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Abstract

Identifying multiple emotions in a sentence is an important
research topic. Existing methods usually model the problem
as multi-label classification task. However, previous methods
have two issues, limiting the performance of the task. First,
these models do not consider prior emotion distribution in a
sentence. Second, they fail to effectively capture the context
information closely related to the corresponding emotion. In
this paper, we propose a Latent Emotion Memory network
(LEM) for multi-label emotion classification. The proposed
model can learn the latent emotion distribution without exter-
nal knowledge, and can effectively leverage it into the clas-
sification network. Experimental results on two benchmark
datasets show that the proposed model outperforms strong
baselines, achieving the state-of-the-art performance.

Introduction

Emotion classification is an important task in natural lan-
guage processing (NLP). Automatically inferencing the
emotions is the initial step for downstream applications such
as emotional chatbots (Zhou et al. 2018), stock market pre-
diction (Nguyen, Shirai, and Velcin 2015), policy studies
(Bermingham and Smeaton 2011), etc. However, it is com-
mon that there exist more than one emotion in a piece of text.
Intuitively, people tend to express multiple emotions in one
piece of text. Taking the following sentences as example:

(S1) How’s the new Batman Telltale Series? Looks good
but I’m growing weary of this gaming style.

(S2) It really is amazing in the worst ways. It was very
hard to stifle my laughter after I overheard this comment.

In sentence S1, multiple emotions are conveyed, includ-
ing anticipation, disgust, love and pessimism. Sentence S2
contains two emotions: joy and sadness. How to identify the
multiple co-existing emotions in a sentence remains a chal-
lenging task.

There has been work considering multi-label emotion
classification (He and Xia 2018; Almeida et al. 2018; Yu et
al. 2018). However, there still are two limitations. 1) They
assume each emotion occurs with equal prior probability,
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Figure 1: Multiple emotions with different intensities.

and fail to consider prior emotion distribution in a sentence.
Intuitively, different emotion in a sentence has different in-
tensity. Figure 1 illustrates the emotion distribution of sen-
tence S1, where there are four different emotions with differ-
ent intensities. In particular, the emotions anticipation and
pessimism receive higher intensities than disgust and love.
Emotion labels with higher intensity should deserve higher
probabilities at the final prediction for the model. 2) Previ-
ous work does not effectively capture the context informa-
tion closely related to the corresponding emotion, which is
crucial for the prediction. In sentence S2, the clues indicat-
ing the sadness emotion, ‘worst’, are scattered broadly, and
surrounded by the words ‘laughter’ and ‘amazing’ that sup-
port the joy emotion. Correct predictions can be made only
when these features can be sufficiently mined and properly
selected. If we can sufficiently capture effective features for
each emotion, the final prediction will be relatively easy.
This requires a strong ability of the model on features ex-
traction.

To address these issues, we propose a Latent Emotion
Memory network (LEM) for multi-label emotion classifica-
tion. LEM consists of two main components: a latent emo-
tion module and a memory module, which are shown in
Figure 2. First, the latent emotion module learns emotions
distribution by reconstructing the input via variational au-
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Figure 2: The basic unit of LEM, including the latent emo-
tion module and the memory module with one hop. Wled is
the latent emotion distribution embedding. Wef is the emo-
tion feature embedding, also used as memory representation
for memory module.

toencoder. Second, the memory module captures emotion-
related features for the corresponding emotion. Finally, the
feature representation from the memory module concate-
nated with emotion distribution representation from the la-
tent emotion module is fed into a bi-directional Gated Re-
current Unit (BiGRU) to make prediction.

All the components are trained jointly in a supervised end-
to-end learning: the latent variable representation from the
latent emotion module guides the prediction of the mem-
ory module, and the emotion memory module in return en-
courages the latent emotion module to better learn the emo-
tion distribution through back-propagation. Our model can
learn latent emotion distribution information without exter-
nal knowledge, effectively leveraging it into the classifica-
tion network.

We conduct experiments on the SemEval 2018 task 1C
English dataset and the Ren-CECps Chinese dataset. Experi-
mental results show that our model outperforms strong base-
lines, achieving the state-of-the-art performance.

Related Work

Multi-label Emotion Classification Emotion detection
has been extensively researched in recent years (Ren et al.
2017; Tang et al. 2019). Existing work mainly includes
lexicon-based methods (Wang and Pal 2015), graphical
model-based methods (Li et al. 2015) and linear classifier-
based methods (Quan et al. 2015). More recently, various
neural networks models have been proposed for this task,
achieving highly competitive results on several benchmark
datasets (Ren et al. 2016; Felbo et al. 2017; Baziotis et al.
2018; He and Xia 2018). For example, Wang et al. (2016)
employed the TDNN framework by constructing a convo-
lutional neural network (CNN) for multiclass classification.
Yu et al. (2018) proposed a transfer learning architecture to

improve the performance of multi-label emotion classifica-
tion. However, these methods do not consider the prior emo-
tion distribution information in a sentence.

Our work is related to the work proposed by Zhou et
al. (2016). They proposed an emotion distribution learning
(EDL) method, which first learned the relations between
emotions based on the theory of Plutchik’s wheel of emo-
tions (Plutchik 1980), and then conducted multi-label emo-
tion classification by incorporating these label relations into
the cost function (Zhou et al. 2016a). Nevertheless, our
method differs from theirs in three aspects: 1) our model ef-
fectively learns the emotion distribution, which is free from
the restraint of any theory. 2) the emotion intensities distri-
bution is automatically captured during the reconstruction of
inputs in VAE model. 3) multi-hop memory module ensures
that each emotion makes full use of context information for
the corresponding emotion.

Variational Models Our proposed method is also related
to work on variational models in NLP applications. Bow-
man et al. (2015) introduced a RNN-based VAE model
for generating diverse and coherent sentences. Miao et al.
(2016) proposed a neural variational framework incorporat-
ing multilayer perceptrons (MLP), CNN and RNN for gen-
erative models of text. Bahuleyan et al. (2017) proposed an
attention-based variational seq2seq model for alleviating the
attention bypassing effect. Different from the above meth-
ods, we first employ the VAE model to make reconstruction
for original input, and then make use of the intermediate la-
tent representation as a prior emotion distribution informa-
tion for facilitating downstream prediction.

Method
The proposed model consists of two main components: a la-
tent emotion module and a memory module. The mechanism
of the basic unit of LEM is shown in Figure 2.

Latent Emotion Module

Since we cannot measure the emotion distribution explic-
itly, we model it as a set of latent variables. We employ
variational autoencoder (VAE) to learn the latent multino-
mial distribution representation Z during the reconstruction
of the input.

Encoding The input of latent emotion module is emotion-
BoW (eBoW) features of the sentence. Before being fed
into VAE, the BoW features are preprocessed so that stop-
words or meaningless words are excluded from the vocabu-
lary. The reasons are two fold: 1) our target is to capture the
emotion distribution, and the latent representation should be
emotion-rich rather than general semantic meaning. 2) re-
ducing the size of BoW vocabulary is beneficial to the train-
ing of VAE.

The encoder fe(·) consists of multiple non-linear hidden
layers, transforming the input XeBoW ∈ R

L (L is the max
length of feature sequence) into prior parameters μ and σ:

μ = fe,μ(XeBoW ),

logσ = fe,σ(XeBoW ).
(1)
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We define (Bowman et al. 2015) an emotion latent variable
Z

′
= μ+σ · ε, where ε is Gaussian noise variable sampled

from N (0, 1), Z
′ ∈ R

K (K denotes the number of emotion
labels). Then, the variable is normalized:

Z = softmax(Z
′
). (2)

Correspondingly, the latent emotion distribution p(ek|, k =
1, · · · ,K) is reflected in Z.

Decoding Variational inference is used to approximate a
posterior distribution over Z. We first use a linear hidden
layer fled(·) to transform Z into embeddings:

Rled = fled(Z;Wled), (3)

where Wled ∈ R
K×Eled (Eled is the corresponding embed-

ding dimension) is the learned embedding of the latent emo-
tion distribution. This embedding will later be used to guide
the feature learning of memory module, and to control the
overall prediction of emotions.

A good decoder can learn a bunch of high level represen-
tation of rich emotion features during the process of recon-
structing data. With this purpose, we use a non-linear hidden
layer fef (·) to further decode Rled:

Ref = fef (R
led;Wef ), (4)

where Wef ∈ R
L×Eef (Eef denotes the corresponding em-

bedding dimension) is the global embedding of emotion fea-
tures, which is later utilized for the memory module as ex-
ternal memory. Finally, the decoding is formulated as:

X̂eBoW = softmax(frec(R
ef )), (5)

where frec(·) is the terminal hidden layer, X̂eBoW denotes
the reconstructed features.

Training Following the work of Le et al. (2018), parame-
ters in the latent emotion module are learned by maximizing
the variational lower bound on the marginal log likelihood
of features:

logpθ(X) ≥ EZ∼qφ(Z|X)[logpθ(X|Z)]−
KL(qφ(Z|X)||p(Z)),

(6)

where φ and θ are the parameters of the encoder and decoder
respectively, and the KL-divergence term ensures that the
distributions qφ(Z|X) is near to the prior probability p(Z),
pθ(X|Z) describes the decoding process.

Since the training objective of the decoder is to recon-
struct the input, it has direct access to the source fea-
tures. Thus, when the decoder is trained, we assume that
q(Z|X) = q(Z) = p(Z), which means that the KL loss
is zero. It makes the latent variables Z fail to capture infor-
mation. To combat this, we employ KL cost annealing and
word dropout for the encoder (Goyal et al. 2017).

Figure 3: The overall framework of the LEM model. The
memory module are private for each k-th emotion. The la-
tent emotion module is shared globally.

Emotion Memory Module

Based on our observation, the evidences and clues for the
corresponding emotion are scattered, or even mingled with
the features that indicate other emotions in a sentence.
This brings challenges for capturing and extracting effec-
tive features. We thus leverage multiple-hop memory mod-
ule (Sukhbaatar et al. 2015) to mine rich context information
for the corresponding emotion.

In a memory module, a mask operation is performed on
Wled for selecting out the k-th emotion embedding Wled,k.
Specifically, the mask:

Mask = [�1; · · · ;�0]︸ ︷︷ ︸
K

(7)

is a matrix (Mask ∈ R
K×Eled ) consisting of K vectors,

where �1 ∈ R
Eled is all-one vector, �0 ∈ R

Eled is all-zero
vector. In the k-th memory module, only the k-th vector is
given as�1, while the others are�0. The purpose is to guide the
k-th memory module to focus on the corresponding emotion
on feature learning. Afterwards, a dense layer transforms
Wled,k into Rle

k .
Given an input text representation X = {e1, · · · , eL}

(ei ∈ R
Ee is the word vector, Ee is embedding dimension),

we then compute the relatedness between the text embed-
ding and the corresponding latent emotion representation
Rle

k via attention:

αinput = softmax(Winput[R
le
k ;X]), (8)

where Winput is parameter matrix, [a; b] denotes the con-
catenating operation. Now we obtain the input context rep-
resentation:

Rinput =
∑

αinput ·X. (9)

On the other hand, we obtain the memory representation
M from the global emotion feature embedding Wef via a
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linear transformation:
M = fβ(Wef ). (10)

Next, we compute the match between the input context rep-
resentation and the memory, to obtain an output context rep-
resentation:

αoutput = softmax(σ(Woutput[R
input;M ])), (11)

Routput =
∑

αoutput ·Rinput, (12)

where σ(·) denotes the activation function.
Finally, we combine the output context representation

with the input text embedding into a new representation Rm
k

for the k-th emotion.
Rm

k = Routput +X. (13)
The output representation of current memory hop carries
features representation that is relevant to the corresponding
emotion.

Latent Emotion Memory Network

The overall framework of LEM is illustrated in Figure 3.
The full model maintains K private memory modules for
K emotion categories. Different emotions learn their own
features, but share one common latent emotion module. The
latent emotion embedding Wled and emotion feature em-
bedding Wef are shared globally.

We utilize multiple hop memories to make comprehensive
exploration of features, repeating computation steps based
on previous memory states (Tang, Qin, and Liu 2016).The
final representation Rm

H can be obtained via multiple mem-
ory hops:

Rm
h,k = Memh,k(R

m
h−1,k), (14)

where k denotes the k-th emotion, h = (1, · · · , H) is the
current hop. The number of memory hops H is decided em-
pirically based on the used dataset.

Finally, we use a bi-directional GRU to learn emotion co-
herence. As briefly described above, the continuous emo-
tion intensity representation Wled can be deemed as an im-
portant indication for guiding the label prediction. Thus,
we concatenate the latent emotion distribution embedding
Wled and the features representation Rm

H,k learned from
each memory module, which is represented as:

Rtotal,k = [Rm
H,k;Wled,k], (15)

and feed the results into BiGRU. At the k-th time step, soft-
max function at the bottom of BiGRU outputs the final pre-
diction for the k-th emotion:

pk = softmax(BiGRU(Rtotal,k)). (16)

Experiments

Training

We employ a joint cross entropy for the binary softmax clas-
sifier for each emotion. The emotion-inference module up-
dates the parameters by minimizing the following loss func-
tion:

Lclz = − 1

K

K∑
j

(p̂j logpj + (1− p̂j)log(1− pj)), (17)

where p̂j is the true label of the j-th emotion.
Note that the latent emotion module is closely joint to the

memory module. This ensures that the supervised learning in
memory module can also guide the distribution learning of
latent emotion module via back-propagation. For example,
the emotions anticipation and pessimism in sentence S1 are
labeled as positive, which in return leads to higher weights
assigned for these two emotion at corresponding positions
in Z during training.

The components elaborated above can be jointly trained.
However, directly training the whole framework with cold-
start can be difficult and will cause high variance. Thus we
first pre-train the latent emotion module until it is close to
the convergence via Eq.6. Afterwards, we jointly train all the
components via Eq.6 and Eq.17. Once the classification loss
is close to convergence, we again train the latent emotion
module alone, until it converges. We then co-train the over-
all LEM. We keep such training iterations until the overall
performance reaches its plateau.

Datasets

We conduct experiments on two benchmark datasets, includ-
ing the English dataset SemEval2018 (Mohammad et al.
2018) and the Chinese dataset Ren-CECps (Quan and Ren
2010). SemEval2018 consists of 11 emotion labels: antic-
ipation, anger, fear, joy, disgust, love, optimism, sad, sur-
prise, trust and pessimism. Ren-CECps contains 8 emotion
labels: anger, expectation, anxiety, joy, love, hate, sorrow
and surprise. Statistics of datasets is shown in Table 1.

In our experiments, the latent emotion module takes emo-
tional BoW as input. We first filter out stopword tokens1,
keeping the words existed in a sentiment dictionary as the
lexicons. For English lexicon, we employ GI (Stone, Dun-
phy, and Smith 1966), LIWC (Pennebaker, Francis, and
Booth 2001), MPQA (Wilson, Wiebe, and Hoffmann 2005),
Opinion Lexicon (Hu and Liu 2004) and SentiWordNet
(Baccianella, Esuli, and Sebastiani 2010). For Chinese lex-
icon, we use HowNet. Note that we also keep the emotion-
rich symbols (e.g. emoji, emoticons). For the memory mod-
ule, we keep the original token sequence as the input.

Experimental Settings

For English, we use the publicly available GloVe2 300-
dimensional embeddings trained on 6 billion words from
Wikipedia and web text. For Chinese, we train 300-
dimensional word embeddings on Chinese Wikipedia on 3.1
billion words using word2vec3. We set the same max length
for XeBoW and X .

In the learning process, we set 300 epochs for pre-training
latent emotion module, and 1000 total training epochs with
early-stop strategy (Caruana, Lawrence, and Giles 2001). To
mitigate overfitting, we apply dropout with a rate of 0.01. We
use Adam (Kingma and Ba 2014) for the optimization with

1For Chinese, we perform word segmentation first, by using the
gensim package: https://radimrehurek.com/gensim

2http://nlp.stanford.edu/projects/glove/
3https://code.google.com/archive/p/word2vec/
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Dataset Sent. Words Avg.len. Emo. 3 co.e.l.(%) 2 co.e.l.(%) 1 co.e.l.(%) Train Dev Test

Ren-CECps 35,096 228,455 24.56 8 1,824(5.2) 11,416(32.5) 18,812(53.6) 24,567 3,510 7,019
SemEval2018 10,983 32,557 16.04 11 3,419(31.1) 4,442(40.4) 1,563(14.2) 6,838 886 3,259

Table 1: Statistics of datasets. Avg.len. is the average length of sentences. Emo. denotes the numbers of emotion categories.
#N co.e.l. denotes the N numbers of co-existing emotion labels in one sentence.

System
SemEval2018 REN-CECps

HL RL miF1 maF1 AP HL RL miF1 maF1 AP

BR

TextCNN 0.198 0.292 0.548 0.465 0.439 0.204 0.292 0.322 0.301 0.626
BiLSTM 0.245 0.344 0.498 0.437 0.400 0.212 0.370 0.290 0.277 0.582
RCNN 0.181 0.311 0.512 0.408 0.385 0.201 0.325 0.3437 0.301 0.605

attLSTM 0.244 0.248 0.557 0.432 0.449 0.191 0.318 0.350 0.296 0.641
FastText 0.197 0.235 0.522 0.438 0.428 0.206 0.264 0.312 0.281 0.630

JB

TextCNN 0.161 0.263 0.612 0.496 0.502 0.160 0.230 0.413 0.384 0.689
BiLSTM 0.183 0.208 0.608 0.485 0.492 0.174 0.274 0.374 0.311 0.672
RCNN 0.151 0.237 0.649 0.505 0.510 0.168 0.237 0.388 0.344 0.686
JBNN 0.190 0.192 0.632 0.528 0.526 0.165 0.192 0.418 0.380 0.693

ECC 0.210 0.240 0.458 0.376 0.395 0.210 0.348 0.291 0.256 0.597
MLLOC 0.245 0.342 0.484 0.414 0.413 0.185 0.474 0.278 0.234 0.413
ML-KNN 0.196 0.270 0.410 0.387 0.391 0.245 0.290 0.310 0.285 0.591

TMC 0.191 0.219 0.561 0.465 0.482 0.228 0.252 0.391 0.342 0.630
EDL 0.182 0.177 0.581 0.504 0.501 0.187 0.227 0.458 0.365 0.662
SGM 0.165 0.184 0.616 0.492 0.524 0.187 0.234 0.473 0.392 0.673
RERc 0.176 0.170 0.651 0.539 0.530 0.201 0.210 0.511 0.416 0.683
DATN - - - 0.551 - - - - 0.441 0.732

LEM (ours) 0.142 0.157 0.675 0.567 0.568 0.151 0.183 0.501 0.448 0.751
LEM-Wled 0.185 0.197 0.620 0.517 0.527 0.191 0.204 0.408 0.413 0.711
LEM-Rle 0.167 0.173 0.640 0.534 0.542 0.168 0.198 0.436 0.427 0.735

Table 2: Experimental results on two datasets. LEM-Wled represents the model without latent emotion distribution representa-
tion Wled in Eq.15. LEM-Rle denotes the memory module without Rle in Eq.8.

the initial rate of 0.001. We employ five widely used met-
rics for measuring multi-label classification performance,
including Hamming Loss (HL), Ranking Loss (RL), Mi-
cro F1 (miF1), Macro F1 (maF1) and Average Precision
(AP) (Zhang and Zhou 2014; Zhou, Yang, and He 2018).

Baselines

We make comparisons between LEM and the following
baseline systems.

Binary Relevance (BR): Zhang and Zhou (2014) trans-
form the multi-label problem into several binary problems
(Zhang and Zhou 2014). Following their settings, we employ
five neural classifier that are widely used for text classifi-
cation, including TextCNN (Kim 2014), BiLSTM (Schuster
and Paliwal 1997), RCNN (Lai et al. 2015), attLSTM (Zhou
et al. 2016b) and FastText (Joulin et al. 2016).

Joint Binary (JB): He and Xia (2018) show that their
model (named JBNN) is better than BR by sharing the re-
lations between labels (He and Xia 2018). Following their
settings, we employ five neural classifiers that are widely
used for text classification, including TextCNN (Kim 2014),
BiLSTM (Schuster and Paliwal 1997), RCNN (Lai et al.

2015), attLSTM (Zhou et al. 2016b) and FastText (Joulin
et al. 2016).

Multi-label Emotion Classification: There has also been
work for multi-label emotion classification: ECC (Read et al.
2009), MLLOC (Huang and Zhou 2012), ML-KNN (Zhang
and Zhou 2014), TMC (Wang et al. 2016), EDL (Zhou et al.
2016a), SGM (Yang et al. 2018), RERc (Zhou, Yang, and
He 2018) and DATN (Yu et al. 2018).

Results

The results are shown in Table 2. Our proposed model
achieves the best performance compared with all baseline
systems on almost all measurements, with 0.568 Average
Precision, 0.142 Hamming Loss, 0.157 Ranking Loss on Se-
mEval2018, and 0.751 Average Precision, 0.151 Hamming
Loss and 0.183 Ranking Loss on Ren-CECps. Based on ex-
perimental results, we have the following observations. First,
the joint binary classification methods are better than sepa-
rate binary classifiers. This finding is consistent to the work
of He and Xia (2018). Second, the models that integrate the
relations between emotions achieve better performance. For
example, SGM and RERc achieve better performance than
TMC and BR models. Third, sufficiently capturing and uti-
lizing the emotion distribution is useful for multi-label emo-
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Model anxiety joy love expectation hate sorrow anger surprise Avg.

JBNN 0.507 0.456 0.446 0.380 0.268 0.442 0.304 0.251 0.380
EDL 0.453 0.402 0.399 0.259 0.255 0.366 0.307 0.239 0.335
TMC 0.438 0.400 0.391 0.331 0.211 0.393 0.237 0.188 0.322
SGM 0.471 0.429 0.422 0.359 0.241 0.406 0.277 0.217 0.352

LEM(our) 0.571 0.530 0.509 0.454 0.336 0.507 0.369 0.321 0.448

Table 3: Results of each emotion on Ren-CECps. The performance is measured by Macro F1.

tion classification task. For example, our model achieves
better performance than previous methods.

We also empirically explore the performances without the
prior emotion distribution information. Specifically, Rtotal

in the BiGRU does not contain the latent distribution rep-
resentation Wled in Eq.15, and the memory module do not
contain Rle in Eq.8, respectively. We can see that in both
situations, the ability of LEM drops dramatically, though the
performances are still better than most of the baselines. The
above analysis shows the usefulness of prior emotion distri-
bution for multi-label emotion classification.

Further, we compare the performances between LEM
and strong baselines on each emotion. Results on the Ren-
CECps dataset are shown in Table 3. Our model gives better
results on all categories, while the emotions hate, anger and
surprise are more challenging, with relatively lower perfor-
mances in all models.

Analysis and Discussion

Emotion Distribution Learning We conduct experiments
on different number of co-existing emotion labels to validate
the ability on multiple label learning. Table 4 reports the re-
sults. First, the models (EDL and LEM) that use the infor-
mation of emotion distribution achieve better performance.
Second, LEM model gives better performance than all base-
line systems. Third, the more emotions co-exist, the more
improvements our LEM achieves. This indicates the effec-
tiveness of incorporating the emotion distribution informa-
tion for the task.

We further analyze how capable the latent emotion mod-
ule is on emotion distribution learning. We intercept the
emotion distribution Z and measure the distance between
the learned distribution and the true distribution, with three
metrics: Euclidean (Eu), Squared χ2 (Sq) and Kullback-
Leibler (KL) (Zhou et al. 2016a). Based on Ren-CECps4,
we make comparisons with three baselines: ML-KNN, EDL
and RERc, which directly learn the emotion intensity distri-
bution for the task. As seen in Table 5, the latent emotion
module of our model achieves the best KL score (0.190)
against the baselines. This demonstrates the strong ability
of the latent emotion module on distribution learning.

Impact of Memory Hops We also analyze the impact of
different hop numbers in the memory module. Table 6 re-
ports the results. We can see that LEM with 2 hops achieves
the best F1 score on Ren-CECps and 3 on SemEval2018.

4In Ren-CECps, each emotion in a sentence is labeled with not
only a emotion tag, but an intensity score, and thus the normalized
intensity scores can be viewed as distribution.

Model ≥ 1 co.e.l. ≥ 2 co.e.l. ≥ 3 co.e.l.

TMC 0.507 0.547 0.608
SGM 0.531 0.581 0.659
EDL 0.538 0.610 0.697
LEM 0.593 0.643 0.734

Table 4: Different number of co-existing emotion labels.

Model Eu Sq KL

ML-KNN 0.247 0.241 0.258
EDL 0.236 0.188 0.206
RERc 0.186 0.151 0.198
LEM� 0.207 0.168 0.190

Table 5: Results on emotion distribution learning. LEM� de-
notes the latent emotion module of LEM.

Dataset 1 hop 2 hops 3 hops 4 hops 5 hops

Ren-CECps 0.434 0.448 0.440 0.436 0.431
SemEval2018 0.556 0.562 0.567 0.560 0.550

Table 6: Impact of different number of memory hops.

This can be explained from two aspects. First, SemEval2018
contains 11 emotion labels, and the co-existing labels in the
sentences are more complex than that of Ren-CECps. Sec-
ond, the cues for supporting the emotions in SemEval2018
are more scattered, though the average length of sentences
is shorter than that of Ren-CECps. Besides, we can observe
that the increase of hop numbers does not give better perfor-
mance, and may cause overfitting.

Emotion Discovery We print out the top 10 key words
learned from each emotion memory on SemEval2018, by
first gathering the top 3 highly lighted tokens at every sen-
tences on each emotion memory, and then collecting all
these tokens and sorting them by their frequency. The results
are shown in Table 7.

We can find that the words discovered by emotion memo-
ries are strong clues for directly indicating the corresponding
emotion. This proves that the memory module has strong
ability on feature learning and extraction. Besides, some
words are simultaneously occurred across multiple emo-
tions. These words can be viewed as evidences, demonstrat-
ing the ability of our model on learning the correlations
between emotions. Actually, some sentence often involves
multiple emotions based on a single indicative clue. For ex-
ample in sentence S1, the word ‘good’ is a strong cue for
indicating the emotion relevance concurrently on two emo-
tions: anticipation and love.
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Emotion Key words

anger angry anger terrible fucking fuming awful can’t rage bully shocking
anticipation new blues good can’t watch serious nervous wait horror worry

disgust angry horrible terrible revenge fuck awful offended shit hate
fear anxiety fear nervous horror nightmare awful panic afraid terror bad
joy happy love good smile amazing new hilarious great lol live.ly

love laughter love smiling best Happy beautiful hilarious glee good great
optimism happy love good smile optimism life new best great fear

pessimism sad depression sadness lost depressing awful can’t anxiety nervous bad
sadness nightmare can’t depressing unhappy bad life anxiety terrible awful bitter

surprise shocking amazing hilarious Watch live.ly new broadcast serious awe believe
trust good :) love best fear optimism worry amazing new faith

Table 7: Top 10 key words on each emotion discovered by emotion memory.

Figure 4: Visualization on an example. The left shows the
emotion distribution captured in latent variable Z, and the
right shows the memories visualization to the corresponding
emotion.

Case Study We analyze how the latent emotion module
and the emotion memories in LEM together help to make
prediction. We select an example from the test set in Se-
mEval2018, which contains three emotions: anticipation,
fear and joy. We visualize the latent variable Z, and the
memories representation from the last hop of the corre-
sponding emotion. Figure 4 shows the results. We can see
that the latent emotion distribution correctly captures the
emotion intensities distribution. In the example, anticipa-
tion, fear and joy receive much higher weights. The corre-
sponding emotion memories provide clues that are closely
related to the emotions. For example, the word ‘Hope’ in-
dicates the emotion anticipation, and the word ‘horrid’ and
the emoji pattern are strong evidences for the emotion fear.

Conclusion

We proposed a Latent Emotion Memory network for multi-
label emotion classification. The proposed model could

learn the latent emotion distribution without external knowl-
edge, and effectively leverage it into the classification net-
work. Results on two datasets showed that our model outper-
formed strong baselines, achieving the state-of-the-art per-
formance, demonstrating the usefulness of modeling rich
emotion correlations for the task.
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