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Abstract

Distributed Constraint Optimization Problems (DCOPs) are
a widely studied constraint handling framework. The objec-
tive of a DCOP algorithm is to optimize a global objective
function that can be described as the aggregation of sev-
eral distributed constraint cost functions. In a DCOP, each
of these functions is defined by a set of discrete variables.
However, in many applications, such as target tracking or
sleep scheduling in sensor networks, continuous valued vari-
ables are more suited than the discrete ones. Considering this,
Functional DCOPs (F-DCOPs) have been proposed that can
explicitly model a problem containing continuous variables.
Nevertheless, state-of-the-art F-DCOPs approaches experi-
ence onerous memory or computation overhead. To address
this issue, we propose a new F-DCOP algorithm, namely
Particle Swarm based F-DCOP (PFD), which is inspired by
a meta-heuristic, Particle Swarm Optimization (PSO). Al-
though it has been successfully applied to many continuous
optimization problems, the potential of PSO has not been uti-
lized in F-DCOPs. To be exact, PFD devises a distributed
method of solution construction while significantly reduc-
ing the computation and memory requirements. Moreover,
we theoretically prove that PFD is an anytime algorithm. Fi-
nally, our empirical results indicate that PFD outperforms
the state-of-the-art approaches in terms of solution quality
and computation overhead.

Introduction

Distributed Constraint Optimization Problems (DCOPs) are
an important constraint handling framework of multi-agent
systems in which multiple agents communicate with each
other in order to optimize a global objective. The global ob-
jective is defined as the aggregation of cost functions (i.e.
constraints) among the agents. The cost functions can be de-
fined by a set of variables controlled by the corresponding
agents. DCOPs have been widely applied to solve a number
of multi-agent coordination problems including, multi-agent
task scheduling (Sultanik, Modi, and Regli 2007), sensor
networks (Farinelli, Rogers, and Jennings 2014), multi-robot
coordination (Yedidsion and Zivan 2016).
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Over the years, several algorithms have been proposed to
solve DCOPs, which includes both exact and non-exact al-
gorithms. Exact algorithms, such as ADOPT (Modi et al.
2005), DPOP (Petcu and Faltings 2005) and PT-FB (Litov
and Meisels 2017), are designed in such a way that pro-
vide the global optimal solution of a given DCOP. How-
ever, exact algorithms experience either or both exponential
memory requirements and exponential computational costs
as the system grows. On the contrary, non-exact algorithms
such as DSA (Zhang et al. 2005), MGM & MGM2 (Ma-
heswaran, Pearce, and Tambe 2004), Max-Sum (Farinelli
et al. 2008; Khan, Tran-Thanh, and Jennings 2018), Co-
CoA (van Leeuwen and Pawelczak 2017), and ACO DCOP
(Chen et al. 2018) compromise some solution quality for
scalability.

In general, DCOPs assume that participating agents’ vari-
ables are discrete. Nevertheless, many real-world applica-
tions (e.g. target tracking sensor orientation (Fitzpatrick and
Meetrens 2003), sleep scheduling of wireless sensors (Hsin
and Liu 2004)) can be best modelled with continuous vari-
ables. Therefore, for discrete DCOPs to be able to apply
in such problems, we need to discretize the continuous do-
mains of the variables. However, the discretization process
needs to be coarse for a problem to be tractable and must be
sufficiently fine to find high-quality solutions of the problem
(Stranders et al. 2009). To overcome this issue, Stranders
et al. 2009 have proposed a continuous version of DCOP,
which is later referred to as Functional DCOP (F-DCOP)
(Hoang et al. 2019). There are two main differences between
F-DCOP and DCOP. Firstly, instead of having discrete deci-
sion variables, F-DCOP has continuous variables that can
take any value between a range. Secondly, the constraint
functions are represented in functional forms in F-DCOP
rather than in the tabular forms in DCOP.

In order to cope with the modification of the DCOP for-
mulation, Continuous Max-Sum (CMS) has been proposed,
which is an extension of the discrete Max-Sum (Stranders et
al. 2009). However, this paper approximates the constraint
utility functions as piece-wise linear functions which are of-
ten not applicable in practice since a handful of real-life ap-
plications deals with only piece-wise linear functions. To-
ward addressing this limiting assumption of CMS, Hybrid
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Max-Sum (HCMS) has been proposed in which continu-
ous non-linear optimization methods are combined with the
discrete Max Sum algorithm (Voice et al. 2010). However,
continuous optimization methods such as gradient-based
optimization require derivative calculations, and thus they
are not suitable for non-differentiable optimization prob-
lems. Hoang et al. 2019 have made the latest contribution
to this field. In this paper, authors propose one exact ver-
sion, Exact Functional DPOP (EF-DPOP), and two approxi-
mate versions, Approximate Functional DPOP (AF-DPOP),
and Clustered AF-DPOP (CAF-DPOP) of DPOP to solve F-
DCOPs. The main limitation of these algorithms is that both
AF-DPOP and CAF-DPOP incur exponential memory and
computation overhead even though the latter cuts the com-
munication cost by providing a bound on message size.

Against this background, we propose a Particle Swarm
Optimization based F-DCOP algorithm that we call PFD.
Particle Swarm Optimization (PSO) is a stochastic opti-
mization technique inspired by the social metaphor of bird
flocking (Eberhart and Kennedy 1995). It has been success-
fully applied to many optimization problems such as Func-
tion Minimization (Shi and Eberhart 1999), Neural Network
Training (Zhang et al. 2007) and Power-System Stabilizers
Design Problems (Abido 2002). However, to the best of our
knowledge, no previous work has been done to incorporate
PSO in DCOP or F-DCOP. In PFD, agents cooperatively
keep a set of particles where each particle represents a can-
didate solution and iteratively improve the solutions over
time. Since PFD requires only primitive mathematical op-
erators such as addition and multiplication, it is less expen-
sive than the gradient-based optimization methods in terms
of computation cost and memory requirements. Specifically,
we empirically show that PFD finds better solution quality
by exploring a large search space compared to the existing
F-DCOP solvers.

Background and Problem Formulation

In this section, we formulate the problem and discuss the
background necessary to understand our proposed method.
We first describe the general DCOP framework and then
move on the F-DCOP framework, which is the main prob-
lem that we want to solve. We then discuss the centralized
PSO algorithm and the challenges remain to incorporate
PSO with the F-DCOP framework.

Distributed Constraint Optimization Problem

A DCOP can be defined as a tuple 〈A,X,D, F, α〉 (Modi et
al. 2005) where,

• A is a set of agents {a1, a2, ..., an}.
• X is a set of discrete variables {x1, x2, ..., xm}, where

each variable xj is controlled by one of the agents ai ∈
A.

• D is a set of discrete domains {D1, D2, ..., Dm}, where
each Di corresponds to the domain of variable xi.

• F is a set of cost functions {f1, f2, ..., fl}, where each
fi ∈ F is defined over a subset xi = {xi1 , xi2 , ..., xik}
of variables X and the cost for the function fi is defined

x1

x2 x3 x4

(a) Constraint Graph

f(x1, x2) = x2
1 − x2

2

f(x1, x3) = x2
1 + 2x1x3

f(x1, x4) = 2x2
1 − 2x2

4

f(x3, x4) = x2
3 + 3x2

4

Di = [−10, 10]

(b) Cost Functions

Figure 1: Example of an F-DCOP.

for every possible value assignment of xi, that is, fi: Di1
× Di2 ×...× Dik →R where the arity of the function fi
is k. In this paper, we only consider binary constraints.
• α : X → A is a variable to agent mapping function which

assigns the control of each variable xj ∈ X to an agent ai
∈ A. Each agent can hold several variables. However, for
the ease of understanding, we assume each agent controls
only one variable in this paper.

The solution of a DCOP is an assignment X∗ that minimizes
the sum of cost functions as shown in Equation 1.

X∗ = argmin
X

l∑
i=1

fi(x
i) (1)

Functional Distributed Constraint Optimization
Problem

Similar to the DCOP formulation, F-DCOP can be defined
as a tuple 〈A,X,D, F, α〉. In F-DCOP, A, F and α are the
same as defined in DCOP. Nonetheless, the set of variables,
X and the set of Domains, D are defined as follows -
• X is the set of continuous variables {x1, x2, ..., xm} that

are controlled by agents in A.
• D is a set of continuous domains {D1, D2, ..., Dm},

where each variable xi can take any value between Di =
[LBi, UBi] where LBi and UBi is the lower and upper
bound of a range, respectively.

As discussed in the previous section, a notable difference
between F-DCOP and DCOP can be found in the represen-
tation of cost function. In DCOP, the cost functions are con-
ventionally represented in tabular form, while in F-DCOP
each constraint is represented in the form a function (Hoang
et al. 2019). However, the goal remains the same as depicted
in Equation 1. Figure 1 presents the example of an F-DCOP
where Figure 1a represents a constraint graph with four vari-
ables where each variable xi is controlled by an agent ai.
Each edge in Figure 1a stands for a constraint function and
the definition of each function is shown in Figure 1b. In this
particular example, each variable xi can take values from the
range [−10, 10].
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Algorithm 1: Particle Swarm Optimization
1 Generate an n-dimensional population, P
2 Initialize positions and velocities of each particle
3 while Termination condition not met do
4 for each particle Pi ∈ P do
5 calculate current velocity and position
6 if current position < personal best then
7 update personal best
8 if current position < global best then
9 update global best

Particle Swarm Optimization

PSO is a population-based optimization1 technique inspired
by the movement of a bird flock or a fish school. In PSO,
each individual of the population is called a particle. PSO
solves the problem by moving the particles in a multi-
dimensional search space by adjusting the position and ve-
locity of each particle. As shown in Algorithm 1, initially,
each particle is assigned a random position and velocity. A
fitness function is defined, which is used to evaluate the po-
sition of each particle. In each iteration, the movement of a
particle is guided by both its personal best position found so
far in the search space and the global best position found by
the entire swarm (Algorithm 1: Lines 4-5). The combination
of the personal best and the global best position ensures that
when a better position is found through the search process,
the particles will move closer to that position and explore the
surrounding search space more thoroughly considering it as
a potential solution. The personal best position of each par-
ticle and the global best position of the entire population is
updated if necessary (Algorithm 1: Lines 6-9). Over the last
couple of decades, several versions of PSO have been devel-
oped. The standard PSO often converges to a sub-optimal
solution since the velocity component of the global best par-
ticle tends to zero after some iterations. Consequently, the
global best position stops moving, and the swarm behaviour
of all other particles leads them to follow the global best
particle. To cope with the premature convergence property
of standard PSO, Guaranteed Convergence PSO (GCPSO)
has been proposed that provides convergence guarantees to
local optima (van den Bergh and Engelbrecht 2002).

Challenges

The following challenges must be addressed to develop an
anytime F-DCOP algorithm that adapts the guaranteed con-
vergence PSO:

• Particles and Fitness Representation: We need to define
a representation for the particles where each particle rep-
resents a solution of the F-DCOP. Moreover, a distributed
method for calculating the fitness for each of the particles
needs to be devised.

1For simplicity, we are going to consider the optimization and
minimization interchangeably throughout the paper.

x1

x2 x3 x4

(a) BFS pseudo-tree

x1

x2 x3 x4

(b) Ordered arrangement

Figure 2: Pseudo-tree construction and ordered arrange-
ment.

• Creating the Population: In centralized optimization
problems, creating the initial population is a trivial task.
However, in case of F-DCOP, different agents control dif-
ferent variables. Hence, a method needs to be devised to
generate the initial population cooperatively.

• Evaluation: Centralized PSO deals with an n-
dimensional optimization task. In F-DCOP, each
agent holds one variable and each agent is responsible
for solving the optimization task related to that variable
only where the global objective is still an n-dimensional
optimization process.

• Maintaining the Anytime Property: To maintain the
anytime property in an F-DCOP model, we need to iden-
tify the global best particle and the personal best posi-
tion for each particle. A distribution method needs to be
devised to notify all the agents when a new global best
particle or personal best position is found. Finally, a co-
ordination method is needed among the agents to update
the position and velocity considering the current best po-
sition.

In the following section, we devise a novel method to apply
PSO in F-DCOP that addresses the above challenges.

The PFD Algorithm

PFD is a PSO based iterative algorithm consisting of three
phases: Initialization, Evaluation, and Update. In the initial-
ization phase, a pseudo-tree is constructed, an initial popu-
lation is created and parameters are initialized. In the eval-
uation phase, agents calculate the fitness function for each
particle in a distributed way. The update phase keeps track
of the best solution found so far and propagates this in-
formation to the agents and updates the assignments ac-
cording to that information. The detailed algorithm can be
found in Algorithm 2.

Initialization starts with ordering the agents in a Breadth
First Search (BFS) pseudo-tree (Chen, He, and He 2017).
The pseudo-tree serves the purpose of defining a message
passing order which is used in the Evaluation and Update
phase. In the ordered arrangement, an agent with lower
depth has higher priority over an agent with higher depth and
ties are broken randomly. From the pseudo-tree construction
algorithm, each agent knows the lists of its higher and lower
priority neighbors. Each agent needs this information to be
able to send and receive messages in the later phase of the al-
gorithm. Figure 2(a) and 2(b) illustrates the BFS pseudo-tree
and its ordered arrangement of the constraint graph shown in
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Algorithm 2: The PFD Algorithm
1 Construct BFS pseudo-tree
2 Initialize parameters: K,w, c1, c2,maxsc ,maxfc
3 P ← set of K particles
4 Function Init():
5 for each particle Pk ∈ P do
6 Pk.vi ← 0
7 Pk.xi ← a random value from Di

8 Send P.xi to agents in Li

9

10 for each agent ai do
11 Init()

12 while Termination condition not met each agent ai do
13 for P.xi received from Hij ∈ Hi do
14 for each particle Pk ∈ P do
15 Pk.fitness← Costi,j(Pk.xi, Pk.xj)

16 Send P.fitness to agents in Hij

17 Wait until P.fitness received from all agent in Li

18 if |Li| �= 0 and P.fitness received from all agent
in Li then

19 for each particle Pk ∈ P do
20 Pk.fitness←

∑
j∈Li

P.fitness

21 if ai �= root then
22 Send P.fitness to an Hij ∈ Hi

23 if ai = root then
24 Update(P.fitness)

25 Wait until P.pbest and P.gbest are received from Hi

26 if P.pbest and P.gbest are received from Hi then
27 Calculate sc and fc according to Equations 7, 8
28 for each particle Pk ∈ P do
29 if P.gbest = Pk then
30 Calculate Pk.vi and Pk.xi according to

Equations 4, 5
31 else
32 Calculate Pk.vi and Pk.xi according to

Equations 3, 5

33 if |Li| �= 0 then
34 Send P.xi to agents in Li

35 Send P.pbest and P.gbest to agents in Li

36 Function Update(P.fitness):
37 P.pbest ← {}
38 for each particle Pk ∈ P do
39 if Pk.fitness < Pk.pbest.fitness then
40 Pk.pbest ← Pk

41 P.pbest ← {Pk.pbest} ∪ P.pbest

42 if Pk.fitness < P.gbest.fitness then
43 P.gbest ← Pk

44 Send P.pbest and P.gbest to agents in Li

45

Figure 1, respectively. In Figure 2(b), x1 is the root and the
arrows represent the message passing direction of the Initial-
ization and the Update phase. The reverse direction is used
for the Evaluation phase. From this point, for an agent ai, we
refer Ni as the set of neighbors, Hi ⊆ Ni and Li ⊆ Ni as
the sets of higher priority and lower priority neighbors of ai,
respectively. For agent x3

2 of Figure 2(b), N3 = {x1, x4},
H3 = {x1} and L3 = {x4}.

PFD requires some parameters as input; one of them is the
number of particles, K whose value depends on the specific
problem3. Each agent then initializes the set of K particles,
P . Each particle Pk ∈ P has a velocity and a position at-
tribute; and each agent only controls the component of the
attributes relevant to the variable it holds. The velocity at-
tribute defines the movement directions and the position at-
tribute defines the value of the variable that the agent con-
trols. Then each agent ai executes Init (Algorithm 2: Lines
4-8) and initializes the velocity component, vi to 0 and po-
sition component, xi to a random value from its domain Di

for each particle Pk. For the example of Figure 2(b), let us
assume the number of particles, K = 2, and the set of par-
ticles, P = {P1, P2} . Here, P1.V = P2.V = {0, 0, 0, 0}
shows the complete assignment for the velocity attribute of
two particles and the complete assignment for the position
attribute can be shown as, P1.X = {x1 = −1, x2 = 0, x3 =
2, x4 = 9.5}, P2.X = {x1 = 3.5, x2 = 4.9, x3 = 1, x4 =
0}. We define Pk.xi and Pk.vi as the position and veloc-
ity component of particle Pk set by the agent ai. In this
example, P1.x3 = 2 which is the value of variable x3 of
particle P1 set by the agent a3. After selecting the value of
its variable, each agent shares the particle set P.xi with its
lower priority neighbors Li. In our example, agent a3 sends
P.x3 = {2, 1} to its lower priority neighbor a4.

The Evaluation phase of PFD starts after the agents re-
ceive value assignments from all the higher priority neigh-
bors. Each agent ai is responsible for calculating the con-
straint cost associated with each of its higher priority neigh-
bors from Hi. When an agent ai receives value assignments
P.xi from a higher priority neighbor Hij ∈ Hi, it calcu-
lates the constraint costs between them and sends it to Hij
(Algorithm 2: Lines 13-16). Additionally, each agent ex-
cept the leaf agents needs to pass the constraint costs up-
ward the pseudo-tree calculated by its corresponding lower
priority neighbors, Li (Algorithm 2: Lines 18-20). The fit-
ness of each particle Pk.fitness is calculated using a fit-
ness function shown in Equation 2, where Pk.x

i represents
the assignments of the set of variables xi. This function
calculates the aggregated cost of constraints yielded by the
assignment. Note that a single agent can not calculate the
complete fitness. Instead, it is calculated in parts with the
cooperation of all the agents during the construction pro-
cess. For the example shown in Figure 1, agent a4 sends
the set of fitness of the particles {P1 = 274.75, P2 = 1}
to a3 and {P1 = −178.5, P2 = 24.5} to a1. Agent a3
calculates the set of fitness {P1 = −3, P2 = 19.25} and

2ai and xi will be used interchangeably throughout the paper.
3The rest of parameters and their recommended values for our

experiments are discussed later in the text.
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sends it to a1. Furthermore, a3 receives the fitness from a4
and passes it to a1. Similarly, a2 sends the set of fitness
{P1 = 1, P2 = −11.76} to a1.

Pk.fitness =
∑
fi∈F

fi(Pk.x
i) (2)

The Update phase consists of two parts: pbest, gbest update
and variable update. We define Pk.pbest to be the personal
best position achieved so far by each particle and P.gbest
to be the global best position among all the particles. Since
each agent ai calculates and passes the cost of the constraints
to the agents in Hi, the fitness of all the particles propagates
to the root. The root agent then sums the fitness values re-
ceived from the agents in Lroot for each of the particles,
Pk. Then, the root agent checks and updates the Pk.pbest
for Pk ∈ P and P.gbest for P , and sends the new values
to the agents in Lroot (Algorithm 2: Lines 38-44). When
an agent ai receives Pk.pbest and P.gbest of the previous
iteration, it updates the velocity component Pk.vi and posi-
tion component Pk.xi for Pk ∈ P . To adapt the guaranteed
convergence method to PFD, we define two types of update
equations for the velocity component. For all the particles
except the global best particle, the update equation is shown
in Equation 3.

Pk.vi(t) = w ∗ Pk.vi(t− 1)+

r1 ∗ c1 ∗ (Pk.pbest(t− 1)− Pk.xi(t− 1))+

r2 ∗ c2 ∗ (P.gbest(t− 1)− Pk.xi(t− 1))

(3)

However, when the particle is the global best particle, then
from Equation 3, we can see the velocity update will only
depend on the term w ∗ Pk.vi(t − 1). Thus, the global best
particle will only move away if its inertia weight w and the
velocity in the previous iteration Pk.vi(t − 1) are not equal
to zero. Otherwise, the global best particle will stop moving
and all the particles will eventually follow the global best
particle. This phenomenon will lead to the premature con-
vergence of the algorithm. To cope with this issue, we adapt
the GCPSO approach (van den Bergh and Engelbrecht 2002)
and the velocity update equation for the global best particle
is shown in Equation 4.

Pk.vi(t) = −Pk.xi(t− 1) + P.gbest(t− 1)+

w ∗ Pk.vi(t− 1) + ρ ∗ (1− 2r2)
(4)

The position component update equation is the same for all
the particles which is defined in Equation 5.

Pk.xi(t) = Pk.xi(t− 1) + Pk.vi(t) (5)

In Equations 3, 4 and 5, Pk.vi(t) and Pk.xi(t) refer to the
velocity and position components controlled by agent ai for
particle Pk in tth iteration. Here, an iteration refers to a com-
plete round of the Evaluation and Update phase (Algorithm
2: Line 12). Here, w is the inertia weight that defines the in-
fluence of current velocity on the updated velocity, r1 and
r2 are two random values between [0, 1] and c1, c2 are two
constants. Combinations of c1 and c2 define the magnitude
of influence that the personal best and the global best have
on the updated particle position. In Equation 4, ρ is used to

explore a random area near the position of the global best
particle. To be precise, ρ defines the diameter of this area
that the particles can explore. The value of ρ is adjusted ac-
cording to Equation 6.

ρ(t) =

⎧⎪⎪⎨
⎪⎪⎩

1 t = 0

2 ∗ ρ(t− 1) sc(t− 1) > maxsc

0.5 ∗ ρ(t− 1) fc(t− 1) > maxfc

ρ(t− 1) otherwise

(6)

In Equation 6, sc and fc are the count of consecutive
successes and failures, respectively. A success is defined
when the global best particle updates its personal best po-
sition. Similarly, a failure is defined when the position of
the global best particle remains unchanged. The intuition be-
hind changing ρ with each iteration is to reward the random
exploration when consecutive successes occur and to penal-
ize when consecutive failures occur. The parameters maxsc
and maxfc are the upper bound of sc and fc. The following
equations define sc and fc, respectively.

sc(t) =

{
sc(t− 1) + 1 if PG.pbest(t) < P.gbest(t− 1)

0 otherwise
(7)

fc(t) =

{
fc(t− 1) + 1 if P.gbest(t) = P.gbest(t− 1)

0 otherwise
(8)

In Equation 7, PG defines the global best particle of itera-
tion t − 1. Each agent ai calculates sc and fc according to
Equations 7 and 8 after receiving PG.pbest and P.gbest from
their higher priority neighbors Hi (Algorithm 2: Line 27).

Consider the root agent a1 in Figure 2. When a1 receives
fitness values from all of its lower priority neighbors, it is
ready to calculate the P.pbest and P.gbest. The final updated
fitness value, P.fitness = {94.25, 33}. Since this is the
first iteration, P.pbest will be current positions of the parti-
cles and P.gbest will be the position of particle P2. agent a1
then propagates this information to the agents in L1. Then
each agent calculates sc and fc and updates the values based
on Equations 3, 4, and 5.

Theoretical Analysis

In this section, we first prove PFD is an anytime algorithm;
that is, the quality of solution improves and never degrades
over time. We then discuss AED’s complexity in terms of
communication, computation, and memory requirements

Lemma 1: At iteration4 t + d, the root is aware of the
P.pbest and P.gbest up to iteration t, where d is the longest
path in the pseudo-tree starting from the root.

Proof: In order to prove this lemma, it is sufficient to
show that, at iteration t + d, the root agent has enough in-
formation to calculate P.pbest and P.gbest up to iteration t.
That is, the root agent can calculate the fitness of each parti-
cle. However, the root agent requires the cost messages from

4For the theoretical analysis section, iteration refers to the re-
quired number of communication steps. In one communication
step, agents only directly communicate with the neighbors.
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all the agents in Lroot in order to calculate the fitness of each
particle using Equation 2. Now, the root agent has to wait for
at most d iterations for the cost messages since the length of
the longest path in the pseudo-tree is d. In the wake of that,
we can infer that at iteration t+ d, the root agent is capable
of calculating the fitness of each particle up to iteration t.

Lemma 2: At iteration t + d + h, each agent is aware
of the P.pbest and P.gbest up to iteration t, where h is the
height of the pseudo-tree.

Proof: In PFD, for any agent ai, it will take at most h
iterations for the P.pbest and P.gbest to reach that agent from
the root since it is enough to get this message from one of
the agents in Hi. Based on the above claim and Lemma 1, it
takes at most t+ d+ h iterations for the P.pbest and P.gbest
up to iteration t to reach all the agents.

Proposition 1: PFD is an anytime algorithm.
Proof: From Lemma 2, at iteration t+d+h and t+d+h+

δ (δ ≥ 0), each agent is aware of P.pbest and P.gbest up to
iterations t and t+ δ, respectively. Since P.pbest and P.gbest
only get updated if a better solution is found, P.pbest and
P.gbest at iteration t+d+h+δ ≤ at iteration t+d+h. That is,
the solution quality improves monotonically as the number
of iteration increases. Hence, PFD is an anytime algorithm.

Complexity Analysis

We define, the total number of agents |A| = n and the total
number of neighbors of an agent ai ∈ A, |Ni| = |Li|+ |Hi|.
In PFD, an agent sends |Li| messages during the Initializa-
tion and Update phases. Additionally, during the Evaluation
phase, an agent sends |Hi| + 1 messages. After one round
of the Initialization, Evaluation and Update phases, an agent
ai sends 2 ∗ |Li| + |Hi| = |Li| + |Ni| messages. In the
worst case, the graph is complete where |Ni| = n. There-
fore, the total number of messages sent by an agent ai is
O(2 ∗ |Li|+ |Hi|) = O(2n) in the worst case.

In PFD, each agent sends 3 types of messages; they are
P.xi, P.fitness and P.pbest, P.gbest messages. Each of
these messages contains the information of K particles,
where K is the total number of particles. Hence, the size
of each message is O(K). This means, at each iteration the
total message size per agent is O(3 ∗K ∗ n) = O(K ∗ n).

During an iteration, an agent either calculates Pk.vi and
Pk.xi or Pk.fitness for each of the particle Pk. Hence, the
total computation complexity per agent during an iteration
is O(K +K ∗ n) = O(K ∗ n).

Experimental Results

In this section, we empirically evaluate the quality of solu-
tions produced by PFD with HCMS and AF-DPOP on two
types of graphs: Random Graphs and Random Trees. How-
ever, CMS is not used in comparison because it only works
with piece-wise linear functions which is not applicable in
most of the real-world applications. Although Hoang et al.
2019 propose three versions of Functional DPOP, we only
compare with AF-DPOP here. This is because AF-DPOP
is reported to provide the best solution among the approxi-
mate algorithms proposed in their paper. For the experimen-
tal performance evaluation, binary quadratic functions are

Figure 3: Solution Cost Comparison of PFD and the compet-
ing algorithms varying the number of agents (sparse graphs).
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Figure 4: Solution Cost Comparison of PFD and the com-
peting algorithms with iterations (sparse graphs).

used which are of the form ax2 + bxy + cy2. Note that, al-
though we choose binary quadratic functions for evaluation,
PFD is broadly applicable to other classes of problems. The
experiments are carried out on a computer with an Intel Core
i5-6200U CPU, 2.3 GHz processor and 8 GB RAM. The de-
tailed experimental settings are described below.

Random Graphs: For random graphs, we use three
settings− sparse, dense and scale-free. Figure 3 shows
the comparison of average costs on Erdős-Rényi topology
(Erdős and Rényi 1960) with sparse settings (edge prob-
ability 0.2) varying the number of agents. We choose co-
efficients of the cost functions (a, b, c) randomly between
[−5, 5] and set the domains of each agent to [−50, 50].
For all the experiments, we set the parameters of PFD,
K = 2000, w = 0.9, c1 = 0.9, c2 = 0.1,maxfc =
5, and maxsc = 15. Moreover, we stop both HCMS
and PFD after 500 iterations for Figures 3, 5, 6 and 7.
Specifically, we choose 3 as the number of discrete points
for HCMS and AF-DPOP. The discrete points are cho-
sen randomly between the domain range. The averages
are taken over 50 randomly generated problems. Figure 3
shows that PFD performs better than both HCMS and AF-
DPOP on average. For no. of agents ≥ 20, AF-DPOP run
out of memory. Thus, we omit the result of AF-DPOP for
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Figure 5: Solution Cost Comparison of PFD and the compet-
ing algorithms varying number of agents (scale-free graphs).

Figure 6: Solution Cost Comparison of PFD and the com-
peting algorithms varying number of agents (dense graphs).

no.ofagents ≥ 20.
Figure 4 shows the comparison between PFD and HCMS

on sparse graph settings with increasing number of itera-
tions. We set the number of agents to 50 and the other set-
tings are the same as the above experiment. Furthermore,
we stop both algorithms after 500 iterations. Here, HCMS
initially performs slightly better than PFD till 50 iterations
since the particles of PFD initially start from random posi-
tions and require few iterations to move the particles towards
the best position. However, PFD outperforms HCMS later
and the improvement rate of PFD is steadier than HCMS.
Note that, for 50 agents, AF-DPOP runs out of memory in
our settings. Hence, we omit the result of AF-DPOP.

To compare with the performance of AF-DPOP on larger
graphs, we use scale-free graphs. Figure 5 shows the average
cost comparison between the three algorithms with increas-
ing number of agents. PFD shows comparable performance
with HCMS up to 30 agents and outperforms HCMS after-
wards. Both PFD and HCMS outperforms AF-DPOP. The
huge standard deviation of HCMS results into the compara-
ble performance with PFD for smaller agents.

We choose dense graphs as our final random graph set-
tings. Figure 6 shows a comparison between PFD and
HCMS on Erdős-Rényi topology with dense settings (edge
probability 0.6). PFD shows comparatively better perfor-

Figure 7: Solution Cost Comparison of PFD and the com-
peting algorithms varying number of agents (random trees).

mance than HCMS. Note that AF-DPOP is not used in the
dense graph setting due to the huge computation overhead.

Random Trees: We use the random tree configuration
in our last experimental settings since the memory require-
ment of AF-DPOP is less on trees. The experimental con-
figurations are similar to the random graph settings. Figure
7 shows comparative results between PFD and the compet-
ing algorithms on random trees. The closest competitor of
PFD in this setting is HCMS. On an average, PFD outper-
forms HCMS which in turn outperforms AF-DPOP. When
the number of agent is 50, PFD shows better performance
than AF-DPOP at a significant level.

Conclusions

In order to model many real-world problems, continuous
valued variables are more suitable than discrete valued vari-
ables. The F-DCOP framework is a variant of the DCOP
framework that can model such problems effectively. To
solve F-DCOPs, we propose an anytime algorithm called
PFD that is inspired by the Particle Swarm Optimization
(PSO) technique. To be precise, PFD devises a new method
to calculate and propagate the best particle information
across all the agents which influence the swarm to move to-
wards a better solution. We also theoretically prove that our
proposed algorithm PFD is anytime. Moreover, the guaran-
teed convergence version of PSO is tailored in PFD which
ensures its convergence to a local optimum. We empirically
evaluate our algorithm in a number of settings and compare
the results with the state-of-the-art algorithms, HCMS and
AF-DPOP. In all of the settings, PFD markedly outperforms
its counterparts in terms of solution quality. In the future, we
would like to further investigate the potential of PFD on var-
ious F-DCOP applications. We also want to explore whether
PFD can be extended for multi-objective F-DCOP settings.
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