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Abstract

Neural semantic parsers usually generate meaning represen-
tation tokens from natural language tokens via an encoder-
decoder model. However, there is often a vocabulary-
mismatch problem between natural language utterances and
logical forms. That is, one word maps to several atomic log-
ical tokens, which need to be handled as a whole, rather
than individual logical tokens at multiple steps. In this pa-
per, we propose that the vocabulary-mismatch problem can
be effectively resolved by leveraging appropriate logical to-
kens. Specifically, we exploit macro actions, which are of the
same granularity of words/phrases, and allow the model to
learn mappings from frequent phrases to corresponding sub-
structures of meaning representation. Furthermore, macro ac-
tions are compact, and therefore utilizing them can signifi-
cantly reduce the search space, which brings a great benefit to
weakly supervised semantic parsing. Experiments show that
our method leads to substantial performance improvement on
three benchmarks, in both supervised and weakly supervised
settings.

Introduction

Semantic parsing aims to transform natural language utter-
ances to meaning representations (Zelle and Mooney 1996;
Zettlemoyer and Collins 2005; Wong and Mooney 2007;
Lu et al. 2008; Kwiatkowski et al. 2013; Yin et al. 2018).
In recent years, encoder-decoder based neural models have
achieved significant progress in semantic parsing (Xiao,
Dymetman, and Gardent 2016; Dong and Lapata 2016;
Jia and Liang 2016; Rabinovich, Stern, and Klein 2017;
Chen, Sun, and Han 2018). Neural parsers model semantic
parsing as a word sequence to logical token sequence trans-
lation task, where an encoder encodes the word sequence of
an utterance, and an attention-guided decoder generates its
logical form token-by-token. These tokens can be logical to-
kens of a linearized logical form, or atomic construction ac-
tions of a semantic graph. Figure 1 shows an example, where
“Which states border Texas?” is translated to a logical token
sequence [answer, (, A ...] or an atomic action sequence
[add node:A, add type:state ...].
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 Which states border Texas?

add_node:A, add_type: state, arg_node: A, add_node:B, 
add_edge: next_to, arg_node: A, arg_node:B, 
add_entity:texas:st, arg_node: B, return:A

answer ( A , ( state ( A ) , next_to ( A , B ) , const ( B , stateid ( Texas ) ) ) )

Utterance

Logical Form

Action Sequence

Seq2Action

Seq2Seq

Figure 1: A demonstration of Seq2Seq model and
Seq2Action model for semantic parsing.

To adapt to the Seq2Seq framework, most neural seman-
tic parsers decouple meaningful semantic units (e.g., CCG
category, lambda term, etc.) into atomic logical tokens, so
that the decoder can generate them just like words in neu-
ral machine translation. This assumption, unfortunately, of-
ten leads to a vocabulary-mismatch problem. For example,
in Figure 1 the predicate triggered by word “border” will
be decoupled to 4 atomic logical tokens [next to, (, ,,
)] in lambda calculus or 3 actions [add edge:next to,
arg node:A, arg node:B] in semantic graph represen-
tation. It is obvious that words and atomic logical tokens are
of different granularities, and atomic logical tokens cannot
act as separate meaningful semantic units.

The vocabulary-mismatch problem raises both effective-
ness and efficiency issues for neural semantic parsing.
Firstly, the logical tokens triggered by a word are generated
in multiple individual steps, rather than being triggered at
once. Therefore, neural parsers need to additionally model
the dependency between different logical tokens, in order
to prevent syntactically ill-formed logic forms (e.g., miss-
ing arguments for predicates, missing “)” after “(”, missing
nodes for an edge). Secondly, the granularity of logical to-
kens is usually too small, which is likely to result in long
logical token sequence, and consequently, high time com-
plexity in both training and decoding phases. For instance,
in GEO dataset the average CCG category size of its sen-
tences is 7.6, but the average length of linearized logical to-
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ken sequences is 28.2. Such a length increase significantly
enlarges the search space during decoding, making it hard to
train neural parsers in weakly-supervised settings, which is
critical for building semantic parsers in real world applica-
tions.

In this paper, we resolve the vocabulary-mismatch prob-
lem by leveraging macro logical tokens, which are of the
same granularity of words/phrases. Our idea is motivated by
traditional grammar-based semantic parsers, where the logi-
cal tokens of a word are not triggered separately, but trig-
gered at once as a whole meaningful term. For example,
for word “border”, the atomic tokens in its CCG category
λx.λy.next to(x, y) are triggered at once, rather than trig-
gered as 7 individual tokens. Using macro logical tokens, the
neural models don’t need to capture the dependency between
atomic logical tokens, and its efficiency in both training and
decoding is expected to be significantly improved, owing to
the shorter sequence length.

To this end, this paper proposes the Seq2MacroAction
model, which uses Seq2Action as the base model, extended
with macro logical tokens – macro actions as demonstrated
in Figure 2. In this way, the vocabulary-mismatch problem
can be resolved by exploiting macro actions. Concretely,
we use a frequent sub-structure mining algorithm to auto-
matically collect macro actions, and choose macro actions
based on two intuitions: 1) the macro actions need to be
meaningful semantic units which are of the same granular-
ity of words/phrases; 2) the macro actions should be general
enough to be applicable to different domains/datasets. For
example, using the proposed algorithm, we retain a single
macro action for word “border” and phrase “border Texas”,
but do not retain a single macro action for phrase “border
state that has a city named”, as the latter is too specific. Ad-
ditionally, we propose an effective macro action embedding
algorithm, so that our macro actions can be adapted to cur-
rent Seq2Seq based neural parsers without any additional
effort.

We evaluate our approach on both supervised and
weakly-supervised semantic parsing tasks on three stan-
dard datasets—GEO, ATIS and JOBS. Experimental results
show that, by collecting macro actions and integrating them
in Seq2Seq framework, our Seq2MacroAction is more ef-
fective and more efficient. Firstly, because we don’t need
to model the dependencies between atomic logical tokens,
our model can be more easily learned. Experimental results
show that our Seq2MacroAction model achieves competi-
tive performances on all three datasets in supervised set-
ting. Secondly, macro actions can significantly reduce the
complexity of search space, therefore lead to more efficient
decoding. For instance, macro actions can reduce the logi-
cal token sequence length from 28 to 5 in GEO dataset. In
this way, our macro action based semantic parsers can be
directly trained using weakly-supervised techniques, with-
out extra resources or strategies. Experimental results also
verify that our method significantly outperforms previous
weakly-supervised models, and even competitive to super-
vised semantic parsers.

The main contributions of this paper are as follows:

• We propose a promising direction for resolving the
vocabulary-mismatch problem in neural semantic parsers,
i.e., leveraging macro logical tokens which are of the
same granularity of words/phrases. This solution can ben-
efit many neural semantic parsers in improving both their
effectiveness and efficiency.

• We propose the Seq2MacroAction model, which presents
how to automatically collect macro actions – the macro
logical tokens for semantic graph representation, and
shows how to incorporate macro actions in Seq2Seq
framework using an effective macro action embedding al-
gorithm. The Seq2MacroAction achieves competitive per-
formance in both supervised/weakly-supervised settings
on three standard datasets.

Base Seq2Action Model

This section briefly describes the base model used in this
work –Seq2Action (Chen, Sun, and Han 2018). Seq2Action
models semantic parsing as an end-to-end semantic graph
generation process, which maps the word sequence of a sen-
tence to a sequence of atomic semantic graph construction
actions. This paper selects Seq2Action as our base model
because it can simultaneously leverage the advantages of se-
mantic graph representation and the strong prediction ability
of Seq2Seq models. In the following we briefly describe the
Seq2Action model.

Semantic Graph Representation. Seq2Action uses se-
mantic graphs as meaning representations, where each se-
mantic graph is a sub-graph of a knowledge graph (e.g.,
Freebase1). A semantic graph consists of nodes, edges and
some operations (e.g., count, argmax). A node can be
a variable or an entity. An edge corresponds to a rela-
tion in knowledge graph. In the original paper (Chen, Sun,
and Han 2018), 6 different kinds of atomic semantic graph
construction actions are designed, namely add node,
add type, add entity, add edge, add operation
and arg node.

Semantic Parsing as Semantic Graph Generation.
Based on the above atomic actions, Seq2Action parses a
sentence by translating it to a sequence of semantic graph
construction actions. Specifically, given a sentence X =
x1, ..., x|X|, Seq2Action generates a sequence of actions
Y = y1, ..., y|Y | using a constrained decoder (Krishna-
murthy, Dasigi, and Gardner 2017; Sun et al. 2018), which
leverages structure constraints and semantic constraints to
generate well-formed action sequences.

Learning. Given a training corpus {(X1, Y1), ..., (Xn,
Yn)}, where each instance is a sentence Xi paired with its
action sequence Yi, Seq2Action maximizes the likelihood of
the generated action sequence given Xi using the objective
function:

n∑

i=1

logP (Yi|Xi) (1)

where the conditional probability P (Y |X) used in

1https://en.wikipedia.org/wiki/Freebase
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 Which states border Texas?

1. add_type_node:  state, A
2. add_edge_entity_node:   next_to, texas, B
3. arg_node:  A
4. return:  A

Semantic Graph Macro Action Sequence

Utterance

 Which/What noun

typetype

add_type_node: T, N

relation entity

add_edge_entity_node: R, E, N

1. add_node:A, 
2. add_type: state,
3. arg_node: A, 
4. add_node:B,
5. add_edge: next_to,
6. arg_node: A, 
7. arg_node:B, 
8. add_entity:texas:st,
9. arg_node: B,
10. return:A

Action Sequence

Seq2Action

Seq2MacroAction

Generalized pattern-mappings from the left example

N: node      R: relation     T:  type       E: entity

 Which states Border Texas

Figure 2: Demonstrations of semantic parsing with macro actions (Compared with atomic action sequence, the length of macro
action sequence has been reduced from 10 to 4). These parts with the same color (red and blue) in Utterance, Semantic Graph,
Action Sequence and Macro Action Sequence indicate their correspondences. Our parser learns to map frequent language
patterns (e.g., relation entity) to macro actions (e.g., add edge entity node), which denote corresponding sub-structures
in a semantic graph.

b1 b2 b4

Which

attention

s1 s2 s4

y1 y3

softmax

y1 y2 y4

...

...

states Texas

b3

border

Figure 3: The framework of our Seq2MacroAction model,
which encodes an input sentence to a vector and then utilizes
an attention-guided decoder to generate macro actions one
by one.

Seq2Action is decomposed as follows:

P (Y |X) =

|Y |∏

t=1

P (yt|y1, ..., yt−1, X) (2)

Macro Actions for Neural Semantic Parsing

This section describes our Seq2MacroAction model, which
can resolve the vocabulary-mismatch problem by exploiting
macro actions in neural semantic parsing. Figure 3 shows
the framework of our Seq2MacroAction model. Compared
with Seq2Action, Seq2MacroAction outputs macro actions,
rather than atomic actions, and is therefore more effective
and efficient due to shorter sequence length. To this end,
there are two main issues to be addressed. Firstly, how to ob-
tain meaningful macro actions which are of the same granu-
larity with natural language words/phrases. Secondly, how
to effectively incorporate macro actions into the encoder-
decoder architecture. Solutions to these two issues are de-
scribed in details as follows.

Macro Actions

As discussed above, macro actions need to: 1) be of the same
granularity of natural language words/phrases, so that the
vocabulary-mismatch problem can be resolved; 2) be gener-
alized enough, so that the macro-action based model can fit
to different datasets/representations/domains. It is obvious
that atomic actions are not appropriate because their gran-
ularity is too small, although they are generalized enough.
In this paper, we obtain macro actions automatically with a
frequent sub-structure mining algorithm (see Algorithm 1)2,
which is described as follows.

Firstly, the meaning representations of all sentences
are decomposed into sub-structures with all granular-
ities3. For example, for the semantic graph represen-
tation in Figure 2, we get sub-structures with gran-
ularity of 1: node:A, node:state, node:texas,
edge:next to, edge:type, edge:const. Then we
identify frequent sub-structures according to their frequen-
cies. We filter the frequent sub-structures using by only
considering sub-structures with their granularities between
3 to 4, since sub-structures with too large granularity are
of low generalization ability. Finally, we generalize the ex-
tracted frequent sub-structures to get the macro-actions. For
example, for frequent sub-structure next to.state(A),
we obtain a macro action add edge type node, which
is a more general form of the sub-structure by abstracting
state to type and abstracting next to to edge. There
are in total 5 kinds of macro actions we collected as de-
scribed as follows and their examples are shown in Table
1:

Add Type Node: This kind of macro actions denotes a
variable node with a type, which are mostly triggered by en-

2Notice that this algorithm can also be adapted to other meaning
representations.

3Since a semantic graph usually only has a small number of
nodes and edges, so our algorithm is efficient in practice.
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Macro Action Type Phrase Pattern
Example

Phrase Macro Action Sub-Structure

Add Type Node which/what category which states structure: add type node
semantic: state,A

Add Entity Node entity Texas structure: add entity node
semantic: Texas,A

Add Edge Type Node relation category border states structure: add edge type node
semantic: next to,state,A

Add Edge Entity Node relation entity border Texas structure: add edge entity node
semantic: next to,texas,A

Add Ope Type Node count category how many states structure: add ope type node
semantic: count,state,A

Table 1: Macro action types (5 in total) and examples. Each kind of macro action type corresponds to a phrase pattern in natural
language, and denotes a sub-structure in knowledge base.

Algorithm 1 Frequent Sub-Structure Mining
Input: {(xi, yi)} pairs, xi is an utterance, and yi is its meaning

representation.
Output: Frequent sub-structure set FSS
1: function FRESUBSTRUCEXT({(xi, yi)})
2: SS ← ∅
3: for i = 0→ n− 1 do
4: Decompose yi to get all sub-structures SSi

5: SS ← SS ∪ SSi

6: end for
7: Extract frequent sub-structures from SS according to fre-

quency
8: return Frequent sub-structure set FSS
9: end function

tity type words such as “river”, “person”, etc. We denote this
kind of action as add type node:T,N, where T indicates
the type, and N is the identifier of the variable node.

Add Entity Node: This kind of macro actions de-
notes an entity node (e.g., Texas) and is represented as
add entity node:E,N, where E indicates the entity,
and N is the identifier of the entity node. This kind of ac-
tions are mostly triggered by entity names, such as “Texas”,
“Steve Jobs”, etc.

Add Edge Type Node: This kind of macro actions de-
notes a sub-structure which adds a relational constraint to a
typed variable node. This is a frequent sub-structure for “re-
lation category”. For example, “border states”. It consists of
an edge and a variable node with a type. We denote this kind
of actions as add edge type node:R,T,N, where R in-
dicates the edge (corresponding to a relation), T indicates
the type, and N is the identifier of the variable node.

Add Edge Entity Node: This kind of macro actions
denotes a sub-structure which indicates a relational con-
straint in semantic graph. For example, the phrase “bor-
der Texas” in “which states border Texas” will add a
relational constraint to the variable node indicated by
“states”. This kind of macro actions consists of an edge

and an entity node. We denote this kind of actions
as add edge ent node:R,E,N, where R indicates the
edge, E indicates the entity, and N is the identifier of the
variable node.

Add Ope Type Node: This kind of macro actions denotes
a sub-structure which indicates an operation attached to a
typed variable node. For example, the phrase “how many
states” associates a count operation attached to a variable
node with the type of “state”. It consists of an operation and
a variable node with a type. We denote this kind of actions as
add ope type node:O,T,N, where O indicates the op-
eration (e.g., count, argmax), T indicates the type, and N
is the identifier of the variable node.

The above macro actions are of almost the same granu-
larity of words or frequent phrases. Meanwhile, the macro
actions are generalized enough, as their generalization abil-
ity is the same as the lexicons used in traditional grammar-
based semantic parsers. Furthermore, by leveraging macro
actions for frequent phrases, similar to the phrase based ma-
chine translation (Koehn, Och, and Marcu 2003), our macro
actions can further reduce the ambiguity of actions. We can
automatically generate all macro actions from knowledge
base (in weakly-supervised setting) or from training cor-
pus (in supervised settings) by enumerating all above sub-
structures.

Seq2MacroAction

To incorporate macro actions into neural semantic parsing,
our Seq2MacroAction model first encodes sentences as the
same as Seq2Action, then the decoder generates macro ac-
tion sequence for constructing semantic graph. For example,
our method will generate [add type node:state,A;
add edge enti node:next to,texas,B;
arg node:A; return:A] in Figure 2. We can see
that, the main task here is how to embed macro actions,
rather than atomic actions.

Macro2Action Embedding. From our experience, macro
actions are composed of atomic actions with usually unique
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Figure 4: Macro action embedding model.

structures, and therefore, simply embedding each macro ac-
tion as a whole likely leads to sparsity and redundancy prob-
lems. To this end, this paper embeds macro actions by taking
their structures into consideration. Intuitively, macro actions
usually contain many functional parts, such as the struc-
ture part and the semantic part, which are common between
different macro actions. Based on this intuition, we embed
macro actions as follows.

Concretely, as Figure 4 shows, the embedding of each
macro action is the concatenation of the embedding of its
structure part (add edge type node) and semantic part
(next to, state, A). Each structure part or semantic
part is composed of primitive elements, e.g., edge, type,
node in the structure part add edge type node. In or-
der to make parameters more compact and enable more in-
formation sharing of macro actions, we first embed every
primitive elements, and then use a recursive neural network
(Socher, Manning, and Ng 2010) to get the embedding for
each structure part and semantic part. Specifically, we com-
bine the embeddings of different elements using the weight
matrix M 4.

Weakly-Supervised Learning

Because macro actions can significantly reduce the search
complexity of semantic parsing, it is easy to train our model
using weakly-supervised learning techniques.

The difference between supervised setting and weakly-
supervised setting is the learning algorithm. Specifically,
for weakly-supervised learning we use a learning algo-
rithm called maximum margin average violation reward
(MAVER), proposed by Misra et al. (2018). For each train-
ing example (xi, zi), this algorithm finds the highest scoring
program yi that evaluates to zi, as the reference program,
from the set K of the programs generated by the search.
With a margin function δ, and reference program y, the set
of programs V that violate the margin constraint can thus be
defined as:

V = {y′|y′ ∈ Y and scoreθ(y, x)

≤ scoreθ(y
′, x) + δ(y, y′, z)} (3)

4The matrix for structure part and semantic part are different,
but each kind of macro action shares the same matrix for structure
and the same matrix for semantic part. These matrices are parame-
ters learned from training data.

The most violating program for the constraint can be written
as:

ŷ = argmax
y′∈Y

{scoreθ(y′, x) + δ(y, y′, z)

−scoreθ(y, x)}
(4)

The average-violation margin objective is thus defined as:

JMAVER = −max{0, scoreθ(ŷ, xi)

− 1

|V|
∑

y∈V
scoreθ(yi, xi) + δ(yi, ŷ, zi)} (5)

Using this update strategy, the learning algorithm considers
more negative examples during each update, therefore can
achieve stable performance.

Experiments

Datasets

ATIS contains natural language questions of a flight
database, in which each question is annotated with a lambda
calculus query. Following Zettlemoyer and Collins (2007),
we use the standard 4473/448 for train/test instance split.
GEO contains natural language questions about US geog-
raphy paired with corresponding Prolog database queries. A
US geography database and the answers for all questions are
also provided. Following Zettlemoyer and Collins (2005),
we use the standard 600/280 train/test instance split.
JOBS contains natural language questions about jobs paired
with Prolog database queries. The jobs database and the
answers for each question are also provided5. Follow-
ing Zettlemoyer and Collins (2005), we use the standard
500/140 train/test instance split.

Experiment Setups

For utterances encoder, we use 200 hidden units and 100-
dimensional word vectors. For decoder, we tune the dimen-
sions of action embedding on validation datasets. All param-
eters are initialized by uniformly sampling within the inter-
val [-0.1, 0.1]. We train our model for a total of 30 epochs
with an initial learning rate of 0.1, and halve the learning rate
every 5 epochs after the first 15 epochs. We use a universal
word embedding for words occurring only once.

We conduct experiments on GEO, JOBS, and ATIS for su-
pervised semantic parsing, and conduct experiments on GEO
and JOBS for weakly-supervised semantic parsing. We reim-
plement two base systems. One is Seq2Seq based on Jia and
Liang (2016). The other is Seq2Action based on Chen, Sun,
and Han (2018). We use the same evaluation strategy as Jia
and Liang (2016) for GEO and JOBS, and the same strategy
as (Dong and Lapata 2016) for ATIS.

Main Results

Tables 2 & 3 show our main results. From these tables, we
can see that:

5We use the same jobs database as Liang, Jordan, and Klein
(2011).
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1. The proposed Seq2MacroAction model achieves com-
petitive performance on all three datasets. On GEO dataset,
our model gets the best accuracy of 89.6. On ATIS dataset,
our model gets the state-of-the-art accuracy of 88.2. On
JOBS dataset, our model gets a competitive accuracy of 92.1,
only falls behind Rabinovich, Stern, and Klein (2017) with
SUPATT which uses an extra supervised attention mecha-
nism. These results confirm the effectiveness of using logical
tokens of larger granularity in neural semantic parsing. For
example, in ATIS dataset, macro actions will enable phrase-
level mapping for frequent phrases “from city”, “to city”,
“earliest flight”, etc. In this way the mapping ambiguity and
the decoding complexity can be significantly reduced.

2. By leveraging logical tokens, having the same gran-
ularity of words/phrases, our model achieves significant
improvement in both supervised and weakly-supervised
settings. Compared with atomic action based baseline
Seq2Action, our model achieves performance improvements
on all three datasets. This verifies the effectiveness of lever-
aging logical tokens as meaningful semantic units as a
whole, rather than individual logical tokens at multiple steps.

3. By significantly reducing search complexity, our
method achieves good performance in weakly-supervised
setting. Our model outperforms the base systems signifi-
cantly, and even gets competitive results compared to su-
pervised semantic parsers. On the GEO dataset, our model
gets the test accuracy of 86.4, better than the accuracy 82.1
of Seq2Action baseline. On the JOBS dataset, our model
gets the test accuracy of 87.1, better than the accuracy of
84.3 of Seq2Action baseline. We argue that the improvement
is brought by macro actions’ ability in explicitly encoding
common dependencies, and thus enable the model to learn
better pattern-subgraph mappings, which can greatly benefit
weakly-supervised semantic parsers.

4. The proposed macro actions have a generalization abil-
ity. Our Seq2MacroAction gets strong results on all three
datasets from different domains. This demonstrates that the
logical tokens can be effectively obtained by mining fre-
quent sub-structures to enhancing neural semantic parsing.

Detailed Analysis

Length of Macro Action Sequences. Table 4 presents
the average lengths of logical forms, action sequences and
macro action sequences. We can see that the length of macro
action sequence is significantly shorter than other action se-
quences, and is similar to utterances. We believe short action
sequence is an advantage since many long-term dependency
problems can be avoided and the decoding can be more effi-
cient.

Effect of Macro Action Embedding Algorithm. Here
we conduct experiments to evaluate the effect of our macro
action embedding algorithm (RNN+Conca.). The first com-
paring algorithm is embedding each macro action as a whole
(Simple Embedding). The second one is summing up the
structure part embedding and semantic part embedding sep-
arately, then concatenating them (Summing+Conca.). Table
5 shows the results. We observe a large drop in performance
for all datasets when embedding each macro action as a
whole, showing that the sparsity problem is serious and can

GEO JOBS
Supervised Systems

Zettlemoyer and Collins (2005) 79.3 79.3
Zettlemoyer and Collins (2007) 86.1 -
Kwiatkowksi et al. (2010) 88.9 -
Kwiatkowski et al. (2011) 88.6 -
Zhao and Huang (2015) 88.9 85.0
Jia and Liang (2016) 85.0 -
Jia and Liang (2016)* (+data) 89.3 -
Dong and Lapata (2016): 2Seq 84.6 87.1
Dong and Lapata (2016): 2Tree 87.1 90.0
Rabinovich, Stern, and Klein (2017) 85.7 91.4
Rabinovich, Stern, and Klein (2017)+SUPATT 87.1 92.9
Dong and Lapata (2018) 88.2 -
Chen, Sun, and Han (2018) 88.9 -
Seq2MacroAction 89.6 92.1
Weakly-Supervised Systems

Liang, Jordan, and Klein (2011)* 87.9 90.7
Seq2Seq 78.6 77.1
Seq2Action 82.1 84.3
Seq2MacroAction 86.4 87.1

Table 2: Test accuracies on GEO and JOBS datasets in both
supervised and weakly-supervised settings, where * indi-
cates systems with extra-resources used.

ATIS
Zettlemoyer and Collins (2007) 84.6
Kwiatkowksi et al. (2010) 71.4
Kwiatkowski et al. (2011) 82.8
Poon (2013) 83.5
Zhao and Huang (2015) 84.2
Dong and Lapata (2016): 2Seq 84.2
Dong and Lapata (2016): 2Tree 84.6
Jia and Liang (2016) 76.3
Jia and Liang (2016)* (+data) 83.3
Rabinovich, Stern, and Klein (2017) 85.3
Rabinovich, Stern, and Klein (2017)+SUPATT 85.9
Chen, Sun, and Han (2018) 85.5
Dong and Lapata (2018) 87.7
Seq2MacroAction 88.2

Table 3: Test accuracies on ATIS, where * indicates systems
with extra-resources used.

GEO ATIS JOBS
Utterance 7.60 11.10 9.80

Logical Form 28.20 28.40 22.90
Action 18.20 25.80 16.24

Macro Action 5.51 8.36 7.02

Table 4: Average length of utterance, logical forms, action
sequences and macro action sequences on three datasets.

be resolved by sharing sub-part embedding. We also observe
performance drops by 2.3 points on average when summing
up embedding then concatenating, showing that considering
the inner structure of macro action is helpful.

Attention Heatmap based on Macro Actions. Fig-
ure 5 shows the heatmap of a Seq2MacroAction pars-
ing example. Notice that, our model can learn ef-
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GEO ATIS JOBS
RNN+Conca. 89.6 88.2 92.1

Simple Embedding 83.9 84.2 87.8
Summing+Conca. 87.9 86.0 89.2

Table 5: Results for using different macro action embedding
algorithms.

Figure 5: An attention heatmap example of our
Seq2MacroAction model (darker color indicates higher at-
tention score). Alignments are showed with blue rectangles.

fective mapping patterns from phrases to sub-meaning
structures. For instance, there is a strong soft align-
ment between phrase “longest river” and macro ac-
tions add ope type node:longest,river,A in the
heatmap.

Related Work

Traditional semantic parsers are usually lexicon-grammar
based models (Zettlemoyer and Collins 2005; Liang, Jor-
dan, and Klein 2011; Cai and Yates 2013; Berant et al.
2013). These parsers need to learn a lexicon and to define
compositional grammars. In recent years, Seq2Seq models
have achieved significant progress (Dong and Lapata 2016;
Jia and Liang 2016; Chen, Sun, and Han 2018; Herzig and
Berant 2018; Guo et al. 2019; Bogin, Berant, and Gardner
2019; Shaw et al. 2019). Meanwhile, there are some studies
focusing on using other meaning representations (e.g., se-
mantic graphs) or designing effective learning algorithm for
different situations (e.g., weakly-supervised semantic pars-
ing).

Semantic Parsing using Semantic Graph. Compared
to traditional logical forms, semantic graph representations
have a tight-coupling with the knowledge base, and shares
many commonalities with syntactic structures. Therefore
structure and semantic constraints from knowledge base can
be easily exploited during parsing. Using semantic graphs as
meaning representation, semantic parsing can be formulated

as a semantic graph generation task. Reddy, Lapata, and
Steedman (2014) constructs semantic graphs by transform-
ing dependency graph from CCG parse. Yih et al. (2015)
constructs semantic graphs based on three heuristic steps.
Bast and Haussmann (2015) uses three templates to con-
struct semantic graphs. Chen, Sun, and Han (2018) generates
action sequences, which can be used to construct semantic
graphs.

Weakly Supervised Semantic Parsing. Supervised ap-
proaches often suffer from the lack of training data, be-
cause it is expensive to annotate an utterance with its logi-
cal form. Many weakly supervised techniques have been in-
vestigated, e.g., supervised using denotations for utterances
(Liang et al. 2017; Guu et al. 2017; Cheng and Lapata 2018;
Misra et al. 2018; Goldman et al. 2018; Liang et al. 2018;
Agrawal et al. 2019). One main challenge here is the large
search space of potential programs needing to be explored.
Misra et al. (2018) defines a new learning algorithm to ad-
dress this challenge. Goldman et al. (2018) alleviates this
problem by utilizing an abstract representation, where to-
kens in both the language utterance and program are lifted
to an abstract form. However the search space of these meth-
ods is still not reduced. The number of actions to build target
programs is large. Compared to these methods, our method
focuses on reducing the number of actions, which can reduce
search space substantially.

Macro Grammars for Semantic Parsing. In order to
speed up semantic parsing, Zhang, Pasupat, and Liang
(2017) proposed a new learning algorithm using macro
grammars and holistic triggering. The idea of macro gram-
mars is that macros can capture the overall shape of com-
putations in a way that can generalize across different utter-
ances and knowledge bases. However, their base grammar
must be general enough to build programs for complex ut-
terances, leading to a huge search space. And their gram-
mars are used for traditional lexicon-grammar based seman-
tic parsing. Our idea of macro actions is partially inspired
by their idea. The main difference is that our method can not
only reduce the search space, but can also be easily incorpo-
rated to Seq2Seq neural semantic parsing.

Conclusions

This paper presents a new algorithm – Seq2MacroAction,
which can resolve the vocabulary-mismatch problem in neu-
ral semantic parsing. Compared to previous studies, macro
actions can model word/phrase level mappings, thus the
ambiguity of logical tokens is significantly reduced and
the search space for generating gold programs is greatly
reduced. Experimental results show that our model not
only outperforms base models significantly, but also obtains
strong performance in weakly supervised semantic parsing
settings. We believe this work explores a promising direc-
tion for enhancing neural semantic parsers – by leveraging
more appropriate output logical tokens, and this will benefit
and can be used in many other neural semantic parsers.
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