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Abstract

Multi-view spectral clustering aims to group data into dif-
ferent categories by optimally exploring complementary in-
formation from multiple Laplacian matrices. However, exist-
ing methods usually linearly combine a group of pre-specified
first-order Laplacian matrices to construct an optimal Lapla-
cian matrix, which may result in limited representation ca-
pability and insufficient information exploitation. In this pa-
per, we propose a novel optimal neighborhood multi-view
spectral clustering (ONMSC) algorithm to address these is-
sues. Specifically, the proposed algorithm generates an opti-
mal Laplacian matrix by searching the neighborhood of both
the linear combination of the first-order and high-order base
Laplacian matrices simultaneously. This design enhances the
representative capacity of the optimal Laplacian and better
utilizes the hidden high-order connection information, lead-
ing to improved clustering performance. An efficient algo-
rithm with proved convergence is designed to solve the re-
sultant optimization problem. Extensive experimental results
on 9 datasets demonstrate the superiority of our algorithm
against state-of-the-art methods, which verifies the effective-
ness and advantages of the proposed ONMSC.

Introduction

Multi-view spectral clustering (MVSC), which makes use
of the information of multi-view data to improve cluster-
ing accuracy, has become an important research topic in
the past decades (De Sa 2005; Yang and Wang 2018). Ac-
cording to the complementary information extraction mech-
anism, current algorithms can be roughly grouped into three
categories. The first category adopts a co-training mecha-
nism and forces the clustering results of different views to
be consistent with each other (Kumar and Daumé 2011;
Huang et al. 2015). The second category assumes that the
predefined affinity matrices are perturbation of an opti-
mal affinity matrix. Then, by utilizing low-rank or sparse
optimization, these algorithms construct an optimal con-
sensus affinity matrix from all views (Nie et al. 2017;
Zhan et al. 2019; Tang et al. 2018; Zhou et al. 2019). By
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assuming that the optimal Laplacian matrix is a linear ag-
gregation of the base Laplacian matrices from each view,
the third category of methods optimize the combination co-
efficients of the base Laplacian matrices by minimizing the
normalized cut of the combined matrix (Xia et al. 2010).
Methods in the third category have received intensive at-
tention during the past few years, and progress continues
being made along this line of research (Li et al. 2015;
Nie et al. 2016; Zhao, Ding, and Fu 2017; Zong et al. 2018;
Huang, Kang, and Xu 2018; Kang et al. 2018; Zhou et
al. 2020). The work in (Li et al. 2015) approximates the
similarity graphs with bipartite graphs and makes the pro-
posed algorithm applicable to large-scale problems. In (Nie
et al. 2016), researchers introduce a parameter-free frame-
work which could serve for both unsupervised and semi-
supervised learning circumstances. To propose a more ap-
propriate view-weighting scheme, (Zong et al. 2018) adopts
the largest canonical angle to measure the difference be-
tween spectral clustering results of different views. Our
work also falls into the third category.

Although various improvements have been achieved by
existing algorithms, we observe that algorithms from the
third category bear the following drawbacks. First, these
algorithms share a common assumption that the optimal
Laplacian matrix lies in the linear space spanned by the
base Laplacian matrices. This assumption, on one hand, sim-
plifies the optimization procedure. On the other hand, it
is uncovered in recent work that it might over-reduce the
feasible set of the optimal Laplacian matrix and could re-
sult in limited representation capacity of the learned ma-
trix (Bach 2009; Cortes, Mohri, and Rostamizadeh 2009;
Liu et al. 2017; Li et al. 2018). Second, existing algorithms
do not sufficiently consider the high-order affinity informa-
tion, which is important to reveal hidden neighborhood rela-
tion among samples. Both factors could adversely affect the
learned Laplacian matrix, leading to unsatisfying clustering
performance.

In this paper, we propose an optimal neighborhood multi-
view spectral clustering algorithm to address both issues.
Specifically, instead of restricting the optimal Laplacian ma-
trix exactly being a linear combination of base matrices, our
algorithm allows the optimal matrix to lie in the neighbor-
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hood of the latter. By this way, our algorithm effectively en-
larges the region from which an optimal Laplacian matrix
can be chosen for clustering. Then, we further enforce the
learned optimal Laplacian matrix to be in the neighborhood
of the linear combination of both the first-order and high-
order base Laplacian matrices. This contributes to exploit
both first-order and high-order connection information. Af-
ter that, we carefully instantiate an optimization objective
and develop an efficient algorithm with proved convergence
to solve the resulting optimization problem. The contribu-
tions of this paper are summarized as follows:

i) We, for the first time, discover that current linear
combination-based multi-view spectral clustering frame-
work could: 1) limit the representation capacity of the
learned Laplacian matrix; and 2) insufficiently explore the
high-order neighborhood information among data.

ii) We provide a flexible optimal Laplacian matrix con-
struction mechanism to solve the aforementioned issues.
Also, an efficient algorithm with proved convergence is pro-
posed to solve the resulting optimization problem.

iii) Comprehensive experimental study on eight bench-
mark datasets and the large scale MNIST dataset indicates
superior performance of the proposed algorithm.

Background and Notations

In this section, we first briefly introduce some important
notations and then revisit the basic form of linear Lapla-
cian matrix combination-based multi-view spectral cluster-
ing. Finally, we introduce the definition of the high-order
Laplacian matrix in our paper.

Notations

Let X = [x1, . . . ,xn]
� ∈ R

n×d denote the data matrix,
where n is the sample number and d is the feature dimen-
sion. Given the dataset X and a kernel function κ(·, ·), the
adjacent matrix A ∈ R

n×n can then be constructed in a k-
NN fashion. In particular, in the affinity matrix, xi and xj is
linked if at least one of them is among the k nearest neigh-
bors of the other in the measurement of κ(·, ·). The j-th ele-
ment of the i-th row of A is:

Aij =

{
κ(xi,xj), if xi and xj are linked
0, otherwise

Denoting the i-th diagonal element in the degree matrix
D ∈ R

n×n as Dii =
∑n

j=1 Aij , the definition of the corre-
sponding first-order normalized graph Laplacian matrix is:

L(1) � In −D−1/2AD−1/2.

Let H ∈ R
n×c denote the cluster indicator matrix, where c is

the number of classes, the object function of the normalized
spectral clustering (Ng, Jordan, and Weiss 2002) is:

minH�H=I Tr
(
H�L(1)H

)
.

Multi-view Spectral Clustering with Linear
Laplacian Matrix Combination

For multi-view data, let v be the number of views,
A1, . . . ,Av ∈ R

n×n be the affinity matrix of each view

and L
(1)
1 , . . . ,L

(1)
v ∈ R

n×n be the corresponding first-order
normalized Laplacian matrices. To exploit the complemen-
tary information from different views, (Xia et al. 2010) lin-
early aggregates the base Laplacian matrices from each view
and learns an optimal matrix which can best suit the need of
clustering. The formulation of the algorithm is:

minH�H=Ic,μTr
(
H�L(1)

μ H
)
,

s.t. L(1)
μ =

∑v

p=1
μr
pL

(1)
p , ‖μ‖1 = 1, μ ≥ 0,

(1)

where μp is the combination weight of the p-th view, r
is a hyper-parameter to balance the contribution of each
view, and L

(1)
μ is the optimal Laplacian matrix for learn-

ing. Although good performance has been achieved by the
above method, recent literature shows that this method over-
reduces the feasible set of the optimal Laplacian matrix,
which may lead to a less representative solution and yield
even worse performance than using a single view (Liu et al.
2017).

High-Order Laplacian Matrix

First-order and second-order connections are essential con-
cepts in graph analyzing (Tang et al. 2015). Specifically, in
graph embedding, the first-order connection refers to the lo-
cal pairwise proximity between vertices in a graph. Compar-
atively, the second-order connection assumes that vertices
sharing many connections to other vertices are also similar
to each other. Moreover, in recent literature, because of the
popularity of graph convolutional neural networks (Deffer-
rard, Bresson, and Vandergheynst 2016), higher-order con-
nection information has attracted the attention of researches.
In these papers, the order of connections has been ex-
plained as the receptive field of different convolutional fil-
ters. Specifically, the definition of second-order proximity
in (Tang et al. 2015) is as follow.
Definition 1 (Second-order Proximity). The second-order
proximity between a pair of vertices (u, v) in a network is the
similarity between their neighborhood network structures.

According to the above definition, denote aj as the j-th
column of first-order affinity matrix A, the mathematical
definition of the second-order affinity matrix A(2) is:

A
(2)
ij � a�i aj , ∀i, j ∈ [n]. (2)

Consequently, the corresponding second-order normalized
Laplacian matrix can be written as:

L(2) � In − (D(2))−1/2A(2)(D(2))−1/2, (3)

where D
(2)
ii =

∑n
j=1 A

(2)
ij . According to this definition,

we can readily calculate a o-order proximity via A(o) =
A(o−1)A.

As shown by existing literature (Tang et al. 2015), first-
order connection in the real world data is usually not suffi-
cient to preserve the global data structure. However, existing
methods in this regard do not sufficiently consider the high-
order information, which is crucial to improve the learning
performance, especially in unsupervised scenario.
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Optimal Neighborhood Multi-view Spectral

Clustering

The Proposed Formulation

In this section, to explore better representation capacity and
more comprehensively exploit both the first-order and high-
order affinity information in data, we propose a novel multi-
view spectral clustering algorithm with optimal neighbor-
hood Laplacian matrix. Generally, our algorithm simultane-
ously seeks an optimal Laplacian matrix L∗ in the neighbor-
hood of both the linear combination of the first-order and
high-order base Laplacian matrices. This idea can be intu-
itively implemented as follows

min
H�H=Ic,μ,L∗

Tr
(
H�L∗H

)
+
∑O

o=1
‖L∗−L

(o)
μ ‖2F+αμ�Mμ,

s.t. L
(o)
μ =

∑v

p=1
μpL

(o)
p (o ∈ [O]), ‖μ‖1 = 1,μ ≥ 0,

L∗ � 0, L∗
mn≤0(m �=n),

(4)

where L∗ is the optimal Laplacian matrix for learning, L(o)
μ

is the linear combination of the o-order base Laplacian ma-
trices, O is the largest order number and [O] is equivalent
with {1, . . . , O}. α is an importance balancing coefficient,
M is the correlation measuring matrix which records the
centered kernel alignment value (Cortes, Mohri, and Ros-
tamizadeh 2012) between affinity matrices. Specifically, de-
note the o-order affinity matrix of the p-th view as A(o)

p , the
matrix M can be defined as:

Mpq =

O∑
o=1

Tr(A
(o)
p A

(o)
q )

‖A(o)
p ‖F‖A(o)

q ‖F
, (p, q ∈ {1, . . . , v}).

In the objective function of Eq. (4), the first term is the
spectral clustering term which encourages the learned opti-
mal Laplacian matrix to perform well in clustering. In the
second term, we restrict L∗ to be in the neighborhood of
the linearly combined multi-order based Laplacian matri-
ces by minimizing the difference between L∗ and L

(o)
μ s at

the same time. The third term is the diversity inducing term
which tries to introduce more diverse information for opti-
mal Laplacian matrix construction by minimizing the overall
pair-wise correlation between the base-affinity matrices (Liu
et al. 2016).

In the formulation, the PSD and non-positive constraints
are added to guarantee that the learned matrix L∗ to be a
Laplacian matrix. However, these constraints also make the
corresponding optimization problem hard and inefficient to
solve. To tackle the problem, we take advantage of the orig-
inal definition of the Laplacian matrix, and propose the fol-
lowing formulation:

min
H�H=Ic,μ,W,Λ

Tr
(
H�(In −WΛW�)H

)

+
∑O

o=1
‖(In −WΛW�)− L(o)

μ ‖2F + αμ�Mμ,

s.t. L(o)
μ =

∑v

p=1
μpL

(o)
p (o ∈ [O]), ‖μ‖1 = 1,μ ≥ 0,

W ∈ R
n×c,W�W = Ic, 0 ≤ Λii ≤ 1,

(5)

where Λ ∈ R
c×c is a diagonal matrix. In the new formu-

lation, we use WΛW� to represent a low rank normal-
ized affinity matrix and In −WΛW� to represent the cor-
responding Laplacian matrix. Notably, the constraint 0 ≤
Λii ≤ 1 is added to make sure that the optimization process
is stable.

Alternate Optimization Framework

In the following, we design an efficient alternative four-step
optimization algorithm to solve the problem in Eq. (5):
i) Optimizing Λ. Given H, μ and W, the optimization
problem in Eq. (5) w.r.t. Λ reduces to:

min
Λ

Tr
(
OΛ2 + 2ΛC

)
,

s.t. 0 ≤ Λii ≤ 1, Λij = 0(i �= j),
(6)

where C = W�(
∑O

o=1 L
(o)
μ − 1

2HH�)W − OI. Denot-
ing λ̂ = diag(Λ) as the diagonal vector of matrix Λ,
ĉ = diag(C) as the diagonal vector of matrix C, problem
(6) is equivalent with the following formulation:

minλ̂
1

2
λ̂
�
λ̂+

1

O
λ̂
�
ĉ, s.t. 0 ≤ λ̂ ≤ 1. (7)

Since the objective function is separable, the optimization
problem is equivalent to, for any i ∈ [n],

minλ̂i

(
λ̂i +

ĉi
O

)2

, s.t. 0 ≤ λ̂i ≤ 1. (8)

Denote the optimal solution of this problem as λ̂
∗
, it has a

closed form

λ̂
∗
i = Proj[0,1]

(
− ĉi
O

)
, for any i ∈ [n],

where, Proj[0,1](·) represents to project a real number to
[0, 1].
ii) Optimizing H. Given W, μ, Λ, the optimization prob-
lem in Eq. (5) w.r.t. H reduces to a standard spectral cluster-
ing problem as follow:

minH�H=I Tr
(
H�(In −WΛW�)H

)
. (9)

It is not difficult to know that the optimal solution of H in
Eq. (9) is the c smallest eigenvectors of I−WΛW�.
iii) Optimizing μ. Given H, W and Λ, the optimization
problem in Eq. (5) w.r.t. μ reduces to the following formu-
lation:

minμ μ�(αM + M̂)μ− 2μ�τ ,
s.t. ‖μ‖1 = 1, μ ≥ 0,

(10)

where M is the affinity correlation matrix and τ ∈ R
v , τp =

Tr
(
(I−WΛW�)(

∑O
o=1 L

(o)
p )

)
. The definition of M̂ is:

M̂ �
{∑O

o=1
Tr

(
L(o)
p L(o)

q )
)}

∈ R
v×v, ∀p, q ∈ [v].

Since both M and M̂ are PSD (Cortes, Mohri, and Ros-
tamizadeh 2012), and the constraints of Eq. (10) is convex,
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the corresponding QP problem is convex. Its global optimal
solution can be easily solved by the optimization toolbox of
MATLAB.
iv) Optimizing W. Given H, μ and Λ, through simple de-
duction, the optimization problem in Eq. (5) w.r.t. W re-
duces to the following formulation:

minW�W=Ic Tr
(
ΛW�BW

)
, (11)

where B =
∑O

o=1 L
(o)
μ − 1

2HH�. Without matrix Λ, prob-
lem (11) can be simply solved by calculating the eigenvec-
tors corresponding to the smallest c eigenvalues of B.

Generally, the existence of Λ makes the problem hard to
solve. Nevertheless, through careful theoretical justification,
we find that (11) does not become more difficult due to Λ.
The theoretical analysis of this conclusion is presented as
follows.
Theorem 1. When Λ is a non-negative diagonal matrix and
B is a symmetric matrix, Eq. (11) has the same solution as
Eq. (12),

minW�W=Ic Tr
(
W�BW

)
. (12)

Proof. Denote Wj as the j-th column of matrix W.

Tr
(
ΛW�BW

)
=

∑c

j=1
ΛjjW

�
j BWj . (13)

As a consequence, the optimization problem in Eq. (11) can
be transferred into the following form:

min
W1,...,Wc

∑c

j=1
ΛjjW

�
j BWj ,

s.t.Wi ∈ R
n, W�

i Wi = 1,W�
i Wj = 0, (∀i �= j ∈ [c]).

(14)

Since there is no upper and lower bound on W in the for-
mulation, according to the method of Lagrange multipliers,
the optimal points of (14) should be the critical points of the
following formulation:

L(W1, . . . ,Wc) =

c∑
j=1

ΛjjW
�
j BWj −

c∑
j=1

ρjj(W
�
j Wj − 1)

−
c∑

i=1

c∑
j=1,j �=i

ρij(W
�
i Wj),

where ρijs are the Lagrange multipliers. Take the derivative
of L(W1, . . . ,Wc) with respect to Wi and set it to 0. With
the help of Karush–Kuhn–Tucker (KKT) conditions (Bert-
sekas 1997), through simple deduction, for Λii > 0, we have

BWi =
ρii
Λii

Wi

As a consequence, the optimal points of Eq. (14) are the
eigenvectors of matrix B. Denote βi and ui as the i-th eigen-
value and the corresponding eigenvector of matrix B. Since
B is a symmetric matrix, the uis are orthogonal with each
other and B can be rewritten in the following form:

B =
∑n

i=1
βiuiu

�
i . (15)

Substitute Eq. (15) into the objective of Eq. (14) and set Wis
as the eigenvectors of B, we have

Tr
(
ΛW�BW

)
=

∑c

i=1
Λiiβ̂i,

where {β̂i}ci=1 are c arbitrary eigenvalues of B. Obviously,
the minimum value can be achieved when the smallest c
eigenvalues are selected. Correspondingly, the optimal solu-
tion can be achieved by calculating the c eigenvectors with
the smallest eigenvalues, which is the same as the solution
of Eq. (12).

Remark 1. Theorem 1 implies that Λ in Eq. (11) does not
make the optimization of W more difficult.

In sum, our algorithm for solving Eq. (5) is outlined in
Algorithm 1, where obj(t) denotes the objective value at the
t-th iteration.

Algorithm 1 Optimal Neighborhood Multi-View Spectral
Clustering
Input: Data from v views {X(1), . . . ,X(v)}, number of
clusters c, parameter α and the neighbor number N .
Output: The learned optimal neighborhood Laplacian
matrix L∗

1: Construct first-order and high-order affinity matrices
and the corresponding Laplacian matrices. Initialize
H(0) as 0n×c, μ(0) as 1v/v, Λ as Ic. Initialize t as 1.

2: repeat

3: Calculate L
(o)
μ(t)

=
∑v

p=1 μp(t−1)
L
(o)
p ;

4: Calculate W(t) by optimizing Eq. (11);
5: Calculate Λ(t) by optimizing Eq. (7);
6: Calculate H(t) by optimizing Eq. (9);
7: Calculate μ(t) by optimizing Eq. (10);
8: t = t+ 1.
9: until |Obj (t) −Obj (t−1)| < 10−4 × |Obj (t)|.

Algorithmic Discussion

Convergence. In each of the optimization iteration of our
proposed algorithm, two convex quadratic programming
problems and two eigenvalue decomposition problems are
being solved. As a consequence, the objective of Algorithm
1 is guaranteed to be monotonically decreased when opti-
mizing one variable with others fixed at each iteration. At
the same time, the objective is lower-bounded by zero. As
a result, our algorithm is guaranteed to converge to a local
optimum of problem Eq. (5).
Computational Complexity. Our optimization algorithm is
composed of four sub-problems. The overall procedure is re-
ported in Algorithm 1. Specifically, as analyzed in the previ-
ous sections, the optimization of W and H requires solving
a SVD decomposition problem on a n2 matrix, which leads
to O (

n3
)

complexity. Additionally, updating μ requires
solving a standard Quadratic Programming with Linear Con-
straints (QPLC) whose complexity is O (

ε−1v
)
. Here, v is

the number of views and ε is the precision of the result.
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The update of Λ has a closed form solution, its complex-
ity is O (n). Overall, the total complexity of our algorithm
is O (

T (n3 + ε−1v + n)
)
, where T is the number of itera-

tions. Under the condition ε−1 � n2, the total complexity
is basically O (

Tn3
)
.

Note that the existing popular linear combination-based
multi-view spectral clustering algorithms like AMGL (Nie
et al. 2016) also require to conduct SVD decomposition on
a n2 matrix iteratively. Comparing with it, Algorithm 1 does
not lead to much extra computational cost since QPLC can
be solved efficiently. This is verified by empirical studies,
please refer to Table 4.

Experiments

Datasets and Experimental Settings

We evaluate the clustering performance of the proposed al-
gorithm on 9 popular datasets from various applications, in-
cluding natural language processing, protein sub-cellular lo-
calization, and image recognition. The detailed information
of these datasets is listed in Table 1. From this table, we ob-
serve that the number of samples, views and the number of
categories of these datasets range from 554 to 60,000, 2 to
69, and 3 to 102, respectively. For these datasets, all affinity
matrices are pre-computed with carefully designed similar-
ity function and are publicly available from websites123.

Table 1: Benchmark datasets

Datasets # Samples # Views # Clusters
BBCSport 554 2 5

ProteinFold 694 12 27
Flower17 1360 7 17

Caltech101mit 1530 25 102
UCI-Digit 2000 3 10

Mfeat 2000 12 10
Nonpl 2732 69 3

Flower102 8189 4 102
MNIST 60000 3 10

In our experiments, the MATLAB implementation of
all the compared algorithms is downloaded from the au-
thors’ websites. The hyper-parameters are set according
to the suggestions of the corresponding literature. Spe-
cially, to all the compared spectral clustering algorithms,
the optimal neighbor numbers are carefully searched in the
range of [0.1s, 0.2s, . . . , s], where s = n/c is the aver-
age sample number in each category. As to our proposed
method, the regularization parameter is chosen in the range
of [20, 23, . . . , 215]. K-means clustering is adopted on the
final representation to assign an appropriate label for each
sample. In the experiment, to reduce the effect of random-
ness caused by k-means, we repeat the clustering process
for 50 times with random initialization and report the result
with the smallest k-means distortion. The clustering perfor-
mance is evaluated in terms of three widely used criteria,

1http://mlg.ucd.ie/datasets/bbc.html
2http://mkl.ucsd.edu/dataset/protein-fold-prediction
3http://www.robots.ox.ac.uk/ vgg/data/

Table 2: Ablation study. Average clustering performance on
eight datasets of four algorithms. In the compared algo-
rithms, BL indicates the baseline method, NLM indicates
neighborhood learning mechanism, HCI indicates high-level
connection information.

Methods BL BL+HCI BL+NLM BL+NLM+HCI
ACC (%) 64.00 66.04 67.63 68.64

NMI (%) 63.58 64.53 66.42 67.65

Purity (%) 68.32 70.01 71.78 72.29

Table 3: Performance comparison when different orders of
affinity information is preserved.

Methods 2nd-order 3rd-order 4th-order 5th-order
ACC (%) 68.64 68.94 67.58 65.76
NMI (%) 67.65 67.04 66.23 64.94

Purity (%) 72.29 72.21 71.87 69.88

including clustering accuracy (ACC), normalized mutual in-
formation (NMI) and purity. All our experiments are con-
ducted on a desktop computer with a 3.6GHz Intel Core i7
CPU and 64GB RAM, MATLAB 2017a (64bit).

Ablation Study

In our first experiment, we study the effectiveness of each
proposed component, i.e., the neighborhood learning mech-
anism (NLM) and the high-level connection information
(HCI) by careful ablation study. Also, the optimal order
number of the high-order Laplacian matrix is exploited.
Specifically, six algorithms are designed and tested. The av-
erage clustering performance on all eight datasets are listed.
Effectiveness of the designed algorithm. Among the com-
pared algorithms, the baseline method (BL) indicates a
classic linear Laplacian matrix combination with matrix-
induced regularization (Liu et al. 2016). For high-level con-
nection information extraction, the order number of the
Laplacian matrix is fixed as 2. As we can see from Ta-
ble 2, both the neighborhood learning mechanism and the
high-level connection information is capable of improving
the spectral clustering performance of the corresponding al-
gorithm. Specifically, HCI and NLM improve the ACC of
the baseline algorithm for 2.04% and 3.63% on average, re-
spectively. Moreover, by combining these two designs, the
resultant algorithm can improve 4.64% over the baseline al-
gorithm in terms of ACC.
The optimal order-number. We also test the effect of pre-
serving affinity information of different orders in Eq. (5).
In this part, the second-, third-, fourth- and fifth-order algo-
rithms are compared. As one can see in Table 3, the second-
and third-order algorithms provide comparably good per-
formance. However, as the orders of the Laplacian matri-
ces keep getting higher, the range of neighborhood also gets
larger, and the discriminative capacity of the corresponding
algorithms start to decrease a little bit. Consequently, for the
sake of the clustering performance and the computational ef-
ficiency, the order number of our proposed algorithm is fixed
as 2 in all the following experiments.
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Table 4: ACC, NMI, purity, and time consumption (in seconds) comparison of different clustering algorithms on eight bench-
mark datasets. In this table, the boldface indicates the best performance among all the compared algorithms.

Datasets A-MVSC SB-SC RMKKM MKKM-MR ONKC Co-reg AMGL RMSC MLAN Proposed(Du et al. 2015) (Liu et al. 2016) (Liu et al. 2017) (Kumar and Daumé 2011) (Nie et al. 2016) (Xia et al. 2014) (Nie, Cai, and Li 2017)
ACC (%)

BBCSport 66.18 76.65 63.79 66.18 68.20 85.66 86.39 86.03 70.58 95.77
ProteinFold 30.69 34.58 30.98 36.46 37.90 34.87 36.88 33.00 28.38 41.21
Flower17 51.02 42.05 48.38 60.00 60.88 52.72 56.32 53.90 53.38 66.39

Caltech101mit 35.55 33.13 29.67 35.82 37.32 33.33 37.64 31.50 26.33 40.84
UCI-Digit 88.75 75.40 40.45 90.40 91.05 84.80 92.85 90.40 97.15 97.60

MFea 95.20 86.00 65.30 83.20 97.05 84.30 84.35 84.15 96.55 98.10
Nonpl 49.37 57.50 62.77 56.59 59.57 55.27 56.91 60.65 44.98 65.84

Flower102 27.29 33.12 28.17 39.91 41.56 37.26 33.34 32.97 24.19 43.31

NMI (%)
BBCSport 53.92 59.38 39.62 53.93 54.64 71.27 73.70 73.89 65.34 87.19

ProteinFold 40.95 42.33 38.78 45.32 46.93 43.34 44.18 43.91 27.86 49.33
Flower17 50.18 45.14 50.73 57.11 58.58 52.13 56.97 53.89 55.38 65.54

Caltech101mit 59.90 59.06 55.86 60.38 61.41 58.20 61.79 58.40 43.25 63.77
UCI-Digit 80.59 68.38 46.87 83.22 83.96 73.51 86.65 81.80 93.40 94.39

MFea 89.83 75.78 62.67 78.12 93.07 80.99 81.57 81.69 92.89 95.51
Nonpl 16.55 15.26 17.34 15.51 24.04 12.55 15.19 20.35 6.14 25.35

Flower102 46.32 48.99 48.17 57.27 59.13 54.18 51.63 53.36 34.94 60.12

Purity (%)
BBCSport 77.20 79.59 67.83 77.21 77.76 85.66 86.39 86.03 74.44 95.77

ProteinFold 37.17 41.21 36.60 42.65 45.24 40.78 42.07 42.36 31.84 47.98
Flower17 51.98 44.63 51.54 61.03 61.69 56.47 58.16 53.24 55.07 68.52

Caltech101mit 37.12 35.09 31.70 37.65 39.08 35.75 39.28 33.27 28.56 43.39
UCI-Digit 88.75 76.10 44.20 90.40 91.05 77.75 92.85 82.90 97.15 97.60

MFea 95.20 86.00 66.25 83.20 97.05 84.30 84.35 84.10 96.55 98.10
Nonpl 72.18 71.12 71.71 63.91 75.34 66.07 69.94 70.50 60.35 76.13

Flower102 32.27 38.78 27.61 33.86 47.64 44.08 39.71 40.24 31.15 50.78

Computational time (s)
Average 2.67 4.79 61.51 3.44 38.04 15.27 8.95 7.76 5.86 7.57

Comparison with state-of-the-art algorithms

To verify the effectiveness of the proposed algorithm, we
further compare it with six state-of-the-art multi-view spec-
tral clustering algorithms and three multiple kernel cluster-
ing algorithms. Among these methods, (1) average multi-
view spectral clustering (A-MVSC) uniformly weights
Laplacian matrices from each view to generate a new Lapla-
cian matrix for clustering. (2) Single best spectral clus-
tering (SB-SC) performs spectral clustering on every sin-
gle view separately and reports the best performance. (3)
Co-regularized Spectral Clustering (Co-reg) (Kumar and
Daumé 2011) is a representative of the co-training methods.
(4) Auto-weighted Multiple Graph Learning (AMGL) (Nie
et al. 2016) is a linear combination-based method. (5) Multi-
view Learning with Adaptive Neighbors (MLAN) (Nie, Cai,
and Li 2017), and (6) Robust Multi-view Spectral Clustering
RMSC (Xia et al. 2014) are consensus Laplacian construc-
tion methods. Also, since the affinity matrices in each view
can be treated as kernels, three multiple kernel clustering al-
gorithms, i.e., (7) ONKC (Liu et al. 2017), (8) MKKM-MR
(Liu et al. 2016), and (9) RMKKM (Du et al. 2015), are also
included for more comprehensive comparison.

The ACC, NMI, purity, and the computational time of
the above-mentioned algorithms are reported in Table 4. As
can be seen, in all of the eight datasets, the proposed ON-
MSC shows superior performance gains over the state-of-
the-art algorithms w.r.t. all the three metrics. Specifically,
comparing with the second best baseline algorithms, take
the ACC as an example, the proposed algorithm achieves
an improvement of 9.38%, 3.31%, 5.51%, 3.20%, 0.45%,
1.05%, 3.07% and 1.75% on BBC Sport, Protein Fold,
Flower17, Caltech-MIT, Digit, Multiple Feature, Non-plant
and Flower102 datasets, respectively. Also, the proposed al-

gorithm significantly outperforms existing linear combina-
tion based algorithms, including RMKKM, MKKM-RM,
and AMGL with comparable computational consumption.
This again validates the effectiveness of optimal neighbor-
hood spectral clustering and the high-level information.

Parameter Sensitivity and Convergence

Parameter Sensitivity. The proposed algorithm introduces
two hyper-parameters, i.e., the diversity balancing coeffi-
cient α and the neighbor number N for affinity matrix con-
struction. To test the sensitivity of the proposed algorithm
against these two parameters, we fix one parameter and tune
the other in a large range. The comparison between the pro-
posed algorithm with the second best baseline algorithm on
two datasets (BBC Sport and Flower17) are illustrated in
Fig. 1 (a-d). From these figures, we observe: i) both α and
N are effective in improving the algorithm performance; ii)
the algorithm is stable against α; iii) the proposed algorithm
is relatively sensitive to the neighbor numbers. However,
setting a small neighbor around 0.2s helps achieve prefer-
able performance; iv) thanks to the robustness of the design,
the performance of our algorithm significantly surpasses the
second best algorithm in most of the times.
Algorithm Convergence. Two examples of the objective
values of our algorithm at each iteration are shown in Fig.
1 (e-f). As observed from these figures, the objective value
is monotonically decreased and the algorithm quickly con-
verges in less than thirty iterations.

Scale the Algorithm to Large Datasets

Being able to work appropriately on large scale datasets is
an important criterion to the practicality of a MVSC algo-
rithm. To show the effectiveness of our proposed method,
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(a) BBC (α) (b) Flower17 (α)

(c) BBC (Neighbor) (d) Flower17 (Neighbor)

(e) BBC (Convergence) (f) Flower17 (Convergence)

Figure 1: Illustration of parameter sensitivity and algorithm
convergence. The algorithm sensitivity against the variation
of two hyper-parameters are shown in the upper four figures.
The bottom two figures show the convergence curve of the
algorithm. Results on BBCSport and Flower17 datasets are
reported.

Table 5: Experimental results on the MNIST dataset with
60,000 samples.

Methods A-MVSC RMSC AMGL Proposed
ACC (%) 63.75 70.36 73.36 80.79

NMI (%) 55.33 64.10 63.09 71.24

Purity (%) 64.79 72.24 73.46 80.80

Time (s) 34.21 301.5 196.8 227.6

we further conduct an experiment on the MNIST dataset4.
To construct the dataset, we first adopt three deep neural
networks, i.e., VGG19 (Simonyan and Zisserman 2014),
DenseNet121 (Huang et al. 2017), and ResNet101 (He et
al. 2016), which are pre-trained on the ImageNet5 dataset as
feature extractors in three difference views.

Since our proposed algorithm includes two SVD opera-
tions for the calculation of W and H, the O (

n3
)

compu-
tational complexity and O (

n2
)

memory consumption hin-
ders the algorithm from scaling to large datasets. To solve
the problem, we adopt the Nyström algorithm and a sam-
pling strategy (Li et al. 2011). Specifically, in the exper-
iment, we first select s landmark samples with a k-means
algorithm and construct affinity matrices with only the sub-

4http://yann.lecun.com/exdb/mnist/
5http://www.image-net.org/

sample set. Then, with these affinity matrices, we conduct a
multi-view spectral clustering algorithm and learn the com-
bination weight for each view. Finally, with these weights
we integrate the first-order or high-order affinity matrices on
the whole dataset and conduct an orthogonal Nyström algo-
rithm (Li et al. 2011) to acquire the final label for the dataset.
In this setting, the total computational consumption of the
proposed algorithm becomes O (

ns2 + Ts3
)

and the largest
memory consumption becomes O (ns), which is much more
affordable for the large scale clustering tasks.

Four algorithms, i.e., average multi-view spectral clus-
tering, RMSC (Xia et al. 2014), AMGL (Nie et al. 2016),
and the proposed algorithm, are compared in the experi-
ment. The testing procedure is similar with that in the previ-
ous sub-section and the same Nyström algorithm is applied
to all the compared algorithms. The number of landmark
samples (s) is fixed as 3000 for all comparing algorithms.
As shown in Table 5, our proposed algorithm surpasses the
compared algorithms with comparable computational con-
sumption. Specifically, it outperforms the second best algo-
rithm for about 7% in all three criteria.

Conclusion

This paper proposes an optimal neighborhood multi-view
spectral clustering (ONMSC) algorithm, which enlarges the
searching space of optimal Laplacian matrix from the linear
combination of the first-order base Laplacian matrices to the
neighborhood of both the first-order and high-order Lapla-
cian combinations. In this way, the representative capac-
ity of the learned Laplacian matrix is effectively improved,
and more comprehensive sample affinity information is ex-
tracted. A four-step algorithm with proved convergence is
designed to solve the resulting optimization problem. Com-
prehensive experimental results demonstrate the effective-
ness and the superior performance of our proposed algo-
rithm. In the future, we plan to extend our algorithm to a
more general framework and use it as a platform to revisit
existing multi-view spectral clustering algorithms.
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