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Abstract

Large-scale knowledge graphs (KGs) are shown to become
more important in current information systems. To expand the
coverage of KGs, previous studies on knowledge graph com-
pletion need to collect adequate training instances for newly-
added relations. In this paper, we consider a novel formu-
lation, zero-shot learning, to free this cumbersome curation.
For newly-added relations, we attempt to learn their semantic
features from their text descriptions and hence recognize the
facts of unseen relations with no examples being seen. For
this purpose, we leverage Generative Adversarial Networks
(GANS) to establish the connection between text and knowl-
edge graph domain: The generator learns to generate the rea-
sonable relation embeddings merely with noisy text descrip-
tions. Under this setting, zero-shot learning is naturally con-
verted to a traditional supervised classification task. Empir-
ically, our method is model-agnostic that could be poten-
tially applied to any version of KG embeddings, and consis-
tently yields performance improvements on NELL and Wiki
dataset.

Introduction

Large-scale knowledge graphs collect an increasing amount
of structured data, where nodes correspond to entities and
edges reflect the relationships between head and tail en-
tities. This graph-structured knowledge base has become
a resource of enormous value, with potential applications
such as search engine, recommendation systems and ques-
tion answering systems. However, it is still incomplete and
cannot cater to the increasing need of intelligent systems.
To solve this problem, many studies (Bordes et al. 2013;
Trouillon et al. 2016) achieve notable performance on au-
tomatically finding and filling the missing facts of exist-
ing relations. But for newly-added relations, there is still
a non-negligible limitation, and obtaining adequate training
instances for every new relation is an increasingly impracti-
cal solution. Therefore, people prefer an automatic comple-
tion solution, or even a more radical method that recognizes
unseen classes without seeing any training instances.
Zero-shot learning aims to recognize objects or facts of
new classes (unseen classes) with no examples being seen
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Figure 1: Overview of our proposed approach. Through the
adversarial training between generator (G) and discrimina-
tor (D), we leverage G to generate reasonable embeddings
for unseen relations and predict new relation facts in a su-
pervised way.

during the training stage. Correspondingly, an appealing
characteristic of human learning is that, with a certain ac-
cumulation of knowledge, people are able to recognize new
categories merely from their text descriptions. Therefore, in-
stead of learning from instances, the semantic features of
new classes can be reflected by their textual descriptions.
Moreover, textual descriptions contain rich and unambigu-
ous information and can be easily accessed from dictionar-
ies, encyclopedia articles or various online resources, which
is critical for large-scale recognition tasks.

In this paper, we propose a zero-shot relational learning
method for knowledge graph. As shown in Figure 1, we
convert zero-shot learning into a knowledge transfer prob-
lem. We focus on how to generate reasonable relation em-
beddings for unseen relations merely from their text descrip-
tions. Once trained, this system is capable of generating rela-
tion embeddings for arbitrary relations without fine-tuning.
With these relation embeddings, the facts of unseen relations
can be recognized simply by cosine similarity. To meet these
requirements, the first challenge is how to establish an ef-
fective knowledge transfer process from text semantic space
to knowledge graph semantic space. We leverage the condi-



tional GANSs to generate the plausible relation embeddings
from text descriptions and provide the inter-class diversity
for unseen relations. The second challenge is the noise sup-
pression of text descriptions. Human language expression al-
ways includes irrelevant words (such as function words) for
identifying target relations. As in Figure 1, the bold words
are more critical for the meaning of relation League_players;
Therefore, the indiscriminate weights for words will lead to
inferior performance. For this problem, We adopt the simple
bag-of-words model based on word embeddings; Simultane-
ously, we calculate the TF-IDF features to down-weight the
importance of the less relevant words for zero-shot learning.
Our main contributions are three-fold:

e We are the first to consider zero-shot learning for knowl-
edge graph completion, and propose a generative adver-
sarial framework to generate reasonable relation embed-
dings for unseen relations merely from text descriptions;

e Our method is model-agnostic and can be potentially ap-
plied to any version of KG embeddings;

e We present two newly constructed datasets for zero-shot
knowledge graph completion and show that our method
achieves better performance than various embedding-
based methods.

Related Work

Currently, representation learning (Nickel, Tresp, and
Kriegel 2011) has been the widely-used way to model
knowledge graph information. TransE (Bordes et al. 2013)
projects relations and entities from symbolic space to vec-
tor space, and the missing links of the existing relations
can be inferred via simple vector operations. Subsequently,
many notable embedding-based studies (Yang et al. 2014;
Trouillon et al. 2016) are proposed for knowledge graph
completion. However, these methods are incapable of any
action when dealing with newly-add relations. Unlike that,
the proposed method still has good recognition ability for
the relation facts of unseen relations. Xiong et al. (2018)
proposes a few-shot learning method that learns a matching
network and predicts the unseen relation facts by calculating
their matching score with a few labeled instances. In con-
trast, our method follows the zero-shot setting and do not
need any training instances for unseen relations. KBGAN
(Cai and Wang 2018) adopts adversarial training to learn a
better discriminator via selecting high-quality negative sam-
ples, but it still focuses on the link prediction of existing
relations.

The core of zero-shot learning (ZSL) is realizing knowl-
edge sharing and inductive transfer between the seen and
the unseen classes, and the common solution is to find an in-
termediate semantic representation. For this purpose, Akata
et al. (2013) propose an attribute-based model that learns
a transformation matrix to build the correlations between
attributes and instances. However, attribute-based methods
still depend on lots of human labor to create attributes, and
are sensitive to the quality of attributes. Text-based meth-
ods (Qiao et al. 2016) are to create the intermediate seman-
tic representation directly from the available online unstruc-
tured text information. To suppress the noise in raw text,
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Wang et al. (2019) leverage TF-IDF features to down-weight
the irrelevant words. As for model selection, the ZSL frame-
work of Zhu et al. (2018) greatly inspires us, which lever-
ages a conditional GANs model to realize zero-shot learning
on image classification task. Currently, the majority of ZSL
research works are from the computer vision domain. In the
field of Natural Language Processing, Artetxe and Schwenk
(2019) use a single sentence encoder to finish the multilin-
gual tasks by only training the target model on a single lan-
guage. To the best of our knowledge, this work is the first
zero-shot relational learning for knowledge graphs.

Background
Zero-Shot Learning Settings

Here we present the problem definition and some notations
of zero-shot learning based on knowledge graph completion
task. Knowledge graph is a directed graph-structured knowl-
edge base and constructed from tremendous relation fact
triples {(e1,r, e2)}. Since the proposed work aims to ex-
plore the recognition ability when meeting the newly-added
relations, our target can be formulated as predicting the tail
entity e, given the head entity e; and the query relation r.
To be more specific, for each query tuple (e, ), there are
a ground-truth tail entity e and a candidate set C'., ,; our
model needs to assign the highest ranking to ey against the
rest candidate entities e5 € C, ). According to the zero-
shot setting, there are two different relation sets, the seen re-
lation set Ry = {r} and the unseen relation set R,, = {ry},
and obviously R, N R, = 0.

At the start, we have a background knowledge graph G
that collects a large scale of triples G = {(e1,7s,€2)|er €
E,rs € Rs,ea € E}, and G is available during the zero-
shot training stage. With this knowledge graph, we establish
a training set D, = {(e1,7s,e2,C(c, r.))} for the seen re-
lations s € Rg. During testing, the proposed model is to
predict the relation facts of unseen relations r, € R,. As
for textual description, we automatically extract an online
textual description 7" for each relation in Rs U R,,. In view
of feasibility, we only consider a closed set of entities; More
specifically, each entity that appears in the testing triples is
still in the entity set E. Thus, our testing set can be formu-
lated as Dy, = {(€1,7u, €2, Cle, r,))le1 € E,ry € Ry, e2 €
E}. With the same requirement of the training process, the
ground-truth tail entity es needs to be correctly recognized
by ranking e, with the candidate tail entities e; € C(c, ).
We leave out a subset of Dy as the validation set D,,4;;4 by
removing all training instances of the validation relations.

Generative Adversarial Models

Generative adversarial networks (Goodfellow et al. 2014)
have been enjoying the considerable success of generating
realistic objective, especially on image domain. The genera-
tor aims to synthesize the reasonable pseudo data from ran-
dom variables, and the discriminator is to distinguish them
from the real-world data. Besides random variables, Zhang
et al. (2017) and Zhu et al. (2018) have proved that the gen-
erator possesses the capability of knowledge transfer from
the textual inputs. The desired solution of this game is Nash



equilibrium; Otherwise, it is prone to unstable training be-
havior and mode collapse. Recently, many works (Arjovsky,
Chintala, and Bottou 2017; Heusel et al. 2017) have been
proposed to effectively alleviate this problem. Compared
with the non-saturating GAN' (Goodfellow et al. 2014),
WGAN (Arjovsky, Chintala, and Bottou 2017) optimizes
the original objective by utilizing Wasserstein distance be-
tween real and fake distributions. On this basis, Gulrajani
et al. (2017) propose a gradient penalty strategy as the
alternative to the weight clipping strategy of WGAN, in
which way to better satisfy Lipschitz constraint. Miyato et
al. (2018) introduce spectral normalization to further sta-
bilize the training of discriminator. Practice proves that our
model benefits a lot from these advanced strategies.
Besides, because KG triples are from different relations,
our task should be regarded as a class conditional genera-
tion problem, and it is a common phenomenon in real-world
datasets. ACGAN (Odena, Olah, and Shlens 2017) adds an
auxiliary category recognition branch to the cost function of
the discriminator and apparently improves the diversity of
the generated samples. Spectral normalization is also im-
pressively beneficial to the diversity of the synthetic data.

Methodology

In this section, we describe the proposed model for zero-shot
knowledge graph relational learning. As shown in Figure 3,
the core of our approach is the design of a conditional gener-
ative model to learn the qualified relation embeddings from
raw text descriptions. Fed with text representations, the gen-
erator is to generate the reasonable relation embeddings that
reflect the corresponding relational semantic information in
the knowledge graph feature space. Based on this, the pre-
diction of unseen relations is converted to a simple super-
vised classification task. On the contrary, the discriminator
seeks to separate the fake data from the real data distribution
and identifies the relation type as well. For real data repre-
sentations, it is worth mentioning that we utilize a feature
encoder to generate reasonable real data distribution from
KG embeddings. The feature encoder is trained in advance
from the training set and fixed during the adversarial training
process.

Feature Encoder

Traditional KG embeddings fit well on the seen relation facts
during training; However, the optimal zero-shot feature rep-
resentations should provide the cluster-structure distribution
for both seen and unseen relation facts. Therefore, we de-
sign a feature encoder to learn better data distribution from
the pretrained KG embeddings and one-hop structures.

Network Architecture: Feature encoder consists of two
sub-encoders, the neighbor encoder and the entity encoder.
In the premise of the feasibility of real-world large-scale

'Goodfellow’s team (Fedus et al. 2017) clarified that the stan-
dard GAN (Goodfellow et al. 2014) should be uniformly called
non-saturating GANs.

*Miyato and Koyama (2018) proposes a projection-based way
to alleviate model collapse when dealing with too many classes,
but it is not suitable for our margin ranking loss.
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Figure 2: Framework of Feature Encoder. For entity pair
(NBA, Michael Jordan), neighbor encoder models the one-
hop graph-structured information, and entity encoder ex-
tracts the useful information from entitie pairs themselves.

KGs, for each entity e, we only consider the one-hop neigh-
bors N = {(r™,e")|(e,r", e™) € G} (Xiong et al. 2018).
Therefore, we adopt the neighbor encoder to generate struc-
tural representations. Given a KG embedding matrix of di-
mension d, we first utilize an embedding layer to look up the
corresponding neighbor entity and relation embeddings ven,
vyn. Then, the structure-based representation u. of entity e
is calculated (Schlichtkrull et al. 2018) as below,

fl(UT’Hve") = Wl(”r" S Ue") + by
Ue = 0(W1e|( Z fl(vr"vve"))a

rne™)EN,

(1

where o is tanh activation function, and & denotes the con-
catenation operation. In consideration of scalability, we set
an upper limit for the number of neighbors. Besides, we also
apply a simple feed-forward layer as the entity encoder to
extract the information from entity pair (eg, e2) themselves,

f2(ve) = Wa(ve) + ba
tep = 0(f2(ve,) © fa(ve,))-
To sum up, as Figure 2, the relation fact representation is

formulated as the concatenation of the neighbor embeddings
Ue, , Ue, and the entity pair embedding .y,

2

3)

where W, € R¥24 W, € R4 b by € R? are the
learned parameters.

L(er,ez) = Ues & Uep ® Ues

Pretraining Strategy: The core of this pretraining step is
to learn the cluster-structure data distribution that reflects
a higher intra-class similarity and relatively lower inter-
class similarity. The traditional supervised way with cross-
entropy loss gives inter classes too much penalty and is im-
practicable for unseen classes. Thus, we adopt an effective
matching-based way via margin ranking loss (Xian, Schiele,
and Akata 2017). For each relation r;, in one training step,
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Figure 3: Overview of the proposed generative model for zero-shot knowledge graph relational learning. Firstly, entity pairs of
KG relation facts are fed into the feature encoder to calculate their semantic representations (real data). Then, the Generator
aims to generate the relation embeddings (fake data) from the denoised text representation and random vector z. Finally, the
Discriminator is designed to distinguish real data from fake data and assign the correct relation types to them.

we first randomly take out k reference triples {e},rs, €5}
from the training set, a batch of positive triples {e], 75, e3 }
from the rest of training set, and a batch of negative triples
{ef,rs,e5 }3. Then we use the feature encoder to generate
the reference embedding (. c3), and calculate its cosine

similarity respectively with Tt oty and T- as score
1072 1

€3)
and score_,. Therefore, the margin ranking loss can be de-
scribed as below,

+

w

“)

where w = {Wy, Wa, by, by} is the parameter set to learn
and ~y denotes the margin. The best parameters of the feature
encoder are determined by the validation set D,,q;;4-

L, = max(0,v + score]; — score, ),

Generative Adversarial Model

Generator: The generator is to generate the plausible re-
lation embeddings from textual descriptions. First, for text
representations, we simply adopt the bag-of-words method,
where words are encoded with the pretrained word embed-
dings (Mikolov et al. 2013; Pennington, Socher, and Man-
ning 2014) as in Figure 3. To suppress the noise information,
we first remove stop-words and punctuations, and then eval-
uate the importance of the rest words via TF-IDF features
(Salton and Buckley 1988). Thus, the text embedding 7). is
the vector sum of word embeddings weighted by TF-IDF
values. To meet the GANs requirements, we concatenate
each text embedding with a random vector 2 € R? sam-
pled from Gaussian distribution N (0, 1). As in Figure 3, the
following knowledge transfer process is completed by two
fully-connected (FC) layers and a layer normalization opera-
tion. So, relation embedding z,. is generated by the generator
Zy < Gy(T,, z) with parameters 6. To avoid mode collapse

3The negative triples are generated by polluting the tail entities.
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and improve diversity, we adopt the Wasserstein loss and an
additional classification loss. This classification loss is for-
mulated as the margin ranking loss as equation 4. Here, the
cluster center z7, N% Zfirl xéehez) is regarded as the real
relation representation, where /N, is the number of facts of
relation 7. Thus, positive scores are calculated from !, and
Z,; Negative scores are calculated from ] and negative fact
representations where negative facts are generated by pollut-
ing tail entities. In addtion, visual pivot regularization (Zhu
et al. 2018) Lp is also applied to provide enough inter-class
discrimination.

Lay == Eznp. [Dy(Go (T, 2))]
+ Lcls(Ga(Try Z)) + LP7

&)

Discriminator: The discriminator attempts to distinguish
whether an input is the real data x(., .,) or the fake one
Z,; Besides, it also needs to correctly recognize their cor-
responding relation types. As in Figure 3, the input features
are first transformed via a FC layer with Leaky ReLU (Maas,
Hannun, and Ng 2013). Following this, there are two net-
work branches. The first branch is a FC layer that acts as a
binary classifier to separate real data from fake data, and we
utilize the Wasserstein loss as well. The other branch is the
classification performance. In order to stabilize training be-
havior and eliminate mode collapse, we also adopt the gra-
dient penalty Lsp to enforce the Lipschitz constraint. It
penalizes the model if the gradient norm moves away from
its target norm value 1. In summary, the loss function of the
discriminator is formulated as:

Lp, =Eenp. [Dg(Go(Tr, 2))] = Bonpiaa [Do(2)]

1 1
+ §LCZS(G9(TT7 Z)) =+ §Lcls(x) + Lap.

(6)



Algorithm 1 The proposed generative adversarial model for
zero-shot knowledge graph relational learning.

Require: The number of training steps Ny, the ratio of
iteration time between D and G [ng : 1], Adam hyper-
parameters «, (31, B2
Load the pre-trained feature encoder
Initialize parameters 6, ¢ for G, D
fori =1 — N, do
for iy — ng do
Sample a subset RY from R, and obtain text
TP, random noise z

s?

A

6: Sample a minibatch of triples B}, of R?
7: .frDS — G(;(T£7 2)
8: Obtain negative set B, for BE and 572
9: Compute the loss of D using Eq. 6
10: (b(— Adam(V¢LD,¢,a,61,ﬁg)
11: end for
12: Sample a subset RS from R, and obtain text T,

random noise z

13: 28« Go(TY,2)

14:  Obtain negative set B, for &

15: Compute the loss of GG using Eq. 5
16: 0 <+ Adam(VeLg,0, o, 1, B2)
17: end for

Predicting Unseen Relations

After adversarial training, given a relation textual descrip-
tion 7, , the generator can generate its plausible relation
embedding &, + Gy(T,,,z). For a query tuple (e, ),
the similarity ranking value score(ci ., .,) can be calcu-
lated by the cosine similarity between ., and (¢, c.). It is
worth mentioning that, since z can be sampled indefinitely,
we can generate an arbitrary number Ny of generated re-
lation embeddings {Z.. }7:172” N,..,- For the better general-
ization ability, we utilize the average cosine similarity value
as the ultimate ranking score,

Ntest

;
SCOTE(gy . ) (7)
i=1

1

8601"6(6177.’%62) = Nt ;
€es

Experiments
Datasets and Evaluation Protocols

Dataset #Ent.  # Triples # Train/Dev/Test
NELL-ZS 65,567 188,392 139/10/32
Wiki-ZS 605,812 724,967 469/20/48

Table 1: Statistics of the constructed zero-shot datasets for
KG link prediction. # Ent. denotes the number of unique
entities. # Triples denotes the amount of relation triples. #
Train/Dev/Test denotes the number of relations for train-
ing/validation/testing.

KG Triples: Because there is not available zero-shot re-
lational learning dataset for knowledge graph, we decide
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to construct two reasonable datasets from the existing KG
Datasets. We select NELL* (Carlson et al. 2010) and Wiki-
data® for two reasons: the large scale and the existence of
official relation descriptions. For NELL, we take the latest
dump and remove those inverse relations. The dataset statis-
tics are presented in Table 1.

Textual Description: The NELL and Wikidata are two well-
configured knowledge graphs. Our textual descriptions con-
sist of multiple information. For NELL, we integrate the re-
lation description and its entity type descriptions. For Wiki-
data, each relation is represented as a property item. Besides
its property description, we also leverage the attributes P37,
P1629, P1855 as the additional descriptions.

Evaluation Protocols: Following previous works (Yang et
al. 2014; Xiong et al. 2018), we use two common metrics,
mean reciprocal ranking (MRR) and hits at 10 (H@10), 5
(H@5), 1 (H@1). During testing, candidate sets are con-
structed by using the entity type constraint (Toutanova et al.
2015).

Baselines

In our experiments, the baselines include three commonly-
used KG embedding methods: TransE (Bordes et al. 2013),
DistMult (Yang et al. 2014) and ComplEx (Trouillon et
al. 2016). Obviously, these original models cannot handle
zero-shot learning. Therefore, based on these three meth-
ods, we propose three zero-shot baselines, ZS-TransE, ZS-
DistMult and ZS-ComplEx. Instead of randomly initializ-
ing a relation embedding matrix to represent relations, we
add a feed-forward network with the same structure® of our
generator to calculate relation embeddings for these three
methods. Equally, we utilize text embeddings as input and
fine-tune this feed-forward network and entity embeddings
via their original objectives. Under this setting, the unseen
relation embeddings can be calculated via their text embed-
dings, and the unseen relation facts can be predicted via
their original score functions. RESCAL (Nickel, Tresp, and
Kriegel 2011) cannot directly adopt the same feed-forward
network for zero-shot learning; For a fair comparison, we do
not consider this KG embedding method.

Implementation Details

For NELL-ZS dataset, we set the embedding size as 100. For
Wiki-ZS, we set the embedding size as 50 for faster train-
ing. The three aforementioned baselines are implemented
based on the Open-Source Knowledge Embedding toolkit
OpenKE’(Han et al. 2018), and their hyperparameters are
tuned using the Hits @ 10 metric on the validation set D,;iq-
The proposed generative method uses the pre-trained KG
embeddings as input, which are trained on the triples in the
training set. For TransE and DistMult, we directly use their
1-D vectors. For ComplEx, we set two experiments by re-
spectively using the real embedding matrix and the imag-

*http://rtw.ml.cmu.edu/rtw/

>https://pypi.org/project/Wikidata/

%This feed-forward network does not receive random noise z as
input.

"https://github.com/thunlp/OpenKE



NELL-ZS Wiki-ZS
Model MRR Hits@10 Hits@5 Hits@]1 \ MRR Hits@10 Hits@5 Hits@]1
7ZS-TransE 0.097 20.3 14.7 43 0.053 11.9 8.1 1.8
ZS-DistMult 0.235 32.6 28.4 18.5 0.189 23.6 21.0 16.1
ZS-ComplEx 0.216 31.6 26.7 16.0 0.118 18.0 14.4 8.3
ZSGAN g (TransE) 0.240 37.6 31.6 17.1 0.185 26.1 21.3 14.1
ZSGAN g (DistMult) 0.253 37.1 30.5 19.4 0.208 294 24.1 16.5
ZSGANk¢ (ComplEx-re)  0.231 36.1 29.3 16.1 0.186 25.7 21.5 14.5
ZSGANk G (ComplEx-im)  0.228 32.1 27.0 17.4 0.185 24.8 20.9 14.7

Table 2: Zero-shot link prediction results on the unseen relations. The proposed baselines are shown at the top of the table; Our
generative adversarial model is denoted as ZSGAN i and the results are shown at the bottom. Bold numbers denote the best
results, and Underline numbers denote the best ones among our ZSGAN g methods.

inary embedding matrix as in Table 2. For both the fea-
ture encoder and the generative model, we adopt the Adam
(Kingma and Ba 2014) for parameter updates, and the mar-
gin 7y is set as 10.0. For feature encoder, the upper limit of
the neighbor number is 50, the number of reference triples
k in one training step is 30, and the learning rate is 5e~%.
For the generative model, the learning rate is le—4, and 51,
(o are set as 0.5, 0.9 respectively. When updating the gen-
erator one time, the iteration number ng of the discrimina-
tor is 5. The dimension of the random vector z is 15, and
the number of the generated relation embedding N4 is
20. Spectral normalization is applied for both generator and
discriminator. These hyperparameters are also tuned on the
validation set D,q;;4. As for word embeddings, we directly
use the released word embedding set GoogleNews- vectors-
negative300.bin® of dimension 300.

Results

Compared with baselines, the link prediction results of our
method are shown in Table 2. Even though NELL-ZS and
Wiki-ZS have different scales of triples and relation sets,
the proposed generative method still achieves consistent
improvements over various baselines on both two zero-
shot datasets. It demonstrates that the generator successfully
finds the intermediate semantic representation to bridge the
gap between seen and unseen relations and generates reason-
able relation embeddings for unseen relations merely from
their text descriptions. Therefore, once trained, our model
can be used to predict arbitrary newly-added relations with-
out fine-tuning, which is significant for real-world knowl-
edge graph completion.

Model-Agnostic Property: From the results of baselines,
we can see that their performances are sensitive to the partic-
ular method of KG embeddings. Taking MRR and Hits@ 10
as examples, ZS-DistMult yeilds respectively 0.138 and
12.3% higher performance than ZS-TransE on NELL-ZS
dataset. However, our method achieves relatively consistent
performance no matter which KG embedding matrix is used.

8http://code.google.com/p/word2vec/
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Figure 4: The histogram of the statistical information of tex-
tual descriptions. The word count of (a) denotes the length
of textual descriptions. The word count of (b) denotes the
number of words whose TF-IDF values are larger than 0.3.
Here we have removed stop-words.

Analysis of Textual Representations

Figure 4 illustrates the statistical information of text descrip-
tions for two datasets. On the whole, the textual descriptions
of NELL-ZS are longer than Wiki-ZS. However, after calcu-
lating their TF-IDF values, the number of highly-weighted
words of both datasets are located in [2, 5]. For example,
the highly-weighted words of relation WORKER is liveli-
hood, employed and earning. It demonstrates the capacity
of noise suppression. As for word representations’, besides
Word2Vec, we also attempt the contextualized word repre-

9ZSGAN K is not limited to a particular type of word embed-
ding.



\ MRR Hits@10
Relations #Can. Num. # Cos. Sim. | ZSGANg ZS-DistMult | ZSGANg g  ZS-DistMult
animalThatFeedOnlInsect 293 0.8580 0.347 0.302 63.4 61.8
automobileMakerDealersInState 600 0.1714 0.066 0.039 154 5.1
animalSuchAsInvertebrate 786 0.7716 0.419 0.401 59.8 57.6
sportFansInCountry 2100 0.1931 0.066 0.007 154 1.3
produceBy 3174 0.6992 0.467 0.375 65.3 51.2
political GroupOfPoliticianus 6006 0.2211 0.018 0.039 53 3.9
parentOfPerson 9506 0.5836 0.343 0.381 56.2 60.4
teamCoach 10569 0.6764 0.393 0.258 53.7 39.9

Table 3: Quantitative analysis of the generated relation embeddings by our generator. These presented relations are from the
NELL test relation set. “# Can. Num.” denotes the number of candidates of test relations. For one relation, “# Cos. Sim.” denotes
the mean cosine similarity between the corresponding generated relation embedding and the cluster center =} of the relation

triples.
Dataset ~ Word Emb. | MRR Hits@10
NELL-ZS BERT Emb. 0.237 35.5
Word2Vev 0.253 37.1
Wiki-ZS BERT Emb. 0.175 26.1
Word2Vec 0.208 29.4

Table 4: Link prediction comparison results between
Word2Vec and BERT embeddings as word representations.

sentations from BERT'? (Devlin et al. 2019) as in Table 4.
But their performance is less than satisfactory for two rea-
sons: their high dimension and the sequence-level informa-
tion involved in the representations. It is difficult for the gen-
erator to reduce dimension and extract discriminative fea-
tures; So, GANS is hard to reach Nash equilibrium.

Quality of Generated Data

In Table 3, we analyze the quality of the generated relation
embeddings by our generator and present the comparable
results of different relations against the ZS-DistMult, since
ZS-DistMult is the best baseline model from Table 2. Unlike
image, our generated data cannot be observed intuitively. In-
stead, we calculate the cosine similarity between the gener-
ated relation embeddings and the cluster center x, of their
corresponding relations. It can be seen that our method in-
deed generates the plausible relation embeddings for many
relations and the link prediction performance is positively
correlated with the quality of the relation embeddings.

Discussion

In the respect of text information, we adopt the simple bag-
of-words model rather than the neural-network-based text
encoder, such CNN and LSTM. We indeed have tried these
relatively complicated encoders, but their performance is
barely satisfactory. We analyze that one of the main rea-
sons is that the additional trainable parameter set involved

10We use the uncased-BERT-Base model of hidden size 768.
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in these encoders reduces the difficulty of adversarial train-
ing. In other words, the generator is more likely to over-
fit the training set; Therefore, the generalization ability of
generator is poor when dealing with unseen relations. Even
though the bag-of-words model achieves better performance
here, it still has the shortage of semantic diversity, especially
when the understanding of a relation type needs consider the
word sequence information in its textual description. In ad-
dition, as mentioned in the background, our zero-shot set-
ting is based on an unified entity set F. It can be under-
stood as expanding the current large-scale knowledge graph
by adding the unseen relation edges between the existing en-
tity nodes. It must be more beneficial to further consider the
unseen entities. We leave these two points in future work.

Conclusion

In this paper, we propose a novel generative adversarial ap-
proach for zero-shot knowledge graph relational learning.
We leverage GANs to generate plausible relation embed-
dings from raw textual descriptions. Under this condition,
zero-shot learning is converted to the traditional supervised
classification problem. An important aspect of our work is
that our framework does not depend on the specific KG
embedding methods, meaning that it is model-agnostic that
could be potentially applied to any version of KG embed-
dings. Experimentally, our model achieves consistent im-
provements over various baselines on various datasets.
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