
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

RobuTrans: A Robust Transformer-Based Text-to-Speech Model

Naihan Li,∗1,4,5 Yanqing Liu,2 Yu Wu,3 Shujie Liu,3 Sheng Zhao,2 Ming Liu1,4,5

1School of Computer Science and Engineering, University of Electronic Science and Technology of China
2Microsoft STC Asia

3Microsoft Research Asia
4CETC Big Data Research Institute Co.,Ltd, Guiyang

5Big Data Application on Improving Government Governance CapabilitiesNational Engineering Laboratory, Guiyang
lnhzsbls1994@163.com

{yanqliu, Wu.Yu, shujliu, szhao}@microsoft.com
csmliu@uestc.edu.cn

Abstract

Recently, neural network based speech synthesis has achieved
outstanding results, by which the synthesized audios are of
excellent quality and naturalness. However, current neural
TTS models suffer from the robustness issue, which results
in abnormal audios (bad cases) especially for unusual text
(unseen context). To build a neural model which can synthe-
size both natural and stable audios, in this paper, we make
a deep analysis of why the previous neural TTS models are
not robust, based on which we propose RobuTrans (Robust
Transformer), a robust neural TTS model based on Trans-
former. Comparing to TransformerTTS, our model first con-
verts input texts to linguistic features, including phonemic
features and prosodic features, then feed them to the encoder.
In the decoder, the encoder-decoder attention is replaced with
a duration-based hard attention mechanism, and the causal
self-attention is replaced with a ”pseudo non-causal atten-
tion” mechanism to model the holistic information of the in-
put. Besides, the position embedding is replaced with a 1-
D CNN, since it constrains the maximum length of synthe-
sized audio. With these modifications, our model not only
fix the robustness problem, but also achieves on parity MOS
(4.36) with TransformerTTS (4.37) and Tacotron2 (4.37) on
our general set.

1 Introduction

Speech synthesis (also known as text to speech, TTS) has a
pivotal role in a wide range of speech-related applications.
Owing to the development of deep learning techniques,
modern TTS pipelines make a step from HMM-based statis-
tical parametric TTS models (Maia, Zen, and Gales 2010),
neural acoustic models (Ze, Senior, and Schuster 2013) to
neural end-to-end TTS models (Wang et al. 2017; Shen et
al. 2017; Li et al. 2018).

Along with the success of neural machine translation,
neural sequence to sequence models are applied to TTS
tasks, such as Tacotron2 (Shen et al. 2017) and Trans-
formerTTS (Li et al. 2018). The neural sequence to sequence
model usually contains three components: an encoder, a de-
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coder and an attention mechanism between them. The en-
coder is used to convert the input text into a semantic space,
based on which the decoder generates the spectrums, with
the guidance of the attention mechanism to decide when to
pronounce which word. Based on the generated spectrums,
a vocoder (Van Den Oord et al. 2016) is leveraged to synthe-
sizes the final audios.

By this method, the synthesized audio has excellent nat-
uralness on general input texts like those in the training set,
some even achieve close-to-human quality (Li et al. 2018).
However, when the input texts are unusual1, abnormal spec-
trums are generated, leading to bad audios. We summarize
and categorize these bad audios into following major types:
1) some words may be unclear even missed, or on the con-
trary, duplicated; 2) the decoding procedure stops too early
or too late; 3) the decoding procedure can’t stop until the
pre-defined maximum length is reached. The vulnerability
and instability of these models limit their applicability to a
broader range of tasks, which require robust performance on
diverse inputs, such as voice assistant and vehicle navigator.

We conduct a detailed study on the above bad audios gen-
erated by TransformerTTS, finding that abnormal audios al-
ways appear with disordered attention alignments. To deal
with such a problem and ensure the monotonic correspon-
dence from the phoneme sequence to the acoustic sequence,
Zhang, Ling, and Dai (2018) propose a forward attention
method for higher attention stability, in which the attention
probabilities at each time step are computed recursively us-
ing a forward algorithm. Raffel et al. (2017) propose a forced
monotonic attention mechanism, where at each output time
step, the decoder inspects memory entries in left-to-right
manner starting from where it left off at the previous out-
put time step and chooses a single one to attend to.

We test them and find none of them can completely get
rid of abnormal cases, instead gives rise to other issues such
as higher speech rate and weird rhythm.

In this paper, we remove the encoder-decoder attention
and apply a duration-based hard attention to copy encoder
hidden states to their corresponding frames, forcing the de-

1Such as URL, a sequence of numbers, and other texts which
are out of the domain of the training data
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coder to generate correct content. To have a holistic view
of the whole input as the original attention mechanism, we
replace the causal self-attention layer in the decoder with a
pseudo non-causal attention (PNCA) to not only consider
previously decoded results, but also attend to subsequential
contexts. To improve the audio naturalness for long input,
we remove the position embedding and rely on a 1-D CNN
to model the relative position information. Furthermore, in-
stead of using the text, we leverage linguistic features (in-
cluding phonemic and prosodic features) as the input of the
encoder, of which the prosodic features have a great con-
tribution to the prosody of results. With the above adapta-
tions, our model manages to thoroughly eliminate abnormal
results, meanwhile achieve the on parity naturalness with
previous neural TTS models. We conduct experiments on
two test sets, including a general set and a bad-case set. Our
model doesn’t make any mistake for the samples in the bad-
case set, at the same time, it achieves on parity MOS (4.36)
with TransformerTTS (4.37) and to Tacotron2 (4.37) on the
general set.

In summary, our contributions can be listed as follows:
1) We conduct a detailed study to show why previous neu-
ral TTS models are not robust. 2) We employ a duration-
based hard attention to effectively improve the robustness
of our model, meanwhile propose a pseudo non-causal at-
tention, which significantly contributes to the naturalness of
synthesized audio by providing a holistic view of the input
sequence for each decoding step.

Besides, the ability to synthesize long sequences is im-
proved by dispensing the position embedding and relying on
1-D CNN instead, and the naturalness of synthesized audio
is further enhanced by leveraging linguistic features.

3) Our model achieves comparable performance on qual-
ity and naturalness to previous neural TTS models, mean-
while shows excellent robustness for various input patterns.

2 Why Previous Neural Models Unstable
In this section, we first briefly introduce TransformerTTS
(Li et al. 2018), the state-of-the-art Neural TTS model; base
on this model, we make a deep analysis on three factors
which makes it unstable.

TransformerTTS (Li et al. 2018) is a neural TTS model
which combines Transformer (Vaswani et al. 2017) and
Tacotron2 (Shen et al. 2017). As shown in Figure 1, given
the input text, a text-to-phoneme converter is first used to get
the phoneme sequence. With a CNN as the encoder pre-net,
context features are extracted to be the input of the encoder.
The mel spectrum frames are also processed by a 2-layer
fully connected network with relu activation. Position infor-
mation is injected by adding two position embeddings to the
output of the encoder and decoder pre-nets respectively. The
encoder is built with stacks of several identity blocks, each
contains two sub-networks: a self-attention and a feed for-
ward network. The decoder has the similar structure, while
the self-attention is causal to attend to only the previously
decoded frames, and an extra encoder-decoder attention is
leveraged to attend to encoder hidden states.

Based on the final hidden states of the decoder, mel spec-
trum frames are generated autogressively with a linear layer

Figure 1: Architecture of TransfomerTTS.

followed by a post-net, which stops when a stop token is
predicted by a separate linear projection.

Similar to Tacotron2, TransformerTTS also borrows tech-
niques from neural machine translation (NMT) community.
Some designs for NMT, however, do not fit TTS tasks, which
is the root cause of the instability and robustness problem. In
the following section, we summarize three main drawbacks.

2.1 Unconstrained Encoder-decoder Attention

TransformerTTS borrows the soft attention mechanism from
NMT, which enables the decoder to attend to arbitrary parts
at the source side for each step. The mechanism is reason-
able for NMT because the word order of two languages
may be different, which means the last word on the target
side may correspond to the first word on the source side.
In contrast, text to speech has a unique property, which is
monotonous continuous correspondence, meaning that if
the i-th step attends to the j-th word at the source side,
the (i + 1)-th step must attend to the (j + n)-th word
(1 ≥ n ≥ 0), as shown in the left picture in Figure 2.

Previous models ignore this constraint, and learn the
alignment from the data totally, resulting in incorrect align-
ments for special inputs. The right picture in Figure 2 shows
an example of an abnormal alignment. On the one hand, the
attention mechanism skips the second word and attends to
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Figure 2: Normal and abnormal alignments of encoder-
decoder attention. Mel spectrum frames (queries) are ranged
horizontally, while encoder hidden states (keys) are vertical.
Left: normal alignment; the focus along keys are continuous
and monotonous. Right: Abnormal alignment; the red line
represents the skipping as well as retreating advance.

the third word at the third step, while on the other hand, af-
ter attending to the forth word at the fourth step, it attends
to the third word again. These two cases definitely output
bad cases. Although some variation of attention mechanisms
(e.g. forward attention) has tried to construct a monotonous
continuous correspondence between encoder and decoder,
they cannot completely eliminate bad cases. Details will be
shown in Section 4.6.

2.2 Imprecise Stop Prediction

Different from NMT models which predict one token each
time until a stop token is predicted, TTS models predict mel
vectors and require a separate classifier to decide when to
stop. However, this stop predictor is usually unreliable due
to two reasons: 1) Each case of TTS consists of hundreds
of decoding steps but only one stop step, leading to an im-
balance continue/stop classification problem and an unde-
sirable performance on stop prediction. Although imposing
a larger weight on the ”stop” class can efficiently relieve this
issue, the stop prediction still makes mistakes for some spe-
cific inputs. For example, if the input text is twenty consec-
utive ”0”s (”00 . . . 0”), the generated audio is likely to con-
tain more or less than twenty. 2) The stop token is autore-
gressively predicted only conditioning on the hidden state of
each step, which contains no explicit information of whether
the input is all and once pronounced.

2.3 Unseen position embedding

Transformer injects the position information by adding po-
sition embeddings to the inputs of its encoder and decoder:

PE(pos, 2i) = sin(
pos

10000
2i

dmodel

) (1)

PE(pos, 2i+ 1) = cos(
pos

10000
2i

dmodel

) (2)

However, when the input sequence is longer than the nor-
mal length as it is in the training set, the position indexes
can be extremely large, of which the corresponding position
embeddings are unseen for both the encoder and decoder.
Therefore, the input sequences to which these position em-
beddings are added may confuse the model, leading to the
occurrences of abnormal outputs.

Figure 3: Architecture of RobuTrans.

3 Robust Transformer-based TTS

In this section, we will introduce RobuTrans, a robust neu-
ral TTS model based on Transformer, as shown in Figure
3. The main processing pipeline is, on the one hand, the in-
put text is firstly converted into the sequences of linguistic
features, then through Encoder Pre-net (a 3-layer CNN) and
Encoder. Encoder hidden states are fed into Duration Pre-
dictor, which predicts their durations, then they are tiled into
frame-level. On the other hand, the shifted mel spectrum is
firstly processed by Decoder Pre-net, which is a two-layer
fully connected network with relu activation. The tiled en-
coder hidden states and processed mel spectrum frames are
concatenated and then through a linear projection to be fused
and have the appropriate dimension for Decoder. The De-
coder hidden states are processed by a linear projection to
obtain the decoded spectrum, then through Post-net (a 5-
layer CNN) to obtain the final spectrum.

RobuTrans differs from TransformerTTS in following as-
pects: 1) The input of Encoder is linguistic features, which
consists of phonemic and prosodic features; 2) The position
embedding in the Encoder and Decoder is removed; 3) The
encoder-decoder attention is replaced with a duration based
hard attention; 4) The causal self-attention in Decoder is re-
placed with pseudo non-causal attention.
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3.1 Text-to-Linguistic-Feature Converter

We first convert the input text into linguistic features, which
consist of phonemic and prosodic features and then con-
sumed by Encoder. To obtain the phonemic features, a rule-
based system is used for the grapheme-to-phoneme conver-
sion, which generates the phonemic categorical features2.
The prosodic feature includes tone and break index, which
are predicted by a conditional random field (CRF) model
with syntactic and contextual information as in Qian et al.
(2010). The prosodic feature plays a critical role in Robu-
Trans for synthesizing expressive speech, while, on the con-
trary, harms the quality of TransformerTTS. Two ablation
studies will be demonstrated in Section 4.8.

3.2 Duration Predictor

We adopt the structure of the duration predictor as in Fast-
Speech (Ren et al. 2019), where there are two convolutional
layers (kernel size is 3, hidden size is 256) with layer nor-
malization and dropout, together with a linear projection
to predict the logarithmic duration of each encoder hidden
state. Mean squared error (MSE) is employed as the loss
function. To generate the ground truth duration for the model
training, speech recognition tools are employed to make the
forced alignment between the audio and the phoneme se-
quence. With the predicted duration, the phoneme-level fea-
tures are copied and expanded to frame-level features ac-
cordingly, as illustrated in Figure 4.

3.3 Pseudo Non-causal Attention

As discussed in Section 2.1, the encoder-decoder attention
mechanism is a crucial factor for the instability. However,
simply removing this attention will also discard the advan-
tages it brings to the TTS model. The advantages can be
considered as the following two aspects. On the one hand,
the encoder-decoder attention provides a holistic view of in-
put sequence for the decoder, while on the other hand, it
composes frame-level context vectors according to decoder
inputs (which are mel frames). These two advantages make
great contribution to the decoding procedure, and we pro-
pose ”pseudo non-causal attention” (PNCA) to replace the
causal self-attention layers as shown in Figure 4, which not
only inherits the two features above, but also makes the de-
coding procedure robust.

Let T be the total length of mel spectrum to be decoded,
xl
i be the autoregressive output of step i and layer l, hi be

the tiled encoder hidden state of step i. For the time step
t, the PNCA of layer l takes

[
xl−1
1 , xl−1

2 , ..., xl−1
t

]
3 and

[ht, ht+1...hT ] as input. Specifically, let Attention(Q,K)
be the multi-head attention,

2We group the phonemes into different categories, and the cat-
egorical feature indicates which groups the phoneme belongs to.

3if l = 1, x0
i is the fusion of padded mel spectrum frame and

encoder hidden of step i. We concatenate the hi and the (i− 1)-th
mel spectrum frame processed by Decoder Pre-net, then through a
linear projection.

Figure 4: Phoneme-level to frame-level conversion and
pseudo non-causal attention (PNCA). The left part of PNCA
is causal self-attention, which takes the encoder hidden
states fused with padded mel spectrum frames by a linear
projection as input, while the right part consumes only the
encoder hidden states.

ylt = PNCA(xl−1
t , X l−1

1...t, Ht...T ) (3)

= Attention(xl−1
t , X l−1

1...t) + Attention(xl−1
t , Ht...T )

(4)

Then ylt is added to xl−1
t and consumed by FFN and follow-

ing residual connection to obtain xl
t.

By using pseudo non-causal attention, RobuTrans enjoys
the following advantages comparing to TransformerTTS: 1)
Decoder gets a holistic view of the input sequence, as well as
frame-level context vectors, thus the two benefits of vanilla
encoder-decoder attention is kept; 2) the output length is de-
termined by the sum of durations of phonemes, thus the stop
predictor is removable and the issue in Section 2.2 is ad-
dressed; 3) copying encoder hidden states according to their
durations explicitly builds a monotonic continuous corre-
spondence between encoder and decoder steps, which pro-
vides the instruction for each decoding step and helps deal
with the abnormal alignment problem in Section 2.1. With
these three advantages, RobuTrans becomes robust and man-
ages to synthesize stable audios, meanwhile the audio qual-
ity has no regression.

3.4 Removing Position Embedding

As it is demonstrated in Section 2.3, we find that the posi-
tion embedding severely constrains the valid length of syn-
thesized audio in our experiments. Specifically, when a text
is much longer than those in the training set, the synthesized
audio becomes unclear and its prosody is very strange.

Instead of adding this positional embedding, as inves-
tigated in the speech recognition community (Mohamed,
Okhonko, and Zettlemoyer 2019), we can simply remove the
position embedding and count on the CNN used in Encoder
Pre-net to model the relative position information in a fixed
window. By this alteration, RobuTrans can synthesize longer
sequences than those in the training set.
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4 Experiment

4.1 Baseline Model

There are three baseline models to verify both the natural-
ness and robustness of RobuTrans respectively, which are
TransformerTTS, Tacotron2, and FastSpeech. These three
models are all trained with the same dataset introduced in
Section 4.2.

4.2 Training Setup

We use 4 Nvidia Tesla P100 to train our model. Since the
lengths of training samples vary greatly, a fixed batch size
will either run out of memory when the batch size is large, or
makes the training procedure inefficient and unstable if the
batch is small. Therefore, a dynamic batch size is adapted.
Each GPU has a memory of 16GB, which can hold 6000
frames (total length of 10∼40 samples), and thus the batch
size is 40∼160. For the training set, we use an internal US
English dataset, which contains 20 hours of speech from a
single professional speaker. 80-channel mel scaled spectrum
is extracted from 16k normalized wave, and all the train-
ing texts are also normalized. The time consuming for a sin-
gle training step is 0.55 seconds, and it takes 150,000 steps
(about 23 hours) to converge.

4.3 Test Setup

RobuTrans aims to be not only natural but also robust for
all input text. Therefore, we respectively test our model with
two different test sets for these two aspects.

Robustness test: To test the model robustness, we have
a bad-case set consists of 327 sentences, which covers the
main categories. We collect them from a large corpus con-
sisting of tens of thousands of sentences. A Tacotron2 model
is employed to generate all the audios, of which the cor-
responding phoneme sequences are then recognized by a
speech recognition tool. We calculate the WER of these
phoneme sequences with ground truths. Those texts with the
highest error rate are collected as our bad case set, which has
no overlap with our training set. Some typical error-prone
examples are listed in Table 1. The results of this test con-
sists of ”has” and ”doesn’t have” bad cases.

Naturalness test: A 81-sentence test set is randomly se-
lected from the general domain of a large internal corpus
(containing millions of sentences). Sentences in these set are
similar as training set but have no overlap. To evaluate the
naturalness, we conduct both a MOS test (among RobuTrans
and baseline models) and CMOS4 tests (between RobuTrans
and baseline models respectively).

All tests are conducted on a crowd-sourcing platform,
where the testers are registered by themselves. We didn’t
specify anything except for the maximum number of audios
(40 sentences for MOS, 30 sentence pairs for CMOS) each
tester could listen to in one test, and the tester number (12
for MOS, 9 for CMOS) each sample is listened by.

4Comparison mean option score, in which the annotator listens
to two audios from different models with the same text each time
and evaluates how the latter is better than the former with an integer
score ranging in [−3, 3]. Since the order of the two audios changes
randomly, the tester has no idea about their sources.

4.4 WaveNet Vocoder

To obtain audios with high quality, we employ an autore-
gressive WaveNet vocoder to synthesize the audio with mel
sequence as input for all the models, which is trained sepa-
rately conditioning on ground truth mel spectrums extracted
by the audios. The sample rate of ground truth audios is
16000 and frame rate (frames per second) of ground truth
mel spectrums is 80. Our autoregressive WaveNet contains
2 QRNN layers and 20 dilated layers, and the sizes of all
residual channels and dilation channels are 256. Each frame
of QRNN’s final output is copied 200 times to build the con-
ditional input of the 20 dilated layers to fit the same length
with audio samples.

4.5 Result

Generated audio samples are accessible in the supplemen-
tary materials, including those from the general set gener-
ated by RobuTrans and three baseline models, as well as
those by RobuTrans from the bad-case set synthesized by
RobuTrans listed in Table 1 .

We find that RobuTrans can not only synthesize unusual
sentences like a single letter, number and letter series, but
also robust for URLs, command lines, and even for some
long and meaningless sentences, which are completely out
of the domain of our training set.

Robustness test: On our bad-case set (327 sentences),
RobuTrans can always synthesize completely correct au-
dios, including single letter, number and letter series, as
well as URLs, command lines, and even for some long
and meaningless sentences, which are completely out of
the domain of our training set. FastSpeech also generates
no bad cases, while TransformerTTS and Tacotron2 have
237 and 35 bad cases respectively. Note that, on the one
hand, we can qualitatively conclude that RobuTrans and
FastSpeech are two robust TTS models on these input pat-
terns, while TransformerTTS and Tacotron2 are not; mean-
while, TransformerTTS is most likely to generate abnor-
mal results among these models. We think the reason for
the poor robustness of Transformer is that its decoder has
6 encoder-decoder attention among its 6 blocks, each in-
cluding 8 heads; each of them has a chance to make mis-
takes, which makes the model more error-prone. On the
other hand, these numbers of bad cases cannot be used to
quantify the robustness of our model as well as baselines.
Specifically, each pattern includes infinite samples, such as
duplicate ”zero” for 20, 50 and 100 times, etc., on which
Transformer and Tacotron2 always generates bad cases.

Naturalness test: All models generate correct results on
this set. Test results are shown in Table 2, and we have fol-
lowing three conclusions. 1) RobuTrans is on parity with
Tacotron2, as MOS 4.36 verse 4.37 and CMOS −0.062. 2)
RobuTrans is also on parity with TransformerTTS, as MOS
4.36 verse 4.37 and CMOS −0.051. 3) RobuTrans outper-
forms FastSpeech, as MOS 4.36 verse 4.31 and CMOS
+0.187. Acousticly, the audio synthesized by FastSpeech
with WaveNet vocoder has background noise and unclear
pronounciation, which is more obvious when pairwise lis-
tened to in CMOS test.
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Table 1: Categories of error-prone text and corresponding examples

Category Example

Single Letter W
Number zero zero zero zero zero zero zero zero two seven nine eight F three forty zero zero zero zero zero six

four two eight zero one eight
Spelling backslash i n t e r n a l dot e x c h a n g e dot m a n a g e m e n t dot s y s t e m m a n a g e
URL http://office/c16/specs/Specs2/Forms/All%20Office%20Specs.aspx?

RootFolder=/c16/specs/Specs2/FrontPage&View={33888BDC-E0CB-4928-AEB7-26607D28009F}
Command Line $runtime.windows\Speech OneCore\Engines\TTS\ar-EG\ArEGDiacModel.Bin
Spelling &
Number (long, up
to 30 secs)

DUB - OWA - zero one JPN - OWA - zero one RED - OWA - zero one RED - OWA - zero two SIN -
OWA - zero one SIN - OWA - zero two SYD - OWA - zero one SYD - OWA - zero two Corporate
MSG Servers Server Name Exchange Version OS Version Able to Upgrade to WS2003 ?

Model MOS CMOS

Tacotron2 4.37 (0.06) −0.062 (0.088)
TransformerTTS 4.37 (0.06) −0.051 (0.079)

FastSpeech 4.31 (0.06) +0.187 (0.085)
RobuTrans 4.36 (0.06) -
Recording 4.69 (0.06) -

Table 2: MOS and CMOS test results. In ”MOS” and
”CMOS” column, the number in brackets is confidence in-
terval radius with confidence level 0.95. Note that in the
”CMOS” column, all scores measure the improvement of
RobuTrans comparing to the three baseline models.

4.6 Other Attention Mechanisms

We conduct experiments investigating the robustness of
other attention mechanisms, including forward attention
(Zhang, Ling, and Dai 2018), GMM attention (Graves
2013), forced monotonic mechanism (Raffel et al. 2017) and
guided attention (Zhu et al. 2019). All these mechanisms
generate bad cases, therefore none of them could be part
of our robust model. Besides, we find that GMM attention
makes the model more stable on long sequences comparing
to the vanilla attention mechanism. Forward attention makes
inference procedure more unstoppable-prone, forced mono-
tonic mechanism makes the speech rate higher, and guided
attention produces audios with weird rhythm.

4.7 Bad Case Analysis

As reported above, RobuTrans can generate completely cor-
rect samples in our bad-case set, while both Transformer and
Tacotron2 has some errors. To visualize these bad cases, we
show alignments from certain heads of certain layers of the
TransformerTTS encoder-decoder attention, which are obvi-
ously disordered and account for the bad cases.

Missed/duplicated Words: As demonstrated in Section
2.1, there isn’t any constraint for the monotonous continu-
ous correspondence of the encoder-decoder alignment, thus
some words may be missed or duplicated. The disconnec-
tion of the alignment, shown in Figure 5(a), results in the
missed words; on the contrary, some words are pronounced
for more than once, which can be interpreted by the repeated
attention in Figure 5(b).

(a) Skipping alignment, causing missed words.

(b) Retreating alignment, causing duplicated words.

(c) Alignment of early stop.

(d) Alignment of unstoppable prediction.

Figure 5: Alignments of some typical bad cases.

Imprecise Stop: Figure 5(c) shows the alignment of a
sample, of which the text is ”zero zero zero ...” (22 repeated
”zero”s). However, there are only 21 ”zero”s are pronounced
in the synthesized audio. It can be observed that the align-
ment becomes confused in the rear part of the decoding pro-
cedure (the only one line at the beginning becomes five lines
at the end). The reason could be that the decoder has no idea
which word it is decoding since all the words are the same,
which results in the early stop (similar alignment can also
lead to late stop).

Unstoppable Prediction: In Figure 5(d), it can be ob-
served that the alignment keeps repeating the rear words, and
cannot stop until the pre-defined maximum decoding length
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is reached (which is 1000 in this sample).

4.8 Ablation Study

To better understand the impact of the components in Robu-
Trans, we conduct ablation studies as below.

Pseudo Non-Causal Attention: Pseudo non-causal atten-
tion provides a view of subsequential context. We quantify
this innovation by an ablation study where the pseudo non-
causal attention is changed back to the causal self-attention.
The CMOS is −0.291 (CI (95%): 0.077), proving that at-
tending to subsequential frames contributes significantly to
the quality of synthesized audio.

Prosodic Feature: To verify the impact of prosodic fea-
tures, we evaluate the performance without them. We find
that the prosody of generated audios becomes weird and un-
natural. We conduct a CMOS test and find that removing
prosodic features results in a regression with CMOS −0.134
(CI (95%): 0.068 ), which confirms that the prosodic fea-
tures play a significant role in RobuTrans.

Linguistic feature for TransformerTTS: When com-
paring RobuTrans with Transformer, the extra information
added by Text-to-Linguistic-Feature Converter may be a fac-
tor of an unfair comparison. Therefore, we add the same
extra information to TransformerTTS 5, and test its CMOS
comparing to the original version. The result is −0.047 (CI
(95%): 0.11), which means adding extra information doesn’t
improve but severely harms the quality (similar result is also
obtained on Tacotron2).

5 Related Work

Traditional speech synthesis methods can be categorized
into two classes: concatenative systems and parametric sys-
tems. Concatenative TTS systems (Hunt and Black 1996)
split original waves into small units, and stitch them by
some algorithms such as Viterbi (Viterbi 1967) followed
by signal process methods (Charpentier and Stella 1986;
Verhelst and Roelands 1993) to generate new waves. Para-
metric TTS systems (Zen, Tokuda, and Black 2009; Ze, Se-
nior, and Schuster 2013; Tokuda et al. 2013) convert speech
waves into spectrograms, as well as acoustic parameters,
such as fundamental frequency and duration, which are em-
ployed to synthesize new audio results.

Traditional speech synthesis methods require extensive
domain expertise and may contain brittle design choices.
This may be time-consuming and require a lot of resources
for manpower. On the other hand, with the rapid develop-
ment of neural networks, neural TTS has become the main-
stream.

Char2Wav (Sotelo et al. 2017) integrates the front-end
and the back-end with a seq2seq (Sutskever, Vinyals, and
Le 2014; Bahdanau, Cho, and Bengio 2014) model, predict-
ing acoustic parameters for a following SampleRNN (Mehri
et al. 2016). This simplifies the complex traditional pipeline.
After that, end-to-end TTS models become the research fo-
cus, aiming to directly learn the text-to-audio procedure.
In the common pipeline, the text is first converted into the

5Employ this converter to process the input of TransformerTTS
then feed into it.

spectrum, a highly-compressed representation of the audio,
by acoustic models, such as Tacotron (Wang et al. 2017),
Tacotron2 (Shen et al. 2017), TransformerTTS (Li et al.
2018) and ClariNet (Ping, Peng, and Chen 2018), then the
spectrum is converted into the audio by a neural vocoder. As
for the neural vocoder, WaveNet (Van Den Oord et al. 2016)
is a powerful model which can generate high-quality au-
dios. Combine the acoustic model and vocoder, neural TTS
achieves extraordinary results and significantly outperforms
traditional TTS systems.

Though neural TTS shows promising ability, there are still
two barriers preventing them from being widely applied to
application especially in industry. On the one hand, the infer-
ence cannot be real-time since both the acoustic model and
vocoder are autoregressive, which mean the prediction of
each time step depends on previous steps, thus the inference
is serial, and the acoustic model faces the same situation. To
tackle this problem, fast vocoders are firstly proposed, such
as Parallel WaveNet (Oord et al. 2017), WaveGlow (Prenger,
Valle, and Catanzaro 2019), WaveRNN (Kalchbrenner et al.
2018) and LPCNet (Valin and Skoglund 2019). After the
speedup on vocoders, parallelization is then investigated on
the acoustic model. FastSpeech (Ren et al. 2019) breaks the
autoregressive connection in its decoder, and employs Wave-
Glow, a parallel vocoder, making the inference completely
non-autoregressive and two orders faster.

6 Conclusion

In this paper, we first give a deep analysis of why pre-
vious neural TTS models are unstable. Among these rea-
sons, the encoder-decoder attention borrowed from NMT
is the most critical factor. TransformerTTS and Tacotron2
always generates bad cases on certain patterns, and Trans-
formerTTS is more error-prone since it employs more such
attention mechanisms. Besides, the position embedding also
constrains the maximum length of generated audio. Based
on this analysis, we propose RobuTrans, a robust neural
TTS model based on Transformer, which is not only robust
even for unseen context but also capable to synthesize nat-
ural speech audios, of which the quality is on parity with
TransformerTTS and Tacotron2 on a general test domain.
We find that FastSpeech is also robust since it employs simi-
lar duration-based hard encoder-decoder attention, while our
model outperforms it on audio quality and requires no addi-
tional teacher model.
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