A Particle Swarm Based Algorithm for Functional Distributed Constraint Optimization Problems

Moumita Choudhury, Saaduddin Mahmud, Md. Mosaddek Khan
Department of Computer Science and Engineering, University of Dhaka, Dhaka, Bangladesh
{moumitach22, saadmahmud142}@gmail.com, mosaddek@du.ac.bd

Abstract
Distributed Constraint Optimization Problems (DCOPs) are a widely studied constraint handling framework. The objective of a DCOP algorithm is to optimize a global objective function that can be described as the aggregation of several distributed constraint cost functions. In a DCOP, each of these functions is defined by a set of discrete variables. However, in many applications, such as target tracking or sleep scheduling in sensor networks, continuous valued variables are more suited than the discrete ones. Considering this, Functional DCOPs (F-DCOPs) have been proposed that can explicitly model a problem containing continuous variables. Nevertheless, state-of-the-art F-DCOPs approaches experience onerous memory or computation overhead. To address this issue, we propose a new F-DCOP algorithm, namely Particle Swarm based F-DCOP (PFD), which is inspired by a meta-heuristic, Particle Swarm Optimization (PSO). Although it has been successfully applied to many continuous optimization problems, the potential of PSO has not been utilized in F-DCOPs. To be exact, PFD devises a distributed method of solution construction while significantly reducing the computation and memory requirements. Moreover, we theoretically prove that PFD is an anytime algorithm. Finally, our empirical results indicate that PFD outperforms the state-of-the-art approaches in terms of solution quality and computation overhead.

Introduction
Distributed Constraint Optimization Problems (DCOPs) are an important constraint handling framework of multi-agent systems in which multiple agents communicate with each other in order to optimize a global objective. The global objective is defined as the aggregation of cost functions (i.e. constraints) among the agents. The cost functions can be defined by a set of variables controlled by the corresponding agents. DCOPs have been widely applied to solve a number of multi-agent coordination problems including, multi-agent task scheduling (Sultanik, Modi, and Regli 2007), sensor networks (Farinelli, Rogers, and Jennings 2014), multi-robot coordination (Yedidsion and Zivan 2016).

Copyright © 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
Max-Sum (HCMS) has been proposed in which continuous non-linear optimization methods are combined with the discrete Max Sum algorithm (Voice et al. 2010). However, continuous optimization methods such as gradient-based optimization require derivative calculations, and thus they are not suitable for non-differentiable optimization problems. Hoang et al. 2019 have made the latest contribution to this field. In this paper, authors propose one exact version, Exact Functional DPOP (EF-DPOP), and two approximate versions, Approximate Functional DPOP (AF-DPOP), and Clustered AF-DPOP (CAF-DPOP) of DPOP to solve F-DCOPs. The main limitation of these algorithms is that both AF-DPOP and CAF-DPOP incur exponential memory and computation overhead even though the latter cuts the communication cost by providing a bound on message size.

Against this background, we propose a Particle Swarm Optimization based F-DCOP algorithm that we call PFD. Particle Swarm Optimization (PSO) is a stochastic optimization technique inspired by the social metaphor of bird flocking (Eberhart and Kennedy 1995). It has been successfully applied to many optimization problems such as Function Minimization (Shi and Eberhart 1999), Neural Network Training (Zhang et al. 2007) and Power-System Stabilizers Design Problems (Abido 2002). However, to the best of our knowledge, no previous work has been done to incorporate PSO in DCOP or F-DCOP. In PFD, agents cooperatively keep a set of particles where each particle represents a candidate solution and iteratively improve the solutions over time. Since PFD requires only primitive mathematical operators such as addition and multiplication, it is less expensive than the gradient-based optimization methods in terms of computation cost and memory requirements. Specifically, we empirically show that PFD finds better solution quality for every possible value assignment of \(x_i \), that is, \(f_i: D_{i_1} \times D_{i_2} \times \ldots \times D_{i_k} \rightarrow R \) where the arity of the function \(f_i \) is \(k \). In this paper, we only consider binary constraints.

- \(\alpha : X \rightarrow A \) is a variable to agent mapping function which assigns the control of each variable \(x_i \in X \) to an agent \(a_i \in A \). Each agent can hold several variables. However, for the ease of understanding, we assume each agent controls only one variable in this paper.

The solution of a DCOP is an assignment \(X^* \) that minimizes the sum of cost functions as shown in Equation 1.

\[
X^* = \arg \min_X \sum_{i=1}^{l} f_i(x^i) \tag{1}
\]

Functional Distributed Constraint Optimization Problem

Similar to the DCOP formulation, F-DCOP can be defined as a tuple \(\langle A, X, D, F, \alpha \rangle \) (Modi et al. 2005) where,

- \(A \) is a set of agents \(\{a_1, a_2, \ldots, a_n\} \).
- \(X \) is a set of discrete variables \(\{x_1, x_2, \ldots, x_m\} \), where each variable \(x_j \) is controlled by one of the agents \(a_i \in A \).
- \(D \) is a set of discrete domains \(\{D_1, D_2, \ldots, D_m\} \), where each \(D_i \) corresponds to the domain of variable \(x_i \).
- \(F \) is a set of cost functions \(\{f_1, f_2, \ldots, f_l\} \), where each \(f_i \in F \) is defined over a subset \(x^i = \{x_{i1}, x_{i2}, \ldots, x_{ik}\} \) of variables \(X \) and the cost for the function \(f_i \) is defined for every possible value assignment of \(x^i \), that is, \(f_i: D_{i_1} \times D_{i_2} \times \ldots \times D_{i_k} \rightarrow R \) where the arity of the function \(f_i \) is \(k \).

As discussed in the previous section, a notable difference between F-DCOP and DCOP can be found in the representation of cost function. In DCOP, the cost functions are conventionally represented in tabular form, while in F-DCOP each constraint is represented in the form a function (Hoang et al. 2019). However, the goal remains the same as depicted in Equation 1. Figure 1 presents the example of an F-DCOP where Figure 1a represents a constraint graph with four variables where each variable \(x_i \) is controlled by an agent \(a_i \). Each edge in Figure 1a stands for a constraint function and the definition of each function is shown in Figure 1b. In this particular example, each variable \(x_i \) can take values from the range \([-10, 10]\).
Algorithm 1: Particle Swarm Optimization

1. Generate an n-dimensional population, \(P \)
2. Initialize positions and velocities of each particle
3. while Termination condition not met do
 4. for each particle \(P_i \) ∈ \(P \) do
 5. calculate current velocity and position
 6. if current position < personal best then
 7. update personal best
 8. if current position < global best then
 9. update global best
 10. end for

Particle Swarm Optimization

PSO is a population-based optimization technique inspired by the movement of a bird flock or a fish school. In PSO, each individual of the population is called a particle. PSO solves the problem by moving the particles in a multi-dimensional search space by adjusting the position and velocity of each particle. As shown in Algorithm 1, initially, each particle is assigned a random position and velocity. A fitness function is defined, which is used to evaluate the position of each particle. In each iteration, the movement of a particle is guided by both its personal best position found so far in the search space and the global best position found by the entire swarm (Algorithm 1: Lines 4-5). The combination of the personal best and the global best position ensures that when a better position is found through the search process, the particles will move closer to that position and explore the surrounding search space more thoroughly considering it as a potential solution. The personal best position of each particle and the global best position of the entire population is updated if necessary (Algorithm 1: Lines 6-9). Over the last couple of decades, several versions of PSO have been developed. The standard PSO often converges to a sub-optimal solution since the velocity component of the global best particle tends to zero after some iterations. Consequently, the global best position stops moving, and the swarm behaviour of all other particles leads them to follow the global best particle. To cope with the premature convergence property of standard PSO, Guaranteed Convergence PSO (GCPSO) has been proposed that provides convergence guarantees to local optima (van den Bergh and Engelbrecht 2002).

Challenges

The following challenges must be addressed to develop an anytime F-DCOP algorithm that adapts the guaranteed convergence PSO:

- **Particles and Fitness Representation**: We need to define a representation for the particles where each particle represents a solution of the F-DCOP. Moreover, a distributed method for calculating the fitness for each of the particles needs to be devised.

The PFD Algorithm

PFD is a PSO based iterative algorithm consisting of three phases: Initialization, Evaluation, and Update. In the initialization phase, a pseudo-tree is constructed, an initial population is created and parameters are initialized. In the evaluation phase, agents calculate the fitness function for each particle in a distributed way. The update phase keeps track of the best solution found so far and propagates this information to the agents and updates the assignments according to that information. The detailed algorithm can be found in Algorithm 2.

Initialization starts with ordering the agents in a Breadth First Search (BFS) pseudo-tree (Chen, He, and He 2017). The pseudo-tree serves the purpose of defining a message passing order which is used in the Evaluation and Update phase. In the ordered arrangement, an agent with lower depth has higher priority over an agent with higher depth and ties are broken randomly. From the pseudo-tree construction algorithm, each agent knows the lists of its higher and lower priority neighbors. Each agent needs this information to be able to send and receive messages in the later phase of the algorithm. Figure 2(a) and 2(b) illustrates the BFS pseudo-tree and its ordered arrangement of the constraint graph shown in

![Figure 2](https://example.com/figure2.png)

(a) BFS pseudo-tree (b) Ordered arrangement

- **Creating the Population**: In centralized optimization problems, creating the initial population is a trivial task. However, in case of F-DCOP, different agents control different variables, Hence, a method needs to be devised to generate the initial population cooperatively.

- **Evaluation**: Centralized PSO deals with an n-dimensional optimization task. In F-DCOP, each agent holds one variable and each agent is responsible for solving the optimization task related to that variable only where the global objective is still an n-dimensional optimization process.

- **Maintaining the Anytime Property**: To maintain the anytime property in an F-DCOP model, we need to identify the global best particle and the personal best position for each particle. A distribution method needs to be devised to notify all the agents when a new global best particle or personal best position is found. Finally, a coordination method is needed among the agents to update the position and velocity considering the current best position.

In the following section, we devise a novel method to apply PSO in F-DCOP that addresses the above challenges.
Algorithm 2: The PFD Algorithm

1. Construct BFS pseudo-tree
2. Initialize parameters: $K, w, c_1, c_2, \text{max } s, \text{max } f$
3. $P \leftarrow$ set of K particles
4. Function Init():
 5. for each particle $P_k \in P$ do
 6. $P_k.v_i \leftarrow 0$
 7. $P_k.x_i \leftarrow$ a random value from D_i
 8. Send $P_k.x_i$ to agents in L_i
 9. for each agent a_i do
 10. Init()
 11. while Termination condition not met each agent a_i do
 12. for $P.x_i$ received from $H_{i_j} \in H_i$ do
 13. for each particle $P_k \in P$ do
 14. $P_k.fitness \leftarrow \text{Cost}_{i,j}(P_k.x_i, P_k.x_j)$
 15. Send $P_k.fitness$ to agents in H_{i_j}
 16. Wait until $P_k.fitness$ received from all agent in L_i
 17. if $|L_i| \neq 0$ and $P_k.fitness$ received from all agent in L_i, then
 18. for each particle $P_k \in P$ do
 19. $P_k.fitness \leftarrow \sum_{j \in L_i} P_j.fitness$
 20. if $a_i \neq \text{root}$ then
 21. Send $P_k.fitness$ to an $H_{i_j} \in H_i$
 22. if $a_i = \text{root}$ then
 23. Update($P_k.fitness$)
 24. Wait until $P_{i,h} and P_{g,h}$ are received from H_i
 25. if $P_{i,h} and P_{g,h}$ are received from H_i, then
 26. for each particle $P_k \in P$ do
 27. if $P_{i,h} = P_k$ then
 28. Calculate $P_k.v_i$ and $P_k.x_i$ according to Equations 4, 5
 29. else
 30. Calculate $P_k.v_i$ and $P_k.x_i$ according to Equations 4, 5
 31. if $|L_i| \neq 0$ then
 32. Send $P_k.x_i$ to agents in L_i
 33. Send $P_{i,h}$ and $P_{g,h}$ to agents in L_i
 34. Function Update($P_k.fitness$):
 35. $P_{i,h} \leftarrow \{\}$
 36. for each particle $P_k \in P$ do
 37. if $P_k.fitness < P_{i,h}.fitness$ then
 38. $P_{i,h} \leftarrow P_k$
 39. $P_{i,h} \leftarrow \{P_k.fitness\} \cup P_{i,h}$
 40. if $P_k.fitness < P_{g,h}.fitness$ then
 41. $P_{g,h} \leftarrow P_k$
 42. Send $P_{i,h}$ and $P_{g,h}$ to agents in L_i

Figure 1, respectively. In Figure 2(b), x_1 is the root and the arrows represent the message passing direction of the Initialization and the Update phase. The reverse direction is used for the Evaluation phase. From this point, for an agent a_i, we refer N_i as the set of neighbors, $H_i \subseteq N_i$ and $L_i \subseteq N_i$ as the sets of higher priority and lower priority neighbors of a_i, respectively. For agent x_3^2 of Figure 2(b), $N_i = \{x_1, x_4\}$, $H_i = \{x_1\}$ and $L_i = \{x_4\}$.

PFD requires some parameters as input; one of them is the number of particles, K whose value depends on the specific problem. Each agent then initializes the set of K particles, P. Each particle $P_k \in P$ has a velocity and a position attribute; and each agent only controls the component of the attributes relevant to the variable it holds. The velocity attribute defines the movement directions and the position attribute defines the value of the variable that the agent controls. Then each agent a_i executes Init (Algorithm 2: Lines 2-8) and initializes the velocity component, v_i to 0 and position component, x_i to a random value from its domain D_i for each particle P_k. For the example of Figure 2(b), let us assume the number of particles, $K = 2$, and the set of particles, $P = \{P_1, P_2\}$. Here, $P_1.V = P_2.V = \{0, 0, 0\}$ shows the complete assignment for the velocity attribute of two particles and the complete assignment for the position attribute can be shown as, $P_1.X = \{x_1 = -1, x_2 = 0, x_3 = 2, x_4 = 9.5\}$, $P_2.X = \{x_1 = 3.5, x_2 = 4.9, x_3 = 1, x_4 = 0\}$. We define $P_k.x_i$ and $P_k.v_i$ as the position and velocity component of particle P_k set by the agent a_i. In this example, $P_1.x_3 = 2$ which is the value of variable x_3 of particle P_1 set by the agent a_3. After setting the value of its variable, each agent shares the particle set $P.x_i$ with its lower priority neighbors L_i. In our example, agent a_3 sends $P.x_3 = \{2, 1\}$ to its lower priority neighbor a_4.

The Evaluation phase of PFD starts after the agents receive value assignments from all the higher priority neighbors. Each agent a_i is responsible for calculating the constraint cost associated with each of its higher priority neighbors H_i. When an agent a_i receives value assignments $P.x_i$ from a higher priority neighbor $H_{i_j} \in H_i$, it calculates the constraint costs between them and sends it to H_{i_j} (Algorithm 2: Lines 13-16). Additionally, each agent except the leaf agents needs to pass the constraint costs upward the pseudo-tree calculated by its corresponding lower priority neighbors, L_i (Algorithm 2: Lines 18-20). The fitness of each particle $P_k.fitness$ is calculated using a fitness function shown in Equation 2, where $P_k.x^i$ represents the assignments of the set of variables x^i. This function calculates the aggregated cost of constraints yielded by the assignment. Note that a single agent can not calculate the complete fitness. Instead, it is calculated in parts with the cooperation of all the agents during the construction process. For the example shown in Figure 1, agent a_4 sends the set of fitness of the particles $\{P_1 = 274.75, P_2 = 1\}$ to a_3 and $\{P_1 = -178.5, P_2 = 24.5\}$ to a_1. Agent a_3 calculates the set of fitness $\{P_1 = -3, P_2 = 19.25\}$ and

\[^2\] a_i and x_i will be used interchangeably throughout the paper.

\[^3\] The rest of the parameters and their recommended values for our experiments are discussed later in the text.
In Equations 3, 4 and 5, \(P \) constants. Combinations of on the updated particle position. In Equation 4, \(P \) particle which is defined in Equation 5. The position component update equation is the same for all \(P \) particles except the global best particle, the update equation is shown in Equation 4.

\[
P_k \cdot v_i(t) = w \cdot P_k \cdot v_i(t - 1) + r_1 \cdot c_1 \cdot (P_k \cdot p_{best}(t - 1) - P_k \cdot x_i(t - 1)) + r_2 \cdot c_2 \cdot (P_k \cdot g_{best}(t - 1) - P_k \cdot x_i(t - 1))
\]

(3)

However, when the particle is the global best particle, then from Equation 3, we can see the velocity update will only depend on the term \(w \cdot P_k \cdot v_i(t - 1) \). Thus, the global best particle will only move away if its inertia weight \(w \) and the velocity in the previous iteration \(P_k \cdot v_i(t - 1) \) are not equal to zero. Otherwise, the global best particle will stop moving and all the particles will eventually follow the global best particle. This phenomenon will lead to the premature convergence of the algorithm. To cope with this issue, we adapt the GCPSE approach (van den Bergh and Engelbrecht 2002) and the velocity update equation for the global best particle is shown in Equation 4.

\[
P_k \cdot v_i(t) = -P_k \cdot x_i(t - 1) + P_k \cdot g_{best}(t - 1) + w \cdot P_k \cdot v_i(t - 1) + \rho \cdot (1 - 2r_2)
\]

(4)

The position component update equation is the same for all the particles which is defined in Equation 5.

\[
P_k \cdot x_i(t) = P_k \cdot x_i(t - 1) + P_k \cdot v_i(t)
\]

(5)

In Equations 3, 4 and 5, \(P_k \cdot v_i(t) \) and \(P_k \cdot x_i(t) \) refer to the velocity and position components controlled by agent \(a_i \) for particle \(P_k \) in \(t^{th} \) iteration. Here, an iteration refers to a complete round of the Evaluation and Update phase (Algorithm 2: Line 12). Here, \(w \) is the inertia weight that defines the influence of current velocity on the updated velocity, \(r_1 \) and \(r_2 \) are two random values between \([0, 1]\) and \(c_1 \), \(c_2 \) are two constants. Combinations of \(c_1 \) and \(c_2 \) define the magnitude of influence that the personal best and the global best have on the updated particle position. In Equation 4, \(\rho \) is used to explore a random area near the position of the global best particle. To be precise, \(\rho \) defines the diameter of this area that the particles can explore. The value of \(\rho \) is adjusted according to Equation 6.

\[
\rho(t) = \begin{cases}
1 & t = 0 \\
2 \cdot \rho(t - 1) & s_c(t - 1) > \max_s \\
0.5 \cdot \rho(t - 1) & f_c(t - 1) > \max_f \\
\rho(t - 1) & \text{otherwise}
\end{cases}
\]

(6)

In Equation 6, \(s_c \) and \(f_c \) are the count of consecutive successes and failures, respectively. A success is defined when the global best particle updates its personal best position. Similarly, a failure is defined when the position of the global best particle remains unchanged. The intuition behind changing \(\rho \) with each iteration is to reward the random exploration when consecutive successes occur and to penalize when consecutive failures occur. The parameters \(\max_s \) and \(\max_f \) are the upper bound of \(s_c \) and \(f_c \). The following equations define \(s_c \) and \(f_c \).

\[
s_c(t) = \begin{cases}
(s_c(t - 1) + 1) & \text{if } P_G \cdot p_{best}(t) < P_G \cdot g_{best}(t - 1) \\
0 & \text{otherwise}
\end{cases}
\]

(7)

\[
f_c(t) = \begin{cases}
(f_c(t - 1) + 1) & \text{if } P_G \cdot p_{best}(t) = P_G \cdot g_{best}(t - 1) \\
0 & \text{otherwise}
\end{cases}
\]

(8)

In Equation 7, \(P_G \) defines the global best particle of iteration \(t - 1 \). Each agent \(a_i \) calculates \(s_c \) and \(f_c \) according to Equations 7 and 8 after receiving \(P_G \cdot p_{best} \) and \(P_G \cdot g_{best} \) from their higher priority neighbors \(H_i \) (Algorithm 2: Line 27).

Consider the root agent \(a_1 \) in Figure 2. When \(a_1 \) receives fitness values from all of its lower priority neighbors, it is ready to calculate the \(P_\cdot p_{best} \) and \(P_\cdot g_{best} \). The final updated fitness value, \(P_\cdot fitness \) = \{94,25,33\}. Since this is the first iteration, \(P_\cdot p_{best} \) will be current positions of the particles and \(P_\cdot g_{best} \) will be the position of particle \(P_2 \). Agent \(a_1 \) then propagates this information to the agents in \(L_1 \). Then each agent calculates \(s_c \) and \(f_c \) and updates the values based on Equations 3, 4, and 5.

Theoretical Analysis

In this section, we first prove PFD is an anytime algorithm; that is, the quality of solution improves and never degrades over time. We then discuss AED’s complexity in terms of communication, computation, and memory requirements.

Lemma 1: At iteration \(t + d \), the root is aware of the \(P_\cdot p_{best} \) and \(P_\cdot g_{best} \) up to iteration \(t \), where \(d \) is the longest path in the pseudo-tree starting from the root.

Proof: In order to prove this lemma, it is sufficient to show that, at iteration \(t + d \), the root agent has enough information to calculate \(P_\cdot p_{best} \) and \(P_\cdot g_{best} \) up to iteration \(t \). That is, the root agent can calculate the fitness of each particle. However, the root agent requires the cost messages from the global best particle.

For the theoretical analysis section, iteration refers to the required number of communication steps. In one communication step, agents only directly communicate with the neighbors.
all the agents in L_{root} in order to calculate the fitness of each particle using Equation 2. Now, the root agent has to wait for at most d iterations for the cost messages since the length of the longest path in the pseudo-tree is d. In the wake of that, we can infer that at iteration $t + d$, the root agent is capable of calculating the fitness of each particle up to iteration t.

Lemma 2: At iteration $t + d + h$, each agent is aware of the $P.p_{best}$ and $P.g_{best}$ up to iteration t, where h is the height of the pseudo-tree.

Proof: In PFD, for any agent a_i, it will take at most h iterations for the $P.p_{best}$ and $P.g_{best}$ to reach that agent from the root since it is enough to get this message from one of the agents in H_t. Based on the above claim and Lemma 1, it takes at most $t + d + h$ iterations for the $P.p_{best}$ and $P.g_{best}$ up to iteration t to reach all the agents.

Proposition 1: PFD is an anytime algorithm.

Proof: From Lemma 2, at iteration $t + d + h$ and $t + d + h + \delta$ ($\delta \geq 0$), each agent is aware of $P.p_{best}$ and $P.g_{best}$ up to iterations t and $t + \delta$, respectively. Since $P.p_{best}$ and $P.g_{best}$ only get updated if a better solution is found, $P.p_{best}$ and $P.g_{best}$ at iteration $t + d + h + \delta$ at iteration $t + d + h$. That is, the solution quality improves monotonically as the number of iteration increases. Hence, PFD is an anytime algorithm.

Complexity Analysis

We define, the total number of agents $|A| = n$ and the total number of neighbors of an agent $a_i \in A$, $|N_i| = |L_i| + |H_i|$. In PFD, an agent sends $|L_i|$ messages during the Initialization and Update phases. Additionally, during the Evaluation phase, an agent sends $|H_i| + 1$ messages. After one round of the Initialization, Evaluation and Update phases, an agent a_i sends $2 \times |L_i| + |H_i| + 1$ messages. In the worst case, the graph is complete where $|N_i| = n$. Therefore, the total number of messages sent by an agent a_i is $O(2 \times |L_i| + |H_i|) = O(2n)$ in the worst case.

In PFD, each agent sends 3 types of messages; they are $P.x_i$, $P.fitness$ and $P.p_{best}$, $P.g_{best}$ messages. Each of these messages contains the information of K particles, where K is the total number of particles. Hence, the size of each message is $O(K)$. This means, at each iteration the total message size per agent is $O(3 \times K \times n) = O(K \times n)$.

During an iteration, an agent either calculates $P_k.v_i$ and $P_k.x_i$ or $P_k.fitness$ for each of the particle P_k. Hence, the total computation complexity per agent during an iteration is $O(K \times n) = O(K \times n)$.

Experimental Results

In this section, we empirically evaluate the quality of solutions produced by PFD with HCMS and AF-DPOP on two types of graphs: Random Graphs and Random Trees. However, CMS is not used in comparison because it only works with piece-wise linear functions which is not applicable in most of the real-world applications. Although Hoang et al. 2019 propose three versions of Functional DPOP, we only compare with AF-DPOP here. This is because AF-DPOP is reported to provide the best solution among the approximate algorithms proposed in their paper. For the experimental performance evaluation, binary quadratic functions are used which are of the form $ax^2 + bxy + cy^2$. Note that, although we choose binary quadratic functions for evaluation, PFD is broadly applicable to other classes of problems. The experiments are carried out on a computer with an Intel Core i5-6200U CPU, 2.3 GHz processor and 8 GB RAM. The detailed experimental settings are described below.

Random Graphs: For random graphs, we use three settings—sparse, dense and scale-free. Figure 3 shows the comparison of average costs on Erdős-Rényi topology (Erdős and Rényi 1960) with sparse settings (edge probability 0.2) varying the number of agents. We choose coefficients of the cost functions (a, b, c) randomly between $[-5, 5]$ and set the domains of each agent to $[-50, 50]$. For all the experiments, we set the parameters of PFD, $K = 2000$, $w = 0.9$, $c_1 = 0.9$, $c_2 = 0.1$, $\max_x = 5$, and $\max_s = 15$. Moreover, we stop both HCMS and PFD after 500 iterations for Figures 3, 5, 6 and 7. Specifically, we choose 3 as the number of discrete points for HCMS and AF-DPOP. The discrete points are chosen randomly between the domain range. The averages are taken over 50 randomly generated problems. Figure 3 shows that PFD performs better than both HCMS and AF-DPOP on average. For $\text{no. of agents} \geq 20$, AF-DPOP run out of memory. Thus, we omit the result of AF-DPOP for
no. of agents ≥ 20.

Figure 4 shows the comparison between PFD and HCMS on sparse graph settings with increasing number of iterations. We set the number of agents to 50 and the other settings are the same as the above experiment. Furthermore, we stop both algorithms after 500 iterations. Here, HCMS initially performs slightly better than PFD till 50 iterations since the particles of PFD initially start from random positions and require few iterations to move the particles towards the best position. However, PFD outperforms HCMS later and the improvement rate of PFD is steadier than HCMS. Note that, for 50 agents, AF-DPOP runs out of memory in our settings. Hence, we omit the result of AF-DPOP.

To compare with the performance of AF-DPOP on larger graphs, we use scale-free graphs. Figure 5 shows the average cost comparison between the three algorithms with increasing number of agents. PFD shows comparable performance with HCMS up to 30 agents and outperforms HCMS afterwards. Both PFD and HCMS outperforms AF-DPOP. The huge standard deviation of HCMS results into the comparable performance with PFD for smaller agents.

We choose dense graphs as our final random graph settings. Figure 6 shows a comparison between PFD and HCMS on Erdős-Rényi topology with dense settings (edge probability 0.6). PFD shows comparatively better performance than HCMS. Note that AF-DPOP is not used in the dense graph setting due to the huge computation overhead.

Random Trees: We use the random tree configuration in our last experimental settings since the memory requirement of AF-DPOP is less on trees. The experimental configurations are similar to the random graph settings. Figure 7 shows comparative results between PFD and the competing algorithms on random trees. The closest competitor of PFD in this setting is HCMS. On an average, PFD outperforms HCMS which in turn outperforms AF-DPOP. When the number of agent is 50, PFD shows better performance than AF-DPOP at a significant level.

Conclusions

In order to model many real-world problems, continuous valued variables are more suitable than discrete valued variables. The F-DCOP framework is a variant of the DCOP framework that can model such problems effectively. To solve F-DCOPs, we propose an anytime algorithm called PFD that is inspired by the Particle Swarm Optimization (PSO) technique. To be precise, PFD devises a new method to calculate and propagate the best particle information across all the agents which influence the swarm to move towards a better solution. We also theoretically prove that our proposed algorithm PFD is anytime. Moreover, the guaranteed convergence version of PSO is tailored in PFD which ensures its convergence to a local optimum. We empirically evaluate our algorithm in a number of settings and compare the results with the state-of-the-art algorithms, HCMS and AF-DPOP. In all of the settings, PFD markedly outperforms its counterparts in terms of solution quality. In the future, we would like to further investigate the potential of PFD on various F-DCOP applications. We also want to explore whether PFD can be extended for multi-objective F-DCOP settings.

Acknowledgments

This research is partially supported by the Information and Communication Technology (ICT) Division, and University Grants Commission (UGC).
References

