Knowing What, How and Why: A Near Complete Solution for Aspect-Based Sentiment Analysis

Haiyun Peng, ¹ Lu Xu, ¹, ² Lidong Bing, ¹ Fei Huang, ¹ Wei Lu, ² Luo Si ¹

¹DAMO Academy, Alibaba Group
²Singapore University of Technology and Design

Abstract

Target-based sentiment analysis or aspect-based sentiment analysis (ABSA) refers to addressing various sentiment analysis tasks at a fine-grained level, which includes but is not limited to aspect extraction, aspect sentiment classification, and opinion extraction. There exist many solvers of the above individual subtasks or a combination of two subtasks, and they can work together to tell a complete story, i.e. the discussed aspect, the sentiment on it, and the cause of the sentiment. However, no previous ABSA research tried to provide a complete solution in one shot. In this paper, we introduce a new subtask under ABSA, named aspect sentiment triplet extraction (ASTE). Particularly, a solver of this task needs to extract triplets (What, How, Why) from the inputs, which show WHAT the targeted aspects are, HOW their sentiment polarities are and WHY they have such polarities (i.e. opinion reasons). For instance, one triplet from “Waiters are very friendly and the pasta is simply average” could be (‘Waiters’, positive, ‘friendly’). We propose a two-stage framework to address this task. The first stage predicts what, how and why in a unified model, and then the second stage pairs up the predicted what (how) and why from the first stage to output triplets. In the experiments, our framework has set a benchmark performance in this novel triplet extraction task. Meanwhile, it outperforms a few strong baselines adapted from state-of-the-art related methods.

Introduction

Target-based sentiment analysis (TBSA) or aspect-based sentiment analysis (ABSA) refers to addressing various sentiment analysis tasks at a fine-grained level (Liu 2012; Pontiki 2014), which includes but is not limited to aspect/target term extraction (ATE), opinion term extraction (OTE), aspect/target term sentiment classification (ATC), etc. Given an example sentence such as ‘Waiters are very friendly and the pasta is simply average’, the ATE is to extract ‘Waiters’ and ‘pasta’, and the ATC is to classify them to positive and negative sentiment, respectively. The OTE is to extract ‘friendly’ and ‘average’. Although these tasks seem to be intersecting and confusing at the first glance, they distinguish from each other black and white when fulfilling the three goals in ABSA. As shown in Fig 1, the top three squares represent ultimate goals for ABSA, where the aspect term represents an explicit mention of discussed target, such as ‘Waiters’ in the example. The opinion term represents the opinionated comment terms/phrases, like ‘friendly’. The aspect category refers to certain predefined categories, such as SERVICE and FOOD in the previous example (Wang et al. 2019; Pontiki 2015).

Each circle in the middle layer denotes a direct subtask to realize the goal. The ‘Sentiment’ circle linked to aspect terms refers to ATC which attracts a heated research popularity (Dong et al. 2014; Tang, Qin, and Liu 2016; Nguyen and Shirai 2015; Wang et al. 2016b; Ma et al. 2017; Tay, Luu, and Hui 2017; Ma, Peng, and Cambria 2018; Hazarika et al. 2018; Li et al. 2018a; Wang et al. 2018; Xue and Li 2018; He et al. 2018; Peng et al. 2018; Bailin and Lu 2018; Li et al. 2019b). The ‘Extract’ circle linked to aspect term denotes ATE, such as (Qiu et al. 2011; Liu, Xu, and Zhao 2013; 2014; Liu, Joyt, and Meng 2015; Yin et al. 2016; Wang et al. 2016a; 2017; He et al. 2017; Li and Lam 2017; Li et al. 2018b; Xu et al. 2018). The same
also applies to other circles in the middle layer. Researchers also realized that solving these subtasks individually is insufficient so they proposed to couple two subtasks as a compound task, such as aspect term extraction and sentiment classification (Li et al. 2019a; Mitchell et al. 2013; Zhang, Zhang, and Vo 2015; Li and Lu 2017; He et al. 2019), aspect term and opinion term co-extraction (Wang et al. 2017; Dai and Song 2018), aspect category and sentiment classification (Hu et al. 2018), as circles illustrated at the bottom.

Nevertheless, the above compound tasks are still not enough to get a complete picture regarding sentiment. For instance, in the previous example, knowing a positive sentiment towards aspect term ‘waiters’ does not give a clue of why it is positive. Only by knowing ‘friendly’ will people understand the cause of sentiment. Fan et al. (2019) aim to extract the opinion terms for a given target, thus the extraction can be regarded as the cause for certain sentiment on the target, through sentiment prediction is not in the scope of their paper. Note that Fan et al. (2019) assume the targets are given in advance. On the other hand, the co-extraction methods fail to tackle pairing of multiple aspects and opinion expressions in a single sentence (Wang et al. 2017; Dai and Song 2019). Li et al. (2019a) couple the tasks of aspect extraction and sentiment classification with the unified tags (e.g. “B-POS” standing for the beginning of a positive aspect) but they do not extract the opinion terms for the extracted aspects, leaving blank the sentiment cause. So did the modular architectures presented by Zhang and Goldwasser (2019). In summary, no previous ABSA research try to handle such a requirement in one shot, namely knowing What target is being discussed (e.g. ‘waiters’), How is the sentiment (e.g. ‘positive’) and Why is this sentiment (e.g. ‘friendly’). Moreover, the mutual influence among the three questions lacks study either. To this end, we introduce an aspect sentiment triplet extraction task (ASTE), shown in the blue-filled circle at the bottom in Fig 1.

We propose a two-stage framework to address this task. In the first stage, we aim to extract potential aspect terms, together with their sentiment, and extract potential opinion terms. The task is formulated as a labeling problem with two label sequences (Mitchell et al. 2013; Wang et al. 2017). Specifically, we couple a unified tagging system by following (Li et al. 2019a) for aspect extraction and sentiment classification, and a BIO-like tagging system for opinion extraction, as shown in Table 1. For the unified tagging system, it builds on top of two stacked Bidirectional Long Short Term Memory (BLSTM) networks. The upper one produces the aspect term and sentiment tagging results based on the unified tagging schema. The lower performs an auxiliary prediction of aspect boundaries with the aim for guiding the upper BLSTM. Gate mechanism is explicitly designed to maintain the sentiment consistency within each multi-word aspect. For the opinion term tagging system, it builds on top of a BLSTM layer and a Graph Convolutional Network (GCN) to make full use of semantic and syntactic information in a sentence. According to the task definition (Pontiki 2014; 2015; 2016; Li et al. 2018b; 2019a), for a term/phrase being regarded as an aspect, it should co-occur with some “opinion terms” that indicate a sentiment polarity on it. Therefore, aspect information is beneficial to extracting opinion terms, as already demonstrated in (Zhang et al. 2017; Wang et al. 2017; Dai and Song 2019). We specifically design a target-guiding module to transfer aspect information for opinion term extraction.

After the first stage, we have obtained a bunch of aspects with sentiment polarities and a bunch of opinion expressions. In the second stage, the goal is to pair up aspects with the corresponding opinion expressions. As we observed, for sentences with multiple aspects and opinions, word distance is very indicative for correctly pairing up an aspect and its opinion as shown in the bottom section of Table 1. Thus, we design distance embeddings to capture the distance between aspects and opinion expressions that are predicted from the stage one. With a BLSTM encoder, we encode sentence-level contexts into aspect and opinion terms for the final classification of candidate pairs. In the experiments, our framework has set a benchmark performance in this novel sentiment triplet extraction task. Meanwhile, our framework outperforms the state-of-the-art methods (with modification to fit in our task) and the strongest sequence taggers on several benchmark datasets. We also conduct extensive ablation tests to validate the rationality of our framework design.

Proposed Framework

Problem Formulation

For a given input sentence $X = \{x_1, \ldots, x_T\}$ with length T, the ASTE task is to extract sentiment triplets (What, How, Why), consisting of the aspects/targets (i.e. ‘What’), the sentiment polarity on them (i.e. ‘How’), and the opinions causing such a sentiment (i.e. ‘Why’). Here, we formulate the task in two stages. In the stage one, the task includes two sequence labeling (SL) subtasks, the unified tag SL and the opinion tag SL. The unified tag schema is $Y_{TS} = \{B-POS, I-POS, E-POS, B-Neg, I-Neg, E-Neg, S-Neg, B-Neu, I-Neu, E-Neu, S-Neu\} \cup \{O\}$, which locates aspects and labels their sentiment. The opinion tag schema is $Y_{Opt} = \{B, I, E, S\} \cup \{O\}$. The unified

Table 1: Tagging schema and relative position index, where B denotes begin, I denotes inside, E denotes end, S denotes single and O denotes outside. The check and cross marks denote valid and invalid aspect-opinion pairs.

<table>
<thead>
<tr>
<th>Input</th>
<th>Opinion tag</th>
<th>Position index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiters are friendly and the fugu sashimi is out of the world</td>
<td>S-POS O O O O B-POS E-POS O O O O O O B I I E O</td>
<td>2 0 2 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>(Waiters,friendly)✓</td>
<td>S-NEG O O O O O O B I I E O</td>
<td>0 0 2 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>(fugu sashimi, friendly)✗</td>
<td>O O O O O O B I I E O</td>
<td>0 0 2 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

Note that the opinion expressions should be paired with the targets/aspects it modifies in a many-to-many setting.
also applies to the opinion expression. In our model setting, there are three sentences in the stage one, where there are two aspects constructed by coupling the elements from the two sets as

$$y_1^{TS}, \ldots, y_n^{TS}$$

and

$$y_1^{OPT}, \ldots, y_n^{OPT}$$

for unified tag schema, and adapts one of its original components.

Figure 2: The framework of our proposed two stage model.

SL predicts a tag sequence $$Y^{TS} = \{y_1^{TS}, \ldots, y_n^{TS}\}$$, where $$y_i^{TS} \in Y^{TS}$$, while the opinion SL predicts a sequence $$Y^{OPT} = \{y_1^{OPT}, \ldots, y_n^{OPT}\}$$, where $$y_i^{OPT} \in Y^{OPT}$$.

In the stage two, given the sets of aspects $$\{T_1, T_2, \ldots, T_n\}$$ and opinion expressions $$\{O_1, O_2, \ldots, O_m\}$$ labeled from the same sentence in the stage one, where there are $$n$$ aspects and $$m$$ opinion expressions, a candidate pair pool is constructed by coupling the elements from the two sets as $$\{(T_1, O_1), (T_1, O_2), \ldots, (T_n, O_m)\}$$. The goal of this stage is to identify the legitimate ones from the candidate pool, and outputs them as the final results. Note that the ‘How’ is embedded in $$T_i$$ with the unified tags.

Model Overview

Fig. 2 shows the overview of our two-stage framework. Recall that the stage one predicts two kinds of labels, i.e. $$Y^{TS}$$ and $$Y^{OPT}$$. For predicting $$Y^{TS}$$, the left half of stage one model resembles the state-of-the-art work (Li et al. 2019a) for unified tag schema, and adapts one of its original components.

Stage One

Unified aspect boundary and sentiment labeling. As demonstrated by Li et al. (2019a), a target boundary tag is beneficial to unified tag prediction. We implement a similar structure for unified aspect and sentiment tag labeling. In order to learn the target boundary labeling, we employ a BLSTMT layer on top of sentence word embeddings. The sequence output of this BLSTMT, $$h^T = [LSTM^T(x); LSTM^T(x)]$$, will be fed into a softmax classifier to predict the target sequence tag without sentiment, whose tag set $$Y^T$$ is $$\{B, I, E, S, O\}$$. With this supervision learning, $$h^T$$ is expected to carry target boundary information. Thus we input it to the second BLSTMS layer to accumulate sentiment information. Specifically, the sequence output of this BLSTMS layer is $$h^S = [LSTM^S(x); LSTM^S(x)]$$. The expected tag set for each time step in this sequence is

$$Y_n^{OPT} = \{y_1^{OPT}, \ldots, y_n^{OPT}\}$$

for unified tag schema, and adapts one of its original components.

Note: Each aspect could contain one or multiple terms. The same also applies to the opinion expression. In our model setting, there should be at least one aspect and one opinion expression.
\(\mathcal{Y}^S = \{ \text{B-POS}, \text{I-POS}, \text{E-POS}, \text{S-POS}, \text{B-NEG}, \text{I-NEG}, \text{E-NEG}, \text{S-NEG}, \text{B-NEU}, \text{I-NEU}, \text{E-NEU}, \text{S-NEU} \} \), which appends each tag in \(\mathcal{Y}^T \) with three sentiment polarities.

As illustrated in Table 1, some aspects may contain more than one term. In our task formulation, however, we predict unified sequence tag term by term. It is possible, although contradictory, to have ‘fugui’ labeled as positive but ‘sashimi’ labeled as negative. To avoid such situation, a Sentiment Consistency (SC) module (Li et al. 2019a) was designed with a gate mechanism:

\[
g_t = \sigma(W^{g}h_t^S + b^g) \\
\tilde{h}_t^S = g_t \odot h_t^S + (1 - g_t) \odot \tilde{h}_{t-1}^S
\]

where \(W^g \) and \(b^g \) are model parameters of the SC module, and \(\odot \) is the element-wise multiplication. \(\sigma \) is a sigmoid function. With this gate mechanism, current time step prediction will also inherit features from the previous time step, reducing the risk of drastic sentiment label change.

Given an aspect boundary tag, it can only be transformed into one of its three legitimate sentiment-appended unified tags. The Boundary Guidance (BG) module consolidates this observation into a constraint matrix transforming to tag \(S_t \). For instance, if \(\mathcal{Y}^S_t \) is \(\{1\} \) and \(\mathcal{Y}^S_{t+1} \) is \(\text{B-POS} \), then the \(\mathcal{Y}^S_{t:B-POS} \) will be zero because \(1 \) cannot transform to \(\text{B-POS} \). With this transformation matrix, the aspect boundary probability distribution can now be transformed into unified probability distribution as:

\[
z_t^S = p(y_t^S \mid x_t) = \text{Softmax}(W^T h_t^S)
\]

\[
z_t^{S'} = (W^{tr})^T z_t^T
\]

where \(W^T \) is the model parameter and \(z_t^{S'} \) is the obtained unified tag probability distribution.

Up to this moment, for the unified tag prediction, we have not directly utilized the opinion term information, which should apparently affect the detection of aspect. To this end, we integrate the opinion term information \(h_{OPT} \) (which will be introduced in the next subsection) with \(h_t^S \) by concatenating them together to form a reinforced representation \(h_t^{OPT} \) for unified tag prediction with a softmax classifier:

\[
z_t^S = p(y_t^S \mid x_t) = \text{Softmax}(W^S h_t^{OPT})
\]

where the \(\mathcal{Y}^S \) is the probability distribution and \(W^S \) is the model parameter. \(z_t^S \) is the obtained unified tag probability distribution. Note that the integration of \(h_{OPT} \) for unified tag prediction was not used in Li et al. (2019a).

Next, we design a fusion mechanism to merge this reinforced unified tag probability with the previous transformed unified tag probability. We calculate a fusion weight score \(\alpha_t \in \mathbb{R} \) with the concentration score \(c_t \) from the target boundary tagger, defined as below:

\[
c_t = (z_t^T) z_t^T
\]

\[
\alpha_t = \epsilon c_t
\]

where the concentration score \(c_t \) with a maximum value of 1, represents how confident the target boundary tagger predicts. The higher the score, the more confident is the target boundary tagger. The hyper-parameter \(\epsilon \) (we empirically set as 0.5) controls the proportional weight that transformed unified tag probability contributes in the final decision. Then the final fused score between transformed and reinforced unified tag probability is given as:

\[
z_t^{TS} = \alpha_t z_t^{S'} + (1 - \alpha_t) z_t^S.
\]

Opinion term extraction

Previous studies (Wang et al. 2017; Dai and Song 2019) suggest that aspect extraction and opinion extraction are mutually beneficial. We also observe that aspects are usually co-occur with opinion terms and especially so on our datasets (see Table 2). This drives us to utilize the target information to guide opinion term extraction. Particularly, we feed the sentence embedding to a GCN module to learn the mutual dependency relations between different words. The adjacency matrix for GCN is constructed based on the dependency parsing of the sentence, namely \(W^{GCN} \in \mathbb{R}^{(|L| \times |L|)} \), where \(L \) is the length of the sentence. If the \(i \)th word has dependency relation with the \(j \)th word, \(W^{GCN}_{i,j} \) and \(W^{GCN}_{j,i} \) will both have value 1, otherwise, value 0. This operation is designed to capture the relation between aspects and opinion terms, as they are constructed as syntactic modifying pairs.

To utilize the target information for opinion term extraction, we design an auxiliary task to integrate the target boundary information with the output from GCN with a Target Guidance (TG) module. If a sentence contains an aspect-opinion pair, the opinion expression should modify a Target Guidance, \(\{B, I, E, S\} \cup \{OPT\} \), namely \(\mathcal{Y}^G = \{B, I, E, S\} \cup \{OPT\} \). The output, \(h_{OPT} \), will be sent to both the BG component to assist unified tag prediction (Eq.3) and a softmax classifier to predict opinion prediction:

\[
z_t^{OPT} = p(y_t^{OPT} \mid x_t) = \text{Softmax}(W^{OPT} h_t^{OPT})
\]

Stage one training

Stage one is trained with stochastic gradient descent optimizer. The loss of each output signal is computed using cross-entropy as:

\[
\mathcal{L}^T = -\frac{1}{T} \sum_{t=1}^{T} 1(y_t^{T,g}) \circ \log(z_t^T)
\]

where \(\mathcal{L} \) is the symbol of task indicator and its possible values are \(T, TS, TG \) and \(OPT \). \(1(y) \) represents the one-hot vector with the \(y \)-th component being 1 and \(y_t^{T,g} \) is the gold
standard tag for the task I at the time step t. The total training objective of stage one is to minimize the sum of individual loss from each output signal, $\mathcal{J}(\theta)$:

$$\mathcal{J}(\theta) = \mathcal{L}^T + \mathcal{L}^{TS} + \mathcal{L}^{TG} + \mathcal{L}^{OPT}.$$ \hspace{1cm} (9)

Stage Two

After stage one, for each sentence, we output two sets of text segments, i.e., aspect terms and opinion expressions, denoted as $\{T_1, T_2, \ldots, T_n\}$ and $\{O_1, O_2, \ldots, O_m\}$ respectively, where there are n aspects and m opinion expressions. Then, we generate a candidate pair pool as $\{(T_1, O_1), (T_1, O_2), \ldots, (T_n, O_m)\}$ by enumerating all possible aspect-opinion pairs. Stage two is to classify whether each of these pairs is valid or not.

Position embeddings. In order to utilize the position relation between an aspect and an opinion expression, we calculate the word-length distance between the center of the aspect and that of the opinion expression by counting how many words appear in the middle. The absolute distance will be treated as relative position information that encodes the position relation between them. For the ease of training, we create position embeddings by treating the distance as position index for aspects and opinions, and zero to non-aspect and non-opinion words. For instance, position indexes of a true pair (‘Waiter’, ‘friendly’) and a fake pair (‘fugu sashimi’, ‘friendly’) are shown in Table 1.

Pair encoder and classification. As shown in Fig. 2, we concatenate the pretrained GloVe word embeddings (Pennington, Socher, and Manning 2014) with our position embeddings to form word representation. The position embedding is randomly initialized and kept trainable in the training step. We then feed the sentence to a BLSTM layer to encode sentence contextual information into aspects and opinion expressions. Based on the sentence-term index, we average the hidden states output from BLSTM for both aspect and opinion expression respectively as their features. Next, we concatenate the two features and send it to softmax layer for binary classification. For the training of classifier, we used the gold pairs annotated in the training set of our experimental datasets. During testing stage, we freeze the classifier parameters tuned against the validation sets, and directly test on the pairs generated in the candidate pool.

Experiments

Dataset

Our datasets originate from SemEval Challenges (Pontiki 2014; 2015; 2016). The annotation (opinion label) is derived from (Fan et al. 2019), where they already annotated opinion terms. In addition, we merge samples that are of the same sentence but have different annotations on targets and opinions. Each sample includes the original sentence, a sequence with unified aspect/target tags and a sequence with opinion tags. Since each sentence might have more than one aspect/targets and opinions, we pair up individual aspects/targets and their opinions. Below is an example:

```
The best thing about this laptop is the price along with some

The best thing about this laptop is the price along with some
```

Table 2: Dataset. (#s and #p denote number of sentences and target-opinion pairs, respectively.)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>14res</th>
<th>14lap</th>
<th>15res</th>
<th>16res</th>
</tr>
</thead>
<tbody>
<tr>
<td>train</td>
<td>1300</td>
<td>1245</td>
<td>920</td>
<td>1205</td>
</tr>
<tr>
<td>valid</td>
<td>323</td>
<td>524</td>
<td>228</td>
<td>337</td>
</tr>
<tr>
<td>test</td>
<td>496</td>
<td>802</td>
<td>339</td>
<td>490</td>
</tr>
</tbody>
</table>

Experimental Setting

Our framework is evaluated on a two-stage setting due to our framework design. Since the output of our stage one contains both aspects and opinion terms, we compared with other aspect and opinion co-extraction methods in the first stage. The compared methods are as follows. **RINANTE** (Dai and Song 2019): It is an aspect and opinion corextraction method that mines aspect and opinion term extraction rules based on the dependency relations of words in a sentence. **CMLA** (Wang et al. 2017): A co-extraction model that leverages attention mechanism to utilize the direct and direction dependency relations. Note that both CMLA and RINANTE use BIO tags for aspect and opinion extraction. For comparison, we train them with unified tags for aspect extraction, and BIO tags for opinion extraction. **IOG** (Fan et al. 2019): A top performing opinion term extraction method with an Inward-Outward LSTM. **Li-unified**: (Li et al. 2019a) The state-of-the-art unified model for aspect extraction and sentiment classification. It also serves as a base model in our design and its results are compared on aspect extraction and sentiment classification. Note that it does not conduct opinion extraction. **Li-unified-R**: A modified model variant of Li-unified by us, which adapts their original OE component for opinion extraction. **Our–BLSTM**: The first variant of our model that removes the BLSTM component. Thus, it may fail to consider sentence contextual information for opinion term extraction. **Our–TG**: The second variant of our model that removes the TG component, which does not have the mutual information exchange between aspect extraction and opinion extraction. **Our–T**: The third variant that eliminates the loss \mathcal{L}^T from the training.

For the stage two evaluation, we cannot find a baseline

1https://github.com/xuuuluuu/SemEval-Triplet-data

8604
The two rows below are results of aspect extraction only, without evaluating the correctness of sentiment polarity.

<table>
<thead>
<tr>
<th>Model</th>
<th>14res</th>
<th>14lap</th>
<th>15res</th>
<th>16res</th>
</tr>
</thead>
<tbody>
<tr>
<td>RINANTE</td>
<td>80.60</td>
<td>72.60</td>
<td>64.30</td>
<td>71.40</td>
</tr>
<tr>
<td>CMLA</td>
<td>82.80</td>
<td>78.00</td>
<td>72.40</td>
<td>78.00</td>
</tr>
<tr>
<td>Li-unified-R</td>
<td>84.00</td>
<td>79.50</td>
<td>75.80</td>
<td>81.60</td>
</tr>
</tbody>
</table>

Table 4: Stage one results of opinion term extraction.

<table>
<thead>
<tr>
<th>Model</th>
<th>14res</th>
<th>14lap</th>
<th>15res</th>
<th>16res</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>65.90</td>
<td>68.90</td>
<td>71.30</td>
<td>75.80</td>
</tr>
<tr>
<td>RINANTE</td>
<td>69.40</td>
<td>72.90</td>
<td>75.80</td>
<td>79.50</td>
</tr>
<tr>
<td>CMLA</td>
<td>72.80</td>
<td>76.30</td>
<td>79.20</td>
<td>83.60</td>
</tr>
<tr>
<td>IOG</td>
<td>75.60</td>
<td>79.10</td>
<td>81.60</td>
<td>86.30</td>
</tr>
<tr>
<td>Li-unified-R</td>
<td>78.00</td>
<td>81.30</td>
<td>84.90</td>
<td>89.30</td>
</tr>
</tbody>
</table>

*We switch TS-OPT pairs to target-opinion-sentiment triplets.

Table 3: Stage one results of aspect extraction and sentiment classification. (All models were trained in the unified tag setting.)

<table>
<thead>
<tr>
<th>Model</th>
<th>14res</th>
<th>14lap</th>
<th>15res</th>
<th>16res</th>
</tr>
</thead>
<tbody>
<tr>
<td>RINANTE</td>
<td>80.60</td>
<td>72.60</td>
<td>64.30</td>
<td>71.40</td>
</tr>
<tr>
<td>CMLA</td>
<td>82.80</td>
<td>78.00</td>
<td>72.40</td>
<td>78.00</td>
</tr>
<tr>
<td>Li-unified-R</td>
<td>84.00</td>
<td>79.50</td>
<td>75.80</td>
<td>81.60</td>
</tr>
</tbody>
</table>

Table 4 illustrates the stage one performances of opinion term extraction. In terms of F score, our core model has again achieved the best performance compared with all existing baselines. Li-unified-R is generally not as good as our model on the restaurant datasets, but still performs very competitive and event better than our model on 14lap. Our–TG variant model has outperformed all baselines in the laptop domain. RINANTE, CMLA and IOG only learned the mutual influence of aspect and opinion term. Compared with these baseline models, our model learns the multi-lateral information flow among the three tasks, i.e., aspect extraction, sentiment classification and opinion term extraction. In the case of opinion term extraction, it would be relatively straightforward to locate opinion terms if their sentiment polarities are given. Specifically, the \(t^{OPT} \) is used for unified tag prediction and thus the sentiment classification signals are backpropagated to \(BLSTM^{OPT} \), therefore, the opinion prediction can leverage such information.
Stage two. After obtaining all the possible candidate triplets from the stage one, each triplet is sent to a binary classifier. The classifier was trained on the ground truth aspect and opinion pairs in the training set. The model performing the best on the validation set was used as the stage two classifier for evaluating both our model and baselines. (The performance of the classifier on the validation set is shown in the first row of Table 5). The last section in Table 5 shows the performance for the final triplet extraction. We can observe that our model has achieved steady advantage over other baselines. In addition to evaluating the triplet, we also examine the pure pairing performance for coupling aspects and opinion terms. The results are shown in the middle section of Table 5. In both sections, Li-unified-R+, a variant of Li-unified implemented by us, achieved competitive performance on the first three datasets, and even slightly better than ours on 15res in the pairing evaluation.

Ablation test. To evaluate the rationality of our model design, we also conducted ablation tests by introducing three model variants, our–BLSTMOPT, our–T and our–TG, where ‘–’ means without the component followed behind. As we introduced before, BLSTMOPT is expected to encode sentence contextual information which is beneficial to both unified tag prediction and opinion term extraction. From Table 3 and 4, for most datasets, we can find the apparent performance reduction after removing the BLSTMOPT module, which validates the effectiveness of this component. Nevertheless, the contribution of TG is more complex. In the unified tag prediction task, the removal of TG module brings down the performance in all datasets reasonably. In the opinion term extraction, the removal even boosts the performances on 14res and 14lap datasets, especially the latter. Since TG module studies the mutual influence between aspects and opinion terms, we suspect that their mutual relation is not that strong. Instead of bringing useful information, TG module could potentially bring in noise as well.

Our assumption is validated by the classifier performance trained on gold labels in Table 5. 14lap and 14res have lower performances than the other two, particularly 14lap, which indicates that their target-opinion pairs are intrinsically more heterogeneous.

Case Study

Some triplet prediction cases are given in Table 6. In general, our model outputs more reasonable results. For the first case, our model can predict more accurate opinions and sentiment polarity such as “was n’t so fresh”. However, it faces some problem in pairing prediction. The baselines cannot well capture the negated opinion. For the second case, all pipelines are hindered by the target “log on”, our model can predict a partial target “log”. For the third case, Li-unified-R predicts three opinions, but “feeding” is a wrong one, while RINANTE fails to predict tags and thus cannot output any triplet. One might notice that in the table, some aspects extracted in the stage one are coupled with multiple opinions, which usually brings in false positive triplets in the stage two. It might be plausible to set a heuristic rule to constrain the pairing algorithm can only output a certain number (say equal to the number of extracted aspects) of triplets according to the classification probability. However, we did try it and found it was not consistently profitable.

Conclusions

We introduce a sentiment triplet extraction task that answers what is the aspect, how is its sentiment and why is the sentiment in one shot by coupling together aspect extraction,
aspect term sentiment classification and opinion term extraction in a two-stage framework. The first stage generates candidate aspects with sentiment polarities and candidate opinion terms by utilizing mutual influence between aspects and opinion terms. The second stage pairs up the correct aspects and opinion terms. Experiments validate the feasibility and effectiveness of our model, and set a benchmark performance for this task.

References

He, R.; Lee, W. S.; Ng, H. T.; and Dahlmeier, D. 2017. An unsupervised neural attention model for aspect extraction. In ACL.

Li, X., and Lam, W. 2017. Deep multi-task learning for aspect term extraction with memory interaction. In EMNLP.

Li, X.; Bing, L.; Li, P.; Lam, W.; and Yang, Z. 2018b. Aspect term extraction with history attention and selective transformation. In IJCAI.

Li, Z.; Wei, Y.; Zhang, Y.; Xiang, Z.; and Li, X. 2019b. Exploiting coarse-to-fine task transfer for aspect-level sentiment classification. In AAAI.

Liu, K.; Xu, L.; and Zhao, J. 2013. Syntactic patterns versus word alignment: Extracting opinion targets from online reviews. In ACL, 1754–1763.

Liu, K.; Xu, L.; and Zhao, J. 2014. Extracting opinion targets and opinion words from online reviews with graph co-ranking. In ACL.

Ma, Y.; Peng, H.; and Cambria, E. 2018. Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive lstm. In AAAI.

Mitchell, M.; Aguilar, J.; Wilson, T.; and Van Durme, B. 2013. Open domain targeted sentiment. In EMNLP.

Pennington, J.; Socher, R.; and Manning, C. 2014. Glove: Global vectors for word representation. In EMNLP.

Xu, H.; Liu, B.; Shu, L.; and Yu, P. S. 2018. Double embeddings and cnn-based sequence labeling for aspect extraction. In ACL.

