors for the
words E = e, eq,...,en, we first feed them into a bidirec-
tional LSTM layer (BiLSTM) that produces a sequence of
hidden vectors H = hq, hs,...,hy as the output. These
representation vectors are expected to capture the seman-
tic information for the whole input sentence. Afterward, the
BiLSTM would be consumed by the self-attention layer to
generate the connection scores for the pairs of words in the
sentence. Specifically, for each BiLSTM vector h;, we com-
pute its corresponding key vector k;, query vector ¢;, and
value vector v; via: k; = Urhy, ¢; = Ughy, and v; = Uyh;
where Uy, U, and U, are the weight matrices, and biases are
omitted for brevity in this work. The connection scores a;;
between the words w; and w; would then be obtained by the
dot product between k; and g;:

ai; =exp(ki-q;)/ > exp(ki-q)
t=1..N

ey

We omit the normalization factor in this formula in
(Vaswani et al. 2017) for brevity. The connection scores a;;
of the graph structure induced by self-attention for the in-
put sentence can be exploited for two purposes. First, they
can be used to compute more abstract representation vec-
tors H' = hY, kY, ... hY; for the words in the sentence
via: B =Y j=1..n @ijVj. Such vectors are expected to en-
code richer context information for the input sentence with
a greater focus on the induced graph structure information.
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Second, the connection scores a;; can also be utilized to
transform the induced graph structure into a tree structure
by computing an importance score for every word in the sen-
tence and following the same strategy to generate the binary
tree as we do for the ON-LSTM model. In order to obtain
the importance scores for the words with a;;, we assume
that a word would be more important if it has stronger con-
nections with the other words. In particular, we compute the
importance score w;*'* for the word w; by:

satt EN ' ai; /N (2)

w;
where the weights a; ; are set to be zero. We consider the
scores wi®t wsH w3 as the encoding for the tree

structure learned by seft-attention in this work.

Structure consistency between views As we do not have
any supervision about the structure of the input sentence
in this work, we seek to induce such structure automat-
ically by promoting the similarity between the structures
learned by the word-order and graph-based views. Intu-
itively, the word-order and graph-based structures should
be similar/related as they are computed for the same in-
put sentence W. We expect that such structure similar-
ity enforcement would help to reveal the effective struc-
tures for RE. In order to achieve such structure sim-
ilarity, we first transform the structure-encoding scores
wimlstm wgnlstm, . w?\/'fllstm and wsatt wgatt wf\;ztt
from ON-LSTM and self-attention into the probabll-
ity distributions TW°™st™ and Ws** (respectively) via:

Wonlstm — SOfthLI’([wimlStm7 wgnlstm, . w?\/plstm])
and W = softmaz([wi*, ws, ... 7w“‘“]) We

would then incorporate the KL divergence between

Wentstm and Wsett jnto the overall loss function to min-

imize the distance between the two distribution:

Wonlstm
Wsatt (3)

One potential issue with Equation 3 is that it enforces
the structure similarity based on the importance scores for
the words in the sentence equally (i.e., imposing the same
weight for the word-specific term in the KL divergence).
This implicitly assumes the equal contribution of the words
for the structure of the sentence for RE. However, in RE,
there might be only a subset of words in the sentence that
are actually relevant or necessary for the semantic predic-
tion (e.g., the words along the dependency path between the
two entity mentions). This suggests a mechanism where the
words are weighted differently in the KL divergence for the
structure consistency based on their potential contribution
for the relationship prediction of the two entity mentions.
Consequently, we seek to estimate a contribution score s; for
each word w; in the KL divergence based on the BILSTM
vectors h;, hg and h, of w; and the two entity mentions of
interest:

KL(WonlsthWsatt) Z Wonlatm log

S = O'(WlO'(WQ[hi,hs,ho])) (4)

where W7 and W5 are the weight matrices. Finally, we use

such contribution scores to weight the word-specific terms in
the KL divergence in Equation 3 in the overall loss:

onlstm

E g Wonlstmlog Wsatt

(&)

Lstructure =



Semantic consistency between views Given the
representation  vectors  learned  ON-LSTM  (i.e,
H’ = Lohh, ... hly) and  self-attention  (i.e.,
H" = ni,ny,. %), the natural approach to per-

form RE is to aggregate such representation vectors to
create an overall feature vector for classification. However,
the structure consistency constraint in Equation 5 might
have filtered the information content in H' and H” exces-
sively to encode mostly the structure information, erasing
the important semantic information for RE. In order to en-
rich the representation vectors H' and H" with the semantic
information, we propose to distill the semantic information
from the BiLSTM vectors (i.e., H = hq,hs, ..., hy) and
directly incorporate it into H' and H” for RE. As the rep-
resentation vectors in H are less involved with the structure
constraint, we expect that they can still preserve important
semantic information for RE in this case. In particular,
we seek to employ mechanisms to promote the semantic
consistencies between the BiLSTM representation vectors
H and those from ON-LSTM and self-attention (i.e., H’
and H"). We expect that such semantic consistencies can
help to enrich the semantic information in the representation
vectors H' and H".

First, for the semantic consistency between H and H’,
we propose to maximize the mutual information (MI) be-
tween their aggregated representations in the loss function.
In information theory, MI evaluates how much information
we know about one random variable if the value of another
variable is revealed. Two random variables would be more
dependent if they have larger mutual information. Conse-
quently, if the semantic representations from H and H' are
encouraged to have large mutual information, we expect
them to share more semantic information. As H already en-
codes the important semantic information for RE, this would
help to enrich the semantic content in H' as a by-product.
In order to introduce this mutual information constraint, we
first aggregate the representation vectors in H and H' into
the overall representation vectors i and A’ via the max-
pooling function: h = Max_Pooling(hi, ha, ..., hy) and
R = Max_Pooling(h}, hl, ..., k). The mutual informa-
tion would be computed between h and A’ and introduced
directly into the loss function for optimization.

One issue with this approach is that the computation of
the MI for such high dimensional continuous vectors as h
and }/ is prohibitively expensive. In this work, we propose to
address this issue by employing the mutual information neu-
ral estimation (MINE) in (Belghazi et al. 2018) that seeks
to estimate the lower bound of the mutual information be-
tween the high dimensional vectors via adversarial training.
To this goal, MINE attempts to compute the lower bound
of the KL divergence between the joint and marginal dis-
tributions of the given high dimensional vectors/variables.
Recently, in (Hjelm et al. 2019), the authors show that the
Jensen-Shannon divergence can also used for this purpose,
offering simpler methods to compute the lower bound for the
MI. Consequently, following such methods, we apply the ad-
versarial approach to obtain the MI lower bound via the bi-
nary cross entropy of a variable discriminator. This discrim-
inator differentiates the vectors that are sampled from the
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joint distribution from those that are sampled from the prod-
uct of the marginal distribution of the variables. In our case,
the two variables are the semantic representations h and h’.
In order to sample from their joint distribution, we simply
concatenate h and b/ (i.e., the positive example). To sample
from the product of the marginal distribution, we concate-

nate the representation i, with ' where I/ is the aggregated
vector (with max-pooling) of the ON-LSTM representation
vectors from another sentence in the same batch with the
current sentence of interest W (i.e., the negative example).
These samples are fed into a 2-layer feed forward neural net-
work D (i.e., the discriminator) to perform a binary classifi-
cation (i.e., coming from the joint distribution or the product
of the marginal distributions). Finally, we use the following
binary cross entropy loss to estimate the mutual information
between h and A’ to add into the overall loss function:

Laise = —(log(D[h, 1)) + log(1 — D([h, 1))~ (6)

Second, regarding H and H"”, we apply the control mech-
anism proposed in (Veyseh, Nguyen, and Dou 2019) to en-
force the semantic consistency for these representation vec-
tors. This control mechanism first obtains a control vector
c from the representation vectors in [, emphasizing on the
representation vectors of the two entity mentions h, and h,,.
This control vector is then applied directly to the representa-
tion vectors in H", obtaining a new vector /.’ for each vector
R e H":h! =coh.

For convenience, we use h” to denote the max-pooling
aggregation vector for the representation vectors h//: h” =
Maz_Pooling(hy,hY, ... k). Due to the direct incorpo-
ration, we expect that the semantic information in H” would
be consistent with those in /1, thereby enriching the seman-
tic content in H”. The control mechanism has been shown to
work well for RE in (Veyseh, Nguyen, and Dou 2019). In the
experiments, we will evaluate whether we can use the con-
trol mechanism and the new MI constraint interchangeably
for the semantic consistency between H, H' and H".

Training Finally, in order to predict the relationships be-
tween the two entity mentions w, and w,, we combine the
representation vectors produced by BiLSTM, ON-LSTM,
and self-attention to obtain an overall representation vector
R for the input sentence. This representation vector involves
the max-pooling aggregation vectors from these three com-
ponents (i.e., h, h’, and h'") as well as their specific elements
for the two entity mentions (i.e., hs, ho, b}, h,, hY and h!)):
R = [h,h 0" hs,ho, B, hL, B RY]. Due to the structure
and semantic consistencies introduced in this work, we ex-
pect R would contain effective information for the RE prob-
lem. In the final step, R would be fed into a 2 layer feed-
forward neural network followed by a softmax layer to com-
pute the probability distribution P(.|W, s, 0) over the possi-
ble relations for RE. We use the negative log-likelihood as
the training loss in this work: L,,.q = —P(y|W, s, 0) where
y is the true relation label for the input sentence.

Opverall, the loss function to train the model is:
L= Lpred + aLdisc + ﬁLstructure (7)

where « and /3 are the trade-off parameters.



System be cts wl Avg.
FCM (2015) 61.90 | 52.93 | 50.36 | 55.06
Hybrid FCM (2015) 63.48 | 56.12 | 55.17 | 58.25
LRFCM (2015) 59.40 - - -

Log-linear (2016) 57.83 | 53.14 | 53.06 | 54.67
CNN (2016) 63.26 | 55.63 | 53.91 | 57.60
Bi-GRU (2016) 63.07 | 56.47 | 53.65 | 57.73
Forward GRU (2016) 61.44 | 5493 | 55.10 | 57.15
Backward GRU (2016) | 60.82 | 56.03 | 51.78 | 56.21
CNN+DANN (2017) 65.16 - - -

GSN (2018) 66.38 | 57.92 | 56.84 | 60.38
AGGCN (2019) 63.47 | 59.70 | 56.50 | 59.89
SACNN (2019) 65.06 | 61.71 | 59.82 | 62.20
DRPC (2019) 67.30 | 64.28 | 60.19 | 63.92
MVC (ours) 70.32 | 66.43 | 64.61 | 67.12

Table 1: F1 scores of the models on the ACE 2005 dataset
over different target domains bc, cts, and wl.

Experiments

Datasets and Hyper-Parameters We employ two widely
used datasets (i.e., ACE 2005 and SemEval 2010) to evalu-
ate the model in this work. For the ACE 2005 dataset, sim-
ilar to the previous work (Fu et al. 2017; Shi et al. 2018;
Veyseh, Nguyen, and Dou 2019), we use the dataset pre-
processed and provided by (Yu, Gormley, and Dredze 2015)
for compatible comparison. There are 6 different domains
in this dataset, i.e., (bc, bn, cts, nw, un, and wl), cover-
ing text from news, conversations and web blogs. Follow-
ing the the prior work, the union of the domains bn and nw
(called news) is used as the training data (called the source
domain); a half of the documents in bc is reserved for the
development data, and the remainder (ct s, w1l and the other
half of bc) serve as the test data (called the target domains).
This data separation helps to evaluate the cross-domain gen-
eralization of the models due to the domain difference of the
training data and test data. For the SemEval 2010 dataset
(Hendrickx et al. 2010), there are 18 semantic relations that
along with an Other class, leading to a 19-class classifica-
tion problem. As validation data is not provided in SemEval
2018, we use the same model parameters as those used for
the ACE 2005 dataset for consistency.

Based on the fine-tuning process on the validation data of
the ACE 2005 dataset, we find the following values for the
hyper-parameters for the proposed model: 50 dimensions for
the position embeddings and entity type embeddings, 100
hidden units for the BiLSTM and ON-LSTM models, 200
dimensions for all the other hidden vectors in the model (i.e.,
the hidden vectors in self-attention and the layers of the feed-
forward neural networks), 0.1 for the loss trade-off param-
eters o and 3, and 0.3 for the learning rate with the Adam
optimizer. Finally, we use the pre-trained word embedding
word2vec with 300 dimension to represent the words.

Comparison to the state of the art We compare the per-
formance of the proposed model (called MVC for multi-
view consistency) with the following baselines:

e Feature based models: These models use linguistic fea-
tures for RE, i.e., FCM, Hybrid FCM, LRFCM, and SVM
(Yu, Gormley, and Dredze 2015; Hendrickx et al. 2010).
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e Deep sequential models: These models employ deep
learning architectures based on the sequential order of the
sentence for RE, i.e., log-linear, CNN, Bi-GRU, Forward
GRU, Backward GRU (Nguyen and Grishman 2016), and
CNN+DANN (Fu et al. 2017).

e Adversarial learning model: This model, called GSN, is
trained to learn the genre agnostic features for cross-domain
RE. (Shi et al. 2018)

e Deep structure-based models: These models employ de-
pendency trees either as the input features or graphs to form
the computation flow for deep learning models. The state-of-
the-art models of this type include: AGGCN (Guo, Zhang,
and Lu 2019), SACNN (Tran et al. 2019) and DRPC (Vey-
seh, Nguyen, and Dou 2019). DRPC has the best reported
performance on ACE 2005. Note that we obtain the perfor-
mance of these models on the considered datasets using the
actual implementation released by the original papers.

We report the F1 scores on all the ACE 2005 test sets
in Table 1. From the table, we see that the deep structure-
based models (i.e., AGGCN, SACNN and DRPC) are in
general better than the deep sequential models, thus suggest-
ing the benefits of the sentence structures (i.e., the depen-
dency trees from the external parsers) for deep learning for
RE. More importantly, the proposed model MVC is shown
to significantly outperforms the baseline models on all the
test sets with p < 0.01. The performance gap is substantial
and clearly demonstrates the effectiveness of the proposed
MVC in this work. In particular, MVC improves the aver-
age F1 score of the deep sequential models by almost 10%
while this performance improvement for the structure-based
model is at least 3%. We attribute the better performance
of MVC over the structure-based models to the fact that the
task-specific and context-dependent structures from MVC is
better suited for RE than the pre-defined structures from the
external parsers. Finally, due to the cross-domain nature of
the evaluation on the ACE 2005 dataset, we can also con-
clude that the task-specific structures learned by MVC can
be more robust against the domain shifts for RE.

We also compare the performance of MVC (i.e., using the
macro F1 score) with the state-of-the-art structured-based
RE models (i.e., using dependency trees) on the SemEval
2010 test set in Table 2. These models are also selected for
comparison in (Veyseh, Nguyen, and Dou 2019). As we can
see from the table, MVC can achieve significantly better
or comparable performance with the other structure-based
methods, further testifying to the advantages of the task-
specific structure induction for RE proposed in this work.

Ablation study on components In this section, we report
the performance of the proposed model on the ACE 2005
development set when the major components of the model
is excluded. In particular, we seek to evaluate the contribu-
tion of four main components in this work, including the
BiLSTM module, the ON-LSTM module, the self-attention
module, and the contribution scores s; for the KL divergence
constraint in Equation 4. The results are shown in Table 3.
As we can see from the table, all the components are neces-
sary for MVC as removing any of them would hurt the per-
formance significantly. The largest performance loss comes



System F1

SVM (2010) 82.2
SDP-LSTM (2015) | 83.7
SPTree (2016) 84.4
PA-Tree (2017) 82.7
C-GCN (2018) 84.8
LISA (2018) 83.9
DRPC (2019) 85.2
AGGCN (2019) 85.7
SACNN (2019) 85.8
MVC (ours) 86.1

Table 2: Performance on the SemEval 2010 dataset.

System P R F1

MVC 77.8 | 65.1 | 70.1
MVC - LSTM 75.7 1 62.9 | 68.0
MVC - ON-LSTM 72.1 | 634 | 67.5
MVC - SA 80.1 | 61.2 | 68.4
MVC - Contribution Scores in (4) | 73.2 | 66.5 | 69.2

Table 3: Ablation study on the ACE 2005 dev set.

from excluding ON-LSTM that highlights the importance of
ON-LSTM on inducing effective structure and semantic in-
formation for RE. Importantly, the performance loss due to
the elimination of the contribution scores s; in Equation 4
suggests that in RE, learning the structure throughout the
entire sentences would not be as helpful as restricting the
structure induction to the relevant parts of the sentences.

Semantic consistency There are two mechanisms for se-
mantic consistency in this work, i.e., the MI constraint and
the control mechanism (Veyseh, Nguyen, and Dou 2019). In
the model, the MI constraint is used to promote the semantic
consistency between the representation vectors from Bil-
STM and ON-LSTM (i.e., BILSTM <> ON-LSTM) while
the control mechanism is applied for the vectors from BiL-
STM and self-attention (i.e., BILSTM <> self-attention). The
natural question is whether the MI and control mechanisms
can be used interchangeably to achieve the semantic con-
sistencies for the representation vectors for the two pairs
BiLSTM < ON-LSTM and BiLSTM < self-attention. Ta-
ble 4 shows the performance of the 4 possible combina-
tions of the MI and control mechanisms for the two semantic
consistency pairs BILSTM <> ON-LSTM and BiLSTM <+
self-attention. This table shows that when we use only one
type of the semantic consistency mechanisms, i.e. both MI
or both control, the performance drops more than the cases
with two types of mechanisms. This demonstrates the com-
plementary effects between the MI and control constraints
for semantic consistency for RE. The best performance is
achieved when the MI mechanism is used for BILSTM <
ON-LSTM and the control mechanism is reserved for BilL-
STM < self-attention, testifying to our design of the pro-
posed model in this work.

Ablation study on consistency This section investigates
whether the consistency constraints (i.e., structure and se-
mantics) are necessary. Table 5 presents the performance of
MVC when different combinations of the consistency con-

9112

Mechanisms P R F1

MI, Control (proposed) | 77.8 | 65.1 | 70.1
MI, MI 84.5 | 59.6 | 67.3
Control, MI 772 | 645 | 69.2
Control, Control 742 | 63.2 | 68.9

Table 4: Performance on the ACE 2005 dev set when the
MI and control mechanisms are used interchangeably. The
first and second mechanisms in each row corresponds to the
constraints for BILSTM <+ ON-LSTM and BiLSTM <« self-
attention respectively.

Model P R F1

MVC 77.8 | 65.1 | 70.1
MVC - KL 723 | 65.8 | 68.1
MVC - MI 74.0 | 674 | 69.5
MVC - Control 78.4 | 61.9 | 68.5
MVC - KL - MI 71.2 | 66.1 | 68.0
MVC - MI - Control 70.1 | 65.6 | 67.9
MVC - KL - Control 70.5 | 66.4 | 68.2
MVC - KL - MI - Control | 72.1 | 63.2 | 67.1

Table 5: Performance on the ACE 2005 dev set when the
consistency constraints are removed from the model.

straints are removed from the model. As we can see from
the table, the model’s performance would be reduced signifi-
cantly if any of the constraints is excluded, among which the
KL divergence constraint for the structure consistency be-
tween ON-LSTM and self-attention would lead to the most
significant performance loss. Importantly, when all the three
constraints are excluded from MVC (thus making it an en-
semble model between ON-LSTM and self-attention), the
performance would become the worst (i.e., 3% loss in the F1
score). These results clearly demonstrate the effectiveness
of the proposed MVC in this work, highlighting the con-
sistency constraints as the important mechanisms to achieve
good performance for RE.

Conclusion

We propose a novel method for RE that seeks to automat-
ically induce the task-specific structures for the input sen-
tences, avoiding the external parsers. The experiments show
that the induced structures are more effective for RE than
the pre-defined structures from the external parsers. The key
innovation of the proposed method is to use two views (i.e.,
ON-LSTM and self-attention) to learn the structures and se-
mantic representations for the input sentences. We introduce
several constraints to enforce the structure and semantic con-
sistencies between the two views based on KL differences
and mutual information. We achieve the state-of-the-art per-
formance for RE on both the cross-domain and general set-
tings, thereby demonstrating the effectiveness and the ro-
bustness of the proposed model.
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