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Abstract

Recent superhuman results in games have largely been
achieved in a variety of zero-sum settings, such as Go and
Poker, in which agents need to compete against others. How-
ever, just like humans, real-world AI systems have to coordi-
nate and communicate with other agents in cooperative par-
tially observable environments as well. These settings com-
monly require participants to both interpret the actions of oth-
ers and to act in a way that is informative when being inter-
preted. Those abilities are typically summarized as theory of
mind and are seen as crucial for social interactions. In this
paper we propose two different search techniques that can be
applied to improve an arbitrary agreed-upon policy in a coop-
erative partially observable game. The first one, single-agent
search, effectively converts the problem into a single agent
setting by making all but one of the agents play according
to the agreed-upon policy. In contrast, in multi-agent search
all agents carry out the same common-knowledge search pro-
cedure whenever doing so is computationally feasible, and
fall back to playing according to the agreed-upon policy oth-
erwise. We prove that these search procedures are theoreti-
cally guaranteed to at least maintain the original performance
of the agreed-upon policy (up to a bounded approximation
error). In the benchmark challenge problem of Hanabi, our
search technique greatly improves the performance of every
agent we tested and when applied to a policy trained using
RL achieves a new state-of-the-art score of 24.61 / 25 in the
game, compared to a previous-best of 24.08 / 25.

Introduction

Real-world situations such as driving require humans to co-
ordinate with others in a partially-observable environment
with limited communication. In such environments, humans
have a mental model of how other agents will behave in dif-
ferent situations (theory of mind). This model allows them to
change their beliefs about the world based on why they think
an agent acted as they did, as well as predict how their own
actions will affect others’ future behavior. Together, these
capabilities allow humans to search for a good action to take
while accounting for the behavior of others.
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Despite the importance of these cooperative settings to
real-world applications, most recent progress on AI in large-
scale games has been restricted to zero-sum settings where
agents compete against each other, typically rendering com-
munication useless. Search has been a key component in
reaching professional-level performance in zero-sum games,
including backgammon (Tesauro 1994), chess (Campbell,
Hoane Jr, and Hsu 2002), Go (Silver et al. 2016; 2017;
2018), and poker (Moravčı́k et al. 2017; Brown and Sand-
holm 2017; 2019).

Inspired by the success of search techniques in these
zero-sum settings, in this paper we propose methods for
agents to conduct search given an agreed-upon ‘conven-
tion’ policy (which we call the blueprint policy) in coop-
erative partially observable games. We refer to these tech-
niques collectively as Search for Partially Observing Teams
of Agents (SPARTA). In the first method, a single agent per-
forms search assuming all other agents play according to the
blueprint policy. This allows the search agent to treat the
known policy of other agents as part of the environment and
maintain beliefs about the hidden information based on oth-
ers’ actions.

In the second method, multiple agents can perform search
simultaneously but must simulate the search procedure of
other agents in order to understand why they took the ac-
tions they did. We propose a modification to the multi-agent
search procedure - retrospective belief updates - that allows
agents to fall back to the blueprint policy when it is too ex-
pensive to compute their beliefs, which can drastically re-
duce the amount of computation while allowing for multi-
agent search in most situations.

Going from just the blueprint policy, to single-agent
search, to multi-agent search each empirically improves per-
formance at the cost of increased computation. Additionally,
we prove that SPARTA cannot result in a lower expected
value than the blueprint policy except for an error term that
decays in the number of Monte Carlo (MC) rollouts.

We test these techniques in Hanabi, which has been pro-
posed as a new benchmark challenge problem for AI re-
search (Bard et al. 2019). Hanabi is a popular fully coop-
erative, partially observable card game with limited commu-
nication. Most prior agents for Hanabi have been developed
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using handcrafted algorithms or deep reinforcement learn-
ing (RL). However, the Hanabi challenge paper itself re-
marks that “humans approach Hanabi differently than cur-
rent learning algorithms” because while RL algorithms per-
form exploration to find a good joint policy (convention),
humans instead typically start with a convention and then
individually search for the best action assuming that their
partners will play the convention (Bard et al. 2019).

Applying SPARTA to an RL blueprint (that we train
in self-play) establishes a new state-of-the-art score of
24.61 / 25 on 2-player Hanabi, compared to a previous-best
of 24.08 / 25. Our search methods also achieve state-of-the-
art scores in 3, 4, and 5-player Hanabi (Table 1). To our
knowledge, this is the first application of theoretically sound
search in a large partially observable cooperative game.

We provide code for single- and multi-agent search
in Hanabi as well as a link to supplementary material
at https://github.com/facebookresearch/
Hanabi_SPARTA

Related Work
Search has been necessary to achieve superhuman perfor-
mance in almost every benchmark game. For fully observ-
able games, examples include two-ply search in backgam-
mon (Tesauro 1994), alpha-beta pruning in chess (Camp-
bell, Hoane Jr, and Hsu 2002), and Monte Carlo tree search
in Go (Silver et al. 2016; 2017; 2018). The most promi-
nent partially observable benchmark game is poker, where
search based on beliefs was key to achieving professional-
level performance (Moravčı́k et al. 2017; Brown and Sand-
holm 2017; 2019). Our search technique most closely re-
sembles the one used in the superhuman multi-player poker
bot Pluribus, which conducts search given each agents’ pre-
sumed beliefs and conducts MC rollouts beyond the depth
limit of the search space assuming all agents play one of a
small number of blueprint policies.

Cooperative multi-agent settings have been studied ex-
tensively under the DEC-POMDP formalism (Oliehoek,
Spaan, and Vlassis 2008). Finding optimal policies in DEC-
POMDPs is known to be NEXP-hard (Bernstein et al. 2002),
so much prior work studies environments with structure such
as factorized local interactions (Oliehoek et al. 2008), hierar-
chical policies (Amato et al. 2015), or settings with explicit
costs of communication (Goldman and Zilberstein 2003).

There has been a good deal of prior work develop-
ing agents in Hanabi. Notable examples of hand-crafted
bots that incorporate human conventions include Smart-
Bot (O’Dwyer 2019) and Fireflower (Wu 2018a). Alterna-
tively, so called ‘hat-coding’ strategies (Wu 2018b), which
are particularly successful for N > 2 players, instead use in-
formation theory by communicating instructions to all play-
ers via hints using modulo-coding, as is commonly em-
ployed to solve ‘hat-puzzles’. More recent work has focused
on tackling Hanabi as a learning problem (Bard et al. 2019;
Foerster et al. 2019). In this domain, the Bayesian Action
Decoder learning method uses a public belief over private
features and explores in the space of deterministic partial
policies using deep RL (Foerster et al. 2019), which can
be regarded as a scalable instantiation of the general ideas

presented in (Nayyar, Mahajan, and Teneketzis 2013). The
Simplified Action Decoder algorithm established the most
recent state of the art in Hanabi (Hu and Foerster 2020).

Lastly, there is recent work on ad-hoc team play in Han-
abi, in which agents get evaluated against a pool of different
teammates (Canaan et al. 2019; Walton-Rivers et al. 2017).

Background

We consider a Dec-POMDP with N agents. The Markov
state of the environment is s ∈ S and we use i to denote
the agent index. At each time step, t, each agent obtains an
observation oi = Z(s, i), where Z is a deterministic obser-
vation function, and takes an action ai ∈ A, upon which the
environment carries out a state transition based on the tran-
sition function, st+1 ∼ P(st+1|st,a), and agents receive a
team-reward of rt = R(st,a), where a indicates the joint
action of all agents. We use τt = {s0,a0, r0, ...st} to de-
note the game history (or ‘trajectory’) at time t. Each agent’s
policy, πi, conditions on the agent’s action-observation his-
tory (AOH), τ it = {oi0, ai0, r0, ...oit}, and the goal of the
agents is to maximise the total expected return, Jπ =
Eτ∼P (τ |π)R0(τ), where R0(τ) is the forward looking return
of the trajectory, Rt(τ) =

∑
t′≥t γ

t′−trt′ , and γ is an (op-
tional) discount factor. In this paper we consider both deter-
ministic policies, ai = π(τ it ), typically based on heuristics
or search, and stochastic policies, ai ∼ πθ(ai|τ it ), where θ
are the parameters of a function approximator, e.g., a deep
neural network.

In order to represent variable sequence lengths trajecto-
ries, τ it , Deep RL in partially observable settings typically
uses recurrent networks (RNNs) (Hausknecht and Stone
2015). These RNNs can learn implicit representations of the
sufficient statistics over the Markov state given τ it . In con-
trast, in our work we will use explicit beliefs to represent the
probability distribution over possible trajectories1. The pri-
vate belief of agent i that they are in trajectory τt at time step
t is Bi(τt) = P (τt|τ it ). We also define B(τt) = P (τt|τGt )
and B(τ it ) = P (τ it |τGt ) =

∑
τt∈τ i

t
B(τt), which is the prob-

ability that agent i is in AOH τ it conditional only on the
common knowledge (CK) of the entire group of agents τGt .
Here CK are things that all agents know that all agents know
ad infinitum. Please see (Osborne and Rubinstein 1994)
for a formal definition of CK and (Foerster et al. 2018;
2019) for examples of how CK can arise and be used in
multi-agent learning. Practically it can be computationally
challenging to exactly compute common-knowledge beliefs
due a large number of possible states and trajectories. How-
ever, in many settings, e.g., poker (Brown and Sandholm
2019), the CK-belief can be factorized across public fea-
tures and a set of private features associated with the dif-
ferent agents. In these settings the CK trajectory is simply

1Maintaining exact beliefs in large POMDPs is typically con-
sidered intractable. However we find that even in an environment
with large state spaces such as card games, the number of states that
have non-zero probability conditional on a player’s observations is
often much smaller; in the case of Hanabi, this set of possible states
can be stored and updated explicitly.
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the history of public features.
In our methods we will commonly need to carry out com-

putations over each of the possible trajectories that have non-
zero probability given an agent’s AOH or all agents’ com-
mon knowledge. We refer to these as the trajectory range
βi
t = {τt|Bi(τt) > 0} and βt = {τt|B(τt) > 0}. We re-

fer to the vector of probabilities in the trajectory range on
timestep t by Bi

t and Bt. We also commonly need to carry
out computations over each of an agent’s AOHs that have
non-zero probability given the common knowledge of the
entire group of agents, which we refer to as the AOH range
χi
t = {τ it |B(τ it ) > 0}. We refer to the entire vector of prob-

abilities in the AOH range of agent i on timestep t by Ci
t.

We further define the typical conditional expectations
(‘value functions’),

Vπ(τt) = Eτ ′
T∼P (τ ′

T |π,τt)Rt(τ
′
T ) (1)

Qπ(τt, a
i) = Eτ ′

T∼P (τ ′
T |π,τt,ai)Rt(τ

′
T ) (2)

Given the range defined above we also introduce expecta-
tions conditioned on the AOHs, τ it :

Vπ(τ
i
t ) =

∑

τt∈βi
t

Bi(τt)Vπ(τt) (3)

Qπ(τ
i
t , a

i) =
∑

τt∈βi
t

Bi(τt)Qπ(τt, a
i) (4)

Even though the optimal policies in the fully cooperative set-
ting are deterministic, we consider stochastic policies for the
purpose of reinforcement learning.

We further assume that a deterministic blueprint pol-
icy πb, defining what each player should do for all possi-
ble trajectories, is common knowledge amongst all players.
Player i’s portion of the blueprint policy is denoted πi

b and
the portion of all players other than i as π−i

b . In some set-
tings, when actually playing, players may choose to not play
according to the blueprint and instead choose a different ac-
tion determined via online search. In that case πb differs
from π, which denotes the policy that is actually played.

In our setting all of the past actions taken by all agents and
the observation functions of all players are common knowl-
edge to all agents. As such, if an agent is known to be play-
ing according to a given policy, each action taken by this
agent introduces a belief update across all other agents and
the public belief. Suppose agent i has a current belief Bi

t−1

and next observes (ajt , o
i
t), where we have broken up the ob-

servation to separate out the observed partner action. Then,

Bi(τt) = P (τt|τ it ) = P (τt|τ it−1, o
i
t, a

j
t ) (5)

=
Bi(τt−1)π

j(ajt |τt−1)P (oit|τt−1, a
j
t )∑

τ ′
t−1

Bi(τ ′t−1)π
j(ajt |τ ′t−1)P (oit|τ ′t−1, a

j
t )

(6)

In other words, the belief update given (ajt , o
i
t) consists

of two updates: one based on the partner’s known policy πj ,
and the other based on the dynamics of the environment. The
common knowledge belief B is updated in the same way,
using the common-knowledge observation τG rather than τ i.

Method

In this section we describe SPARTA, our online search algo-
rithm for cooperative partially-observable games.

Single-Agent Search

We first consider the case in which only one agent conducts
online search. We denote the searching agent as agent i. Ev-
ery other agent simply plays according to the blueprint pol-
icy (and we assume agent i knows all other agents play ac-
cording to the blueprint).

Since agent i is the only agent determining her policy on-
line while all other agents play a fixed common-knowledge
policy, this is effectively a single-agent POMDP for agent i.
Specifically, agent i maintains a belief distribution Bi

t over
trajectories she might be in based on her AOH τ it and the
known blueprint policy of the other agents. Each time she
receives an observation or another agent acts, agent i up-
dates her belief distribution according to (6) (see Figure 1,
left). Each time i must act, she estimates via Monte Carlo
rollouts the expected value Qπb

(τ it , a
i) of each action as-

suming all agents (including agent i) play according to the
joint blueprint policy πb for the remainder of the game fol-
lowing the action (Figure 1, right). A precise description of
the algorithm is provided in this paper’s extended version.

As described, agent i calculates the expected value of only
the next action. This is referred to as 1-ply search. One could
achieve even better performance by searching further ahead,
or by having the agent choose between multiple blueprint
policies for the remainder of the game. However, the com-
putational cost of the search would also increase, especially
in a game like Hanabi that has a large branching factor due
to chance. In this paper all the experiments use 1-ply search.

Since this search procedure uses exact knowledge of all
other agents’ policies, it cannot be conducted correctly by
multiple agents independently. That is, if agent j conducts
search on a turn after agent i conducted search on a previous
turn, then agent j’s beliefs are incorrect because they assume
agent i played πi

b while agent i actually played the modified
policy πi. If more than one agent independently performs
search assuming that others follow the blueprint, policy im-
provement cannot be guaranteed, and empirical performance
is poor (Table 4 of the extended paper).

Multi-Agent Search

In order for an agent to conduct search effectively, her be-
lief distribution must be accurate. In the case of single-agent
search, this was achieved by all agents agreeing before-
hand on a blueprint policy, and then also agreeing that only
one agent would ever conduct search and deviate from the
blueprint. In this section we instead assume that all agents
agree beforehand on both a blueprint policy and on what
search procedure will be used. When agent i acts and con-
ducts search, the other agents exactly replicate the search
procedure conducted by agent i (including the random seed)
and compute agent i’s resulting policy accordingly. In this
way, the policy played so far is always common knowledge.

Since the other agents do not know agent i’s private ob-
servations, we have all agents (including agent i) conduct
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search and compute agent i’s policy for every possible AOH
that agent i might be in based on the common-knowledge
observations. Specifically, all agents conduct search for ev-
ery AOH τ ′it ∈ χi

t. When conducting search for a partic-
ular τ ′it as part of this loop, the agents also compute what
Bt

i would be assuming agent i’s AOH is τ ′it and compute
Qπb

(τ ′it , a
i) for every action ai based on this Bt

i. We refer
to this loop of search over all τ ′it ∈ χi

t as range-search.
Agent i must also compute her policy via search for every

τ ′it ∈ χi
t (that is, conduct range-search) even though she

knows τ it , because the search procedure of other agents on
future timesteps may be based on agent i’s policy for τ ′it �=
τ it where τ ′it ∈ χi

t and it is necessary for all agents to be
consistent on what that policy is to ensure that future search
procedures are replicated identically by all agents.

In a game like two-player Hanabi, |χi
t| could be nearly 10

million, which means the range-search operation of multi-
agent search could be 10 million times more expensive than
single-agent search in some situations and therefore infea-
sible. Fortunately, the actual number of positive-probability
AOHs will usually not be this large. We therefore have all
agents agree beforehand on a budget for range-search, which
we refer to as a max range (abbreviated MR). If |χi

t| > MR
on timestep t where agent i is the acting agent, then agent i
does not conduct search and instead simply plays according
to the blueprint policy πb. Since χi

t and the max range are
common knowledge, it is also common knowledge when an
agent does not search on a timestep and instead plays ac-
cording to the blueprint.

Using a max range makes multi-agent search feasible on
certain timesteps, but the fraction of timesteps in which
search can be conducted may be less than single-agent
search (which in a balanced two-player game is 50%). The
next section describes a way to use a max range while guar-
anteeing that there’s always at least one agent who can per-
form search.

Retrospective Belief Updates

As discussed in the previous section, χi
t on some timesteps

may be too large to conduct search on. Using a max range
mitigates this problem, but may result in search only rarely
being conducted. Fortunately, in many domains more com-
mon knowledge information is revealed as the game pro-
gresses, which reduces the number of positive-probability
AOHs on previous timesteps.

For example, at the start of a two-player game of Hanabi
in which agent i acts first (and then agent j), |χi

0| might be
nearly 10 million. If agent i were to use search to choose
an action at this point, it would be too expensive for the
agents to run range-search given the magnitude of |χi

0|, so
the other agents would not be able to conduct search on fu-
ture timesteps.

However, suppose the action chosen from agent i’s search
results in agent i giving a hint to agent j. Given this new
common-knowledge information, it might now be known
that only 100,000 of the 10 million seemingly possible
AOHs at the first timestep were actually possible. It may
now be feasible for the agents to run range-search on this re-
duced set of 100,000 possible AOHs. In this way, agent i is

able to conduct search on a timestep t where the max range
is exceeded, and the agents can execute range-search at some
later timestep t′ once further observations have reduced the
size of χi

t below the max range.
We now introduce additional notation to generalize this

idea. Agent i’s belief at timestep t′ that the trajectory at some
earlier timestep t was (or is) τt is Bi

t′(τt) = P (τt|τ it′). The
public belief at timestep t′, which conditions only on the
common knowledge of the entire group of agents at timestep
t′, that the trajectory at timestep t was (or is) τt is Bt′(τt) =
P (τt|τGt′ ) and Bt′(τ

i
t ) = P (τ it |τGt′ ) =

∑
τt∈τ i

t
Bt′(τt). The

trajectory range at timestep t′ of the trajectories at timestep
t is βt,t′ = {τt|Bt′(τt) > 0} and βi

t,t′ = {τt|Bi
t′(τt) >

0}. The AOH range at timestep t′ of the agent i AOHs at
timestep t is χi

t,t′ = {τ it |Bt′(τ
i
t ) > 0}.

Again, the key idea behind retropective updates is that an
agent can delay running range-search on a timestep until that
range shrinks based on subsequent observations. When it is
an agent’s turn to act, she conducts search if and only if she
has run range-search for each previous timestep t where one
of the other agents played search (because this means she
knows her belief distribution). Otherwise, she plays accord-
ing to the blueprint policy.

Specifically, all agents track the oldest timestep on which
search was conducted but range-search was not conducted.
This is denoted t∗. Assume the agent acting at t∗ was agent i.
If at any point |χi

t∗,t| ≤ MR then all agents conduct range-
search for timestep t∗ and t∗ is incremented up to the next
timestep on which search was conducted but range-search
was not conducted (but obviously not incremented past the
current timestep t). If |χi

t∗,t| ≤ MR for this new t∗ then all
agents again conduct range-search and the process repeats.
Since χi

t∗,t depends only on common knowledge, all agents
conduct range-search at the same time and therefore t∗ is
always consistent across all agents. When it is an agent’s
turn to act on timestep t, she conducts search if and only
if she was the agent to act on timestep t∗ or if t = t∗. An
important upshot of this method is that it’s always possible
for at least one agent to use search when acting.

If MR is set to zero then multi-agent search with retro-
spective updates is identical to single-agent search, because
the first agent to act in the game will conduct search and she
will continue to be the only agent able to conduct search on
future timesteps. As MR is increased, agents are able to con-
duct search on an increasing fraction of timesteps. In two-
player Hanabi, setting MR = 10,000 makes it possible to
conduct search on 86.0% of timesteps even though in the
worst case |χi

t| ≈ 10,000,000.

Soundness and Convergence Bound for Search

We now prove a theorem that applies to all three SPARTA
variants described in this section. Loosely, it states that ap-
plying search on top of a blueprint policy cannot reduce the
expected reward relative to the blueprint, except for an error
term that decays as O(1/

√
N), where N is the number of

Monte Carlo rollouts.

Theorem 1. Consider a Dec-POMDP with N agents, ac-
tions A, reward bounded by rmin ≤ R(τ) < rmax where
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rmax − rmin ≤ Δ, game length bounded by T , and a set
of blueprint policies πb ≡ {π0

b , . . . , π
N
b }. If a Monte Carlo

search policy πs is applied using N rollouts per step, then

Vπs
− Vπb

≥ −2TΔ|A|N−1/2 (7)
The proof is provided in the extended version of the paper.

Experimental Setup

We evaluate our methods in the partially observable, fully
cooperative game Hanabi, which at a high level resembles a
cooperative extension of solitaire. Hanabi has recently been
proposed as a new frontier for AI research (Bard et al. 2019)
with a unique focus on theory of mind and communication.

The main goal of the team of agents is to complete 5
stacks of cards, one for each color, in a legal sequence, start-
ing with a 1 and finishing with a 5. The defining twist in
Hanabi is that while players can observe the cards held by
their teammates, they cannot observe their own cards. As
such, players need to exchange information with their team-
mates in order to decide which cards to play. Hanabi of-
fers two different means for doing so. First, players can take
costly hint actions that reveal part of the state to their team-
mates. Second, since all actions are observed by all players,
each action (such as playing a card or discarding a card) can
itself be used to convey information, in particular if play-
ers agree on a set of conventions before the game. For fur-
ther details on the state and action space in Hanabi please
see (Bard et al. 2019).

In this work we are focused on the self-play part of the
challenge, in which the goal is to find a set of policies that
achieve a high score when playing together as a team.

For the blueprint strategy used in the experiments, we
experimented with open-sourced handcrafted bots WT-
FWThat (Wu 2018b) and SmartBot (O’Dwyer 2019). We
also created two of our own blueprint strategies. One was
generated from scratch using deep reinforcement learning,
which we call RLBot. The other, which we call CloneBot,
was generated by conducting imitation learning using deep
neural networks on the policy produced by single-agent
search on top of SmartBot. The details for the generation
of both bots are given in the extended version of this paper.

All experiments except the imitation learning of CloneBot
and the reinforcement learning of RLBot were conducted
on CPU using machines with Intel R© Xeon R© E5-2698 CPUs
containing 40 cores each. A game of Hanabi requires about 2
core-hours for single-agent search and 90 core-hours for ret-
rospective multi-agent search using the SmartBot blueprint
policy with a max range of 10,000. We parallelize the search
procedure over multiple cores on a single machine.

Implementing SPARTA for Hanabi

The public and private observations in Hanabi are factor-
izable into public and private features.2 Specifically, each
player’s hidden information consists of the cards held by
other agents, so the beliefs for each player can be repre-
sented as a distribution over possible hands that player may

2The class of games of this form has recently been formalized
as ‘Factorized Observation Games’ in (Kovařı́k et al. 2019).

be holding. The initial private beliefs can be constructed
based on the card counts. In addition to updates based on
the actions of other agents, updates based on observations
amount to (a) adjusting the probabilities of each hand based
on the modified card count as cards are revealed, and (b)
setting the probability of hands inconsistent with hints to 0.

The public beliefs for 2-player Hanabi can be factored
into independent probability distributions over each player’s
hand (conditional on the common knowledge observations).
These public beliefs are identical to the private beliefs ex-
cept that the card counts are not adjusted for the cards in the
partner’s hand. Given one player’s hand, the private beliefs
over the other player’s hand (which is of course no longer
independent of the other player’s hand) can be computed
from the public beliefs by adjusting the card counts for the
privately-observed cards.3

Estimating Action Expected Values via UCB

In order to reduce the number of MC rollouts that must be
performed during search, we use a UCB-like procedure that
skips MC rollouts for actions that are presumed not to be the
highest-value action with high confidence. After a minimum
of 100 rollouts per action is performed, the reward sample
mean and its standard deviation is computed for each action.
If the expected value for an action is not within 2 standard
deviations of the expected value of the best action, its future
MC rollouts are skipped.

Furthermore, we use a configurable threshold for deviat-
ing from the blueprint action. If the expected value of the
action chosen by search does not exceed the value of the
blueprint action by more than this threshold, the agent plays
the blueprint action. We use a threshold of 0.05 in our ex-
periments.

The combination of UCB and the blueprint deviation
threshold reduces the number of rollouts required per
timestep by 10×, as shown in Figure 3 in the extended paper.

Bootstrapping Search-Based Policies via Imitation
Learning

Search can be thought of as a policy improvement opera-
tor, i.e. an algorithm that takes in a joint policy and outputs
samples from an improved joint policy. These samples can
be used as training data to learn a new policy via imitation
learning. This improved policy approximates the effect of
search on the blueprint policy while being cheaper to exe-
cute, and search can be run on this learned policy, in effect
bootstrapping the search procedure. In principle, repeated
application of search and learning could allow the effect of
single-agent search to be applied on multiple agents, and
could allow the benefits of search to extend beyond the depth
limit of the search procedure. However, there is no guaran-
tee that this process would eventually converge to an optimal
policy, even in the case of perfect function approximation.

We refer to the policy learned in this manner as CloneBot.
We provide details of the training procedure in the extended
paper and evaluate its performance in Table 1.

3This conversion from public to private beliefs is what we call
ConditionOnAOH() in the algorithm listing in the extended paper.
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Figure 1: An illustration of the SPARTA Monte Carlo search procedure for an agent P1. Left: The MDP starts in one of three
states and P2 plays A. P1 observes that P2 played A, ruling out the middle state in which P2 would have played B. This leaves
P1 with a probability distribution (beliefs) over two possible states. Right: For each legal action (‘Play Card 1’, ...) P1 performs
rollouts from states drawn from the belief distribution, and picks the action with the highest average score: Discard Card 2.

Results

Table 1 shows that adding SPARTA leads to a large im-
provement in performance for all blueprint policies tested
in two-player Hanabi (the most challenging variant of Han-
abi for computers) and achieves a new state-of-the-art score
of 24.61 / 25 compared to the previous-best of 24.08 / 25.4
Much of this improvement comes from adding single-agent
search, though adding multi-agent search leads to an addi-
tional substantial improvement.

Unfortunately there are no reliable statistics on top hu-
man performance in Hanabi. Discussions with highly expe-
rienced human players has suggested that top players might
achieve perfect scores in 2-player Hanabi somewhere in the
range of 60% to 70% of the time when optimizing for per-
fect scores. Our strongest agent optimizes for expected value
rather than perfect scores and still achieves perfect scores
75.5% of the time in 2-player Hanabi.

Table 2 shows the benefits of single-agent search also
extend to the 3, 4, and 5-player variants of Hanabi as
well. For these variants, the SAD agent (Hu and Foerster
2020) was state-of-the-art among learned policies, while
an information-theoretic hat-coding policy (WTFWThat)
achieves close to perfect scores for 4 and 5 players (Wu
2018b). Applying single-agent search to either SAD or WT-
FWThat improves the state-of-the-art scores for 3, 4, and
5-player variants (Table 2, Table 5 in extended paper). Ap-
plying multi-agent search in Hanabi becomes much more
expensive as the number of players grows because the num-
ber of cards each player observes becomes larger.

Table 3 examines the performance and cost in number of
rollouts for single-agent search and multi-agent search with
different values of the max range (MR) parameter, using
SmartBot as the blueprint agent. When MR is set to zero, we
are performing single-agent search, so search is conducted
on 50% of timesteps, which requires about 105 rollouts per

4It is impossible to achieve a perfect score for some shuffles of
the deck. However, the highest possible average score is unknown.

Figure 2: Average score predicted by MC search rollouts at
different points in the game, for two different blueprints. Ex-
pected score by turn is averaged over replicates for each con-
dition (error bars are included but are too small to be visible).
If a game ends before 40 turns, the final score is propagated
for all subsequent turns.

game5. As the max range is increased, search is conducted
more often. At a max range of 10,000, search is conducted
on 86% of timesteps even though the maximum possible
range for a timestep in two-player Hanabi is nearly 10 mil-
lion. However, this still requires about 1,000× as many roll-
outs as single-agent search.

Figure 2 plots the average MC search prediction of the
expected payoff of the best move (Qπb

(τ i, a∗)) at different
points in the game, for two blueprint policies. As predicted
by the theory, the expected score starts at the blueprint ex-
pected score and increases monotonically as search is ap-
plied at each move of the game.

5SPARTA also performs counterfactual belief updates using the
blueprint, using about 2× 106 policy evaluations per game, which
corresponds to about 4 × 104 games worth of policy evaluations.
This cost is dominated by search rollouts for all SPARTA variants.
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Blueprint Strategy No Search Single-Agent Search Multi-Agent Search

RL (ACHA) 22.73 ± 0.12 - -
(Bard et al. 2019) 15.1% - -

BAD 23.92 ± 0.01 - -
(Foerster et al. 2019) 58.6% - -

SmartBot 22.99 ± 0.001 24.21 ± 0.002 24.46 ± 0.01
(O’Dwyer 2019) 29.6% 59.1% 64.8%

CloneBot 23.32 ± 0.001 24.37 ± 0.02 -
(ours) 40.6% 64.6% -

DQN 23.45 ± 0.01 24.30 ± 0.02 24.49 ± 0.02
(ours) 46.8% 63.5% 67.7%

SAD 24.08 ± 0.01 24.53 ± 0.01 24.61 ± 0.01
(Hu and Foerster 2020) 56.1% 71.1% 75.5%

Table 1: Results for various policies in 2-player Hanabi coupled with single-agent and retrospective multi-agent search
(SPARTA). The top row is the average score (25 is perfect), the bottom row is the perfect-score percentage. Single-agent
and multi-agent search monotonically improve performance. For multi-agent search, a max range of 2,000 is used. Results in
bold beat the prior state of the art of 24.08.

# Players No Search Single-Agent Search

2 24.08 ± 0.01 24.53 ± 0.01
56.1% 71.1%

3 23.99 ± 0.01 24.61 ± 0.01
50.4% 74.5%

4 23.81 ± 0.01 24.49 ± 0.01
41.5% 64.2%

5 23.01 ± 0.01 23.91 ± 0.01
13.9% 32.9%

Table 2: Hanabi performance for different numbers of play-
ers, applying single-agent search (SPARTA) to the ‘SAD’
blueprint agent which achieved state-of-the-art performance
in 3, 4, and 5-player Hanabi among learned policies. Re-
sults shown in bold are state-of-the-art (for learned poli-
cies). Higher scores in 3+ player Hanabi can be achieved
using hard-coded ‘hat-counting‘ techniques; Table 5 in the
extended paper shows that search improves those strategies
too.

Conclusions

In this paper we described approaches to search in partially
observable cooperative games that improves upon an arbi-
trary blueprint policy. Our algorithms ensure that any agent
conducting search always has an accurate belief distribution
over the possible trajectories they may be in, and provide an
alternative in case the search procedure is intractable at cer-
tain timesteps. We showed that in the benchmark domain
of Hanabi, both search techniques lead to large improve-
ments in performance to all the policies we tested on, and
achieves a new state of the art score of 24.61 / 25 compared
to a previous-best of 24.08 / 25. We also proved that apply-
ing our search procedure cannot hurt the expected reward

Max Range % search # Rollouts Average Score

0 50.0% 1.5× 105 24.21 ± 0.002
80 56.2% 3.0× 106 24.30 ± 0.02
400 65.1% 1.3× 107 24.40 ± 0.02

2000 77.2% 5.2× 107 24.46 ± 0.01
10000 86.0% 1.8× 108 24.48 ± 0.01

Table 3: Multi-agent retrospective search with a SmartBot
blueprint for different values of max range. As max range
increases, search is performed more often leading to a higher
score, but the rollout cost increases dramatically.

relative to the blueprint policy, except for an error term that
shrinks with more Monte Carlo rollouts. This result fits a
theme, also shown in other games such as Chess, Go, and
Poker, that search leads to dramatically improved perfor-
mance compared to learning or heuristics alone.

The performance improvements from search come at a
computational cost. Our search procedure involves tracking
the belief probability of each AOH that a player may be in
given the public information, which for Hanabi is no more
than 10 million probabilities. Search also requires comput-
ing a large number of MC rollouts of the policy, especially
for multi-agent search where the number of rollouts scales
with the size of the belief space. Conducting search in par-
tially observable games, whether cooperative or competitive,
with many more AOHs per instance of public information
remains an interesting challenge for future work and may
be applicable to settings like Bridge and environments with
visual inputs like driving.

This work currently assumes perfect knowledge of other
agents’ policies. This is a reasonable assumption in settings
involving centralized planning but decentralized execution,
such as self-driving cars that are created by a single com-
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pany or robots working together as a team in a factory. In
general however, an agent’s model of others may not be per-
fect. Investigating how search performs in the presence of
an imperfect model of the partner, and how to make search
more robust to errors in that model, are important directions
for future work as well.
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