
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Hearing Lips: Improving Lip Reading by Distilling Speech Recognizers

Ya Zhao,1 Rui Xu,1 Xinchao Wang,2 Peng Hou,3 Haihong Tang,3 Mingli Song1

1Zhejiang University, 2Stevens Institute of Technology, 3Alibaba Group
{yazhao, ruixu, brooksong}@zju.edu.cn, xinchao.wang@stevens.edu,

houpeng.hp@alibaba-inc.com, piaoxue@taobao.com

Abstract

Lip reading has witnessed unparalleled development in recent
years thanks to deep learning and the availability of large-
scale datasets. Despite the encouraging results achieved, the
performance of lip reading, unfortunately, remains inferior to
the one of its counterpart speech recognition, due to the am-
biguous nature of its actuations that makes it challenging to
extract discriminant features from the lip movement videos.
In this paper, we propose a new method, termed as Lip by
Speech (LIBS), of which the goal is to strengthen lip read-
ing by learning from speech recognizers. The rationale behind
our approach is that the features extracted from speech recog-
nizers may provide complementary and discriminant clues,
which are formidable to be obtained from the subtle move-
ments of the lips, and consequently facilitate the training of
lip readers. This is achieved, specifically, by distilling multi-
granularity knowledge from speech recognizers to lip readers.
To conduct this cross-modal knowledge distillation, we uti-
lize an efficacious alignment scheme to handle the inconsis-
tent lengths of the audios and videos, as well as an innovative
filtering strategy to refine the speech recognizer’s prediction.
The proposed method achieves the new state-of-the-art per-
formance on the CMLR and LRS2 datasets, outperforming
the baseline by a margin of 7.66% and 2.75% in character
error rate, respectively.

Introduction

Lip reading, also known as visual speech recognition, aims
at predicting the sentence being spoken, given a muted video
of a talking face. Thanks to the recent development of deep
learning and the availability of big data for training, lip read-
ing has made unprecedented progress with much perfor-
mance enhancement (Assael et al. 2016; Chung et al. 2017;
Zhao, Xu, and Song 2019).

In spite of the promising accomplishments, the perfor-
mance of the video-based lip reading remains considerably
lower than its counterpart, the audio-based speech recogni-
tion, for which the goal is also to decode the spoken text and
therefore can be treated as a heterogeneous modality shar-
ing the same underlying distribution as lip reading. Given
the same amount of training data and model architecture,
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the performance discrepancy is as large as 10.4% vs. 39.5%
in terms of character error rate for speech recognition and
lip reading, respectively (Chung et al. 2017). This is due to
the intrinsically ambiguous nature of lip actuations: several
seemingly-identical lip movements may produce different
words, making it highly challenging to extract discriminant
features from the video of interest and to further dependably
predict the text output.

In this paper, we propose a novel scheme, Lip by
Speech (LIBS), that utilizes speech recognition, for which
the performances are in most cases gratifying, to facilitate
the training of the more challenging lip reading. We assume
a pre-trained speech recognizer is given, and attempt to dis-
till knowledge concealed in the speech recognizer to the tar-
get lip reader to be trained.

The rationale for exploiting knowledge distillation (Hin-
ton, Vinyals, and Dean 2015) for this task lies in that, acous-
tic speech signals embody information complementary to
that of the visual ones. For example, utterances with sub-
tle movements, which are challenging to be distinguished
visually, are in most cases handy to be recognized acousti-
cally (Wolff et al. 1994). By imitating the acoustic speech
features extracted by the speech recognizer, the lip reader is
expected to enhance its capability to extract discriminant vi-
sual features. To this end, LIBS is designed to distill knowl-
edge at multiple temporal scales including sequence-level,
context-level, and frame-level, so as to encode the multi-
granularity semantics from the input sequence.

Nevertheless, distilling knowledge from a heterogeneous
modality, in this case the audio sequence, confronts two ma-
jor challenges. The first lies in the fact that, the two modali-
ties may feature different sampling rates and are thus asyn-
chronous, while the second concerns the imperfect speech-
recognition predictions. To this end, we employ a cross-
modal alignment strategy to synchronize the audio and video
data by finding the correspondence between them, so as to
conduct the fine-grained knowledge distillation from audio
features to visual ones. To enhance the speech predictions,
on the other hand, we introduce a filtering technique to refine
the distilled features, so that useful features can be filtered
for knowledge distillation.

Experimental results on two large-scale lip reading
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datasets, CMLR (Zhao, Xu, and Song 2019) and LRS2
(Afouras et al. 2018), show that the proposed approach out-
performs the state of the art. We achieve a character er-
ror rate of 31.27%, a 7.66% enhancement over the baseline
on the CMLR dataset, and one of 45.53% with 2.75% im-
provement on LRS2. It is noteworthy that when the amount
of training data shrinks, the proposed approach tends to
yield an even greater performance gain. For example, when
only 20% of the training samples are used, the performance
against the baseline has an 9.63% boost on the CMLR
dataset.

Our contribution is therefore an innovative and effective
approach to enhancing the training of lip readers, achieved
by distilling multi-granularity knowledge from speech rec-
ognizers. This is to our best knowledge the first attempt
along this line and, unlike existing feature-level knowledge
distillation methods that work on Convolutional Neural Net-
works (Romero et al. 2014; Gupta, Hoffman, and Malik
2016; Hou et al. 2019), our strategy handles Recurrent Neu-
ral Networks. Experiments on several datasets show that the
proposed method leads to the new state of the art.

Related Work

Lip Reading

(Assael et al. 2016) proposes the first deep learning-based,
end-to-end sentence-level lipreading model. It applies a spa-
tiotemporal CNN with Gated Recurrent Unit (GRU) (Cho et
al. 2014) and Connectionist Temporal Classification (CTC)
(Graves et al. 2006). (Chung et al. 2017) introduces the
WLAS network utilizing a novel dual attention mechanism
that can operate over visual input only, audio input only, or
both. (Afouras et al. 2018) presents a seq2seq and a CTC
architecture based on self-attention transformer models, and
are pre-trained on a non-publicly available dataset. (Shilling-
ford et al. 2018) designs a lipreading system that uses a net-
work to output phoneme distributions and is trained with
CTC loss, followed by finite state transducers with language
model to convert the phoneme distributions into word se-
quences. In (Zhao, Xu, and Song 2019), a cascade sequence-
to-sequence architecture (CSSMCM) is proposed for Chi-
nese Mandarin lip reading. CSSMCM explicitly models
tones when predicting characters.

Speech Recognition

Sequence-to-sequence models are gaining popularity in the
automatic speech recognition (ASR) community, since it
folds separate components of a conventional ASR system
into a single neural network. (Chorowski et al. 2014) com-
bines sequence-to-sequence with attention mechanism to de-
cide which input frames be used to generate the next output
element. (Chan et al. 2016) proposes a pyramid structure in
the encoder, which reduces the number of time steps that the
attention model has to extract relevant information from.

Knowledge Distillation

Knowledge distillation is originally introduced for a smaller
student network to perform better by learning from a larger
teacher network (Hinton, Vinyals, and Dean 2015). The

teacher network has previously been trained, and the param-
eters of the student network are going to be estimated. In
(Romero et al. 2014), the knowledge distillation idea is ap-
plied in image classification, where a student network is re-
quired to learn the intermediate output of a teacher network.
In (Gupta, Hoffman, and Malik 2016), knowledge distilla-
tion is used to teach a new CNN for a new image modal-
ity (like depth images), by teaching the network to repro-
duce the mid-level semantic representations learned from a
well-labeled image modality. (Kim and Rush 2016) propose
a sequence-level knowledge distillation method for neural
machine translation at the output level. Different from these
work, we perform feature-level knowledge distillation on
Recurrent Neural Networks.

Background

Here we briefly review the attention-based sequence-to-
sequence model (Bahdanau, Cho, and Bengio 2015).

Let x = [x1, ..., xI ], y = [y1, ..., yK ] be the input and
target sequence with a length of I and K respectively.
Sequence-to-sequence model parameterizes the probability
p(y|x) with an encoder neural network and a decoder neu-
ral network. The encoder transforms the input sequence
x1, ..., xI into a sequence of hidden state hx

1 , ..., h
x
I and pro-

duces the fixed-dimensional state vector sx, which contains
the semantic meaning of the input sequence. We also called
sx the sequence vector in this paper.

hx
i = RNN(xi, h

x
i−1), (1)

sx = hx
I . (2)

The decoder computes the probability of the target se-
quence conditioned on the outputs of the encoder. Specifi-
cally, given the input sequence and previously generated tar-
get sequence y<k, the conditional probability of generating
the target yk at timestep k is decided by:

p(yk|y<k, x) = g(yk−1, h
d
k, c

x
k),

hd
k = RNN(hd

k−1, yk−1, c
x
k),

(3)

where g is the softmax function, hd
k is the hidden state of

decoder RNN at timestep k, and cxk is the context vector cal-
culated by an attention mechanism. Attention mechanism
allows the decoder to attend to different parts of the input
sequence at each step of output generation.

Concretely, the context vector is calculated by weighting
each encoder hidden state hx

i according to the similarity dis-
tribution αk:

cxk =

I∑
i=1

αkih
x
i , (4)

The similarity distribution αk signifies the proximity be-
tween hd

k−1 and each hx
i , and is calculated by:

αki =
exp(f(hd

k−1, h
x
i ))∑I

j=1 exp(f(h
d
k−1, h

x
j ))

. (5)
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Figure 1: The framework of LIBS. The student network deals with lip reading, and the teacher handles speech recognition.
Knowledge is distilled at sequence-, context-, and frame-level to enable the features of multi-granularity to be transferred from
teacher network to student. KD is short for knowledge distillation.

f calculates the unnormalized similarity between hd
k−1 and

hx
i , usually in the following ways:

f(hd
k−1, h

x
i ) =

⎧⎨
⎩

(hd
k−1)

Thx
i , dot

(hd
k−1)

TWhx
i , general

vttanh(W [hd
k−1, h

x
i ]), concat

(6)

Proposed Method

The framework of LIBS is illustrated in Figure 1. Both
the speech recognizer and the lip reader are based on the
attention-based sequence-to-sequence architecture. For an
input video, xv = [xv

1, ..., x
v
J ] represents its video frame

sequence, y = [y1, ..., yK ] is the target character se-
quence. The corresponding audio frame sequence is xa =
[xa

1 , ..., x
a
I ]. A pre-trained speech recognizer reads in the au-

dio frame sequence xa, and outputs the predicted charac-
ter sequence ỹ = [ỹ1, ..., ỹL]. It should be noted that the
sentence predicted by speech recognizer is imperfect, and
L may not equal to K. At the same time, the encoder hid-
den states ha = [ha

1 , ..., h
a
I ], sequence vector sa, and context

vectors ca = [ca1 , ..., c
a
L] can also be obtained. They are used

to guide the training of the lip reader.
The basic lip reader is trained to maximize conditional

probability distribution p(y|xv), which equals to minimize
the loss function:

Lbase = −
K∑

k=1

log p(yk|y<k, xv). (7)

The encoder hidden states, sequence vector and context vec-
tors of the lip reader are denoted as hv = [hv

1, ..., h
v
J ], s

v ,
and cv = [cv1, ..., c

v
K ], respectively.

The proposed method LIBS aims to minimize the loss
function:

L = Lbase + λ1LKD1 + λ2LKD2 + λ3LKD3, (8)
where LKD1, LKD2, and LKD3 constitute the multi-
granularity knowledge distillation, and work at sequence-
level, context-level and frame-level respectively. λ1, λ2 and
λ3 are the corresponding balance weights. Details are de-
scribed below.

Sequence-Level Knowledge Distillation

As mentioned before, the sequence vector sx contains the se-
mantic information of the input sequence. For a video frame
sequence xv and its corresponding audio frame sequence xa,
their sequence vectors sa and sv should be the same, because
they are different expressions of the same thing.

Therefore, the sequence-level knowledge distillation is
denoted as :

LKD1 = ‖sa − t(sv)‖22 . (9)
t is a simple transformation function (for example a linear
or affine function), which embeds features into a space with
the same dimension.

Context-Level Knowledge Distillation

When decoder predicting a character at a certain timestep,
the attention mechanism uses context vector to summarize
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the input information that is most relevant to the current out-
put. Therefore, if the lip reader and speech recognizer pre-
dict the same character at j-th timestep, the context vectors
cvj and caj should contain the same information. Naturally,
the context-level knowledge distillation should push cvj and
caj to be the same.

However, due to the imperfect speech-recognition predic-
tions, it’s possible that ỹj and yj may not be the same. Sim-
ply making cvj and caj similar would hinder the performance
of lip reader. This requires choosing the correct characters
from the speech-recognition predictions, and using the cor-
responding context vectors for knowledge distillation. Be-
sides, in current attention mechanism, the context vectors
are built upon the RNN hidden state vectors, which act as
representations of prefix substrings of the input sentences,
given the sequential nature of RNN computation (Wu et al.
2018). Thus, even if there are same characters in the pre-
dicted sentence, their corresponding context vectors are dif-
ferent because of their different positions.

Based on these findings, a Longest Common Subsequence
(LCS) 1 based filtering method is proposed to refine the dis-
tilled features. LCS is used to compare two sequences. Com-
mon subsequences with same order in the two sequences are
found, and the longest sequence is selected. The most im-
portant aspects of LCS are that the common subsequence is
not necessary to be contiguous, and it retains the relative
position information between characters. Formally speak-
ing, LCS computes the common subsequence between ỹ =
[ỹ1, ..., ỹL] and y = [y1, ..., yK ], and obtains the subscripts
of the corresponding characters in ỹ and y:

Ia1 , ..., I
a
M , Iv1 , ..., I

v
M = LCS(ỹ1, ..., ỹL, y1, ..., yK),

M ≤ min(L,K),
(10)

where Ia1 , ..., I
a
M and Iv1 , ..., I

v
M are the subscripts in the sen-

tence predicted by speech recognizer and the ground truth
sentence, respectively. Please refer to the supplementary ma-
terial for details. It’s worth noting that when the sentence is
Chinese, two characters are defined to be the same if they
have the same Pinyin. Pinyin is the phonetic symbol of Chi-
nese character, and homophones account for more than 85%
among all Chinese characters.

Context-level knowledge distillation only calculate on
these common characters:

LKD2 =
1

M

M∑
i=1

∥∥∥caIa
i
− t(cvIv

i
)
∥∥∥
2

2
. (11)

Frame-Level Knowledge Distillation

Furthermore, we hope that the speech recognizer can teach
the lip reader more finely and explicitly. Specifically, knowl-
edge is distilled at frame-level to enhance the discriminabil-
ity of each video frame feature.

If the correspondence between video and audio is known,
then it is sufficient to directly match the video frame feature
with the corresponding audio feature. However, due to the
different sampling rates, video sequence and audio sequence

1https://en.wikipedia.org/wiki/Longest common subsequence
problem

have inconsistent length. Besides, since blanks may appear
at the beginning or end of the data, there is no guarantee
that video and audio are strictly synchronized. Therefore,
it is impossible to specify the correspondence artificially.
This problem is solved by first learning the correspondence
between video and audio, then performing the frame-level
knowledge distillation.

As the hidden states of RNN providing higher-level se-
mantics and are easier to correlated than the original input
feature (Sterpu, Saam, and Harte 2018), the alignment be-
tween audio and video is learned on the hidden states of the
audio encoder and video encoder. Formally speaking, for
each audio hidden state ha

i , the most similar video frame
feature is calculated by a way similar to the attention mech-
anism:

h̃v
i =

J∑
j=1

βjih
v
j , (12)

βji is the normalized similarity between ha
i and video en-

coder hidden states hv
j :

βji =
exp((hv

j )
TWha

i )∑J
k=1 exp((h

v
k)

TWha
i )
. (13)

Since h̃v
i contains the most similar information to audio fea-

ture ha
i and the acoustic speech signals embody information

complementary to the visual ones, making h̃v
i and ha

i the
same enhances lip reader’s capability to extract discriminant
visual feature. Thus, the frame-level knowledge distillation
is defined as:

LKD3 =
1

I

I∑
i=1

∥∥∥ha
i − h̃v

i

∥∥∥
2

2
. (14)

The audio and video modalities can have two-way inter-
actions. However, in the preliminary experiment, we found
that video attending audio leads to inferior performance. So,
only audio attending video is chosen to perform the frame-
level knowledge distillation.

Experiments

Datasets

CMLR2 (Zhao, Xu, and Song 2019): it is currently the
largest Chinese Mandarin lip reading dataset. It contains
over 100,000 natural sentences from China Network Televi-
sion website, including more than 3,000 Chinese characters
and 20,000 phrases.
LRS23 (Afouras et al. 2018): it contains more than 45,000
spoken sentences from BBC television. LRS2 is divided into
development (train/val) and test sets according to the broad-
cast date. The dataset has a ”pre-train” set that contains
sentences annotated with the alignment boundaries of every
word.

We follow the provided dataset partition in experiments.

2https://www.vipazoo.cn/CMLR.html
3http://www.robots.ox.ac.uk/∼vgg/data/lip reading/lrs2.html
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Evaluation Metrics

For experiments on LRS2 dataset, we report the Charac-
ter Error Rate (CER), Word Error Rate (WER) and BLEU
(Papineni et al. 2002). The CER and WER are defined as
ErrorRate = (S + D + I)/N , where S is the number of
substitutions, D is the number of deletions, I is the num-
ber of insertions to get from the reference to the hypothesis
and N is the number of characters (words) in the reference.
BLEU is a modified form of n-gram precision to compare
a candidate sentence to one or more reference sentences.
Here, the unigram BLEU is used. For experiments on CMLR
dataset, only CER and BLEU are reported, since the Chinese
sentence is presented as a continuous string of characters
without demarcation of word boundaries.

Training Strategy

Same as (Chung et al. 2017), curriculum learning is em-
ployed to accelerate training and reduce over-fitting. Since
the training sets of CMLR and LRS2 are not annotated with
the word boundaries, the sentences are grouped into subsets
according to the length. We start training on short sentences
and then make the sequence length grow as the network
trains. Scheduled sampling (Bengio et al. 2015) is used to
eliminate the discrepancy between training and inference.
The sampling rate from the previous output is selected from
0.7 to 1 for CMLR dataset, and from 0 to 0.25 for LRS2
dataset. For fair comparisons, decoding is performed with
beam search of width 1 for CMLR and 4 for LRS2, in a sim-
ilar way to (Chan et al. 2016).

However, preliminary experimental results show that the
sequence-to-sequence based model is hard to achieve rea-
sonable results on the LRS2 dataset. This is because even
the shortest English sentence contains 14 characters, which
is still difficult for the decoder to extract relevant informa-
tion from all input steps at the beginning of the training.
Therefore, a pre-training stage is added for LRS2 dataset as
in (Afouras et al. 2018). When pre-training, the CNN pre-
trained on word excerpts from the MV-LRS (Chung and Zis-
serman 2017) dataset is used to extract visual features for the
pre-train set. The lip reader is trained on these frozen visual
features. Pre-training starts with a single word, then gradu-
ally increases to a maximum length of 16 words. After that,
the model is trained end-to-end on the training set.

Implementation Details

Lip Reader

CMLR: The input images are 64 × 128 in dimension. VGG-
M model(Chatfield et al. 2014) is used to extract visual
features. Lip frames are transformed into gray-scale, and
the VGG-M network takes every 5 lip frames as an input,
moving 2 frames at each timestep. We use a two-layer bi-
directional GRU (Cho et al. 2014) with a cell size of 256 for
the encoder and a two-layer uni-directional GRU with a cell
size of 512 for the decoder. For character vocabulary, charac-
ters that appear more than 20 times are kept. [sos], [eos] and
[pad] are also included. The final vocabulary size is 1,779.
The initial learning rate was 0.0003 and decreased by 50%
every time the training error did not improve for 4 epochs.

Table 1: The balance weights employed in CMLR and LRS2
datasets.

Dataset λ1 λ2 λ3

CMLR 10 40 10
LRS2 2 10 10

Warm-up (He et al. 2016) is used to prevent over-fitting.
LRS2: The input images are 112 × 112 pixels covering the
region around the mouth. The CNN used to extract visual
features is based on (Stafylakis and Tzimiropoulos 2017),
with a filter width of 5 frames in 3D convolutions. The en-
coder contains 3 layers of bi-directional LSTM (Hochreiter
and Schmidhuber 1997) with a cell size of 256, and the de-
coder contains 3 layers of uni-directional LSTM with a cell
size of 512. The output size of lip reader is 29, containing 26
letters and tokens for [sos], [eos], [pad]. The initial learning
rate was 0.0008 for pre-training, 0.0001 for training, and de-
creased by 50% every time the training error did not improve
for 3 epochs.

The balance weights used in both datasets are shown in
Table 1. The values are obtained by conducting a grid search.

Speech Recognizer

The datasets used to train speech recognizers are the audio of
the CMLR and LRS2 datasets, plus additional speech data:
aishell (Bu et al. 2017) for CMLR, and LibriSpeech (Panay-
otov et al. 2015) for LRS2. The 240-dimensional fbank fea-
ture is used as the speech feature, sampled at 16kHz and cal-
culated over 25ms windows with a step size 10ms. For LRS2
dataset, the speech recognizer and lip reader have the same
architecture. For CMLR dataset, specifically, three different
speech recognizer architectures are considered to verify the
generalization of LIBS.
Teacher 1: It contains 2 layers of bi-directional GRU for
encoder with a cell size of 256, 2 layers of uni-directional
GRU for decoder with a cell size 512. In other words, it has
the same architecture as lip reader.
Teacher 2: The cell size of both encoder and decoder is 512.
Others remain the same as Teacher 1.
Teacher 3: The encoder contains 3 layers of pyramid bi-
directional GRU (Chan et al. 2016). Others remain the same
as Teacher 1.
It’s worth noting that Teacher 2 and the lip reader have dif-
ferent feature dimensions, and Teacher 3 reduces the audio
time resolution by 8 times.

Experimental Results

Effect of different teacher models. To evaluate the gen-
eralization of the proposed multi-granularity knowledge dis-
tillation method, we compare the effects of LIBS on the
CMLR dataset under different teacher models. Since WAS
(Chung et al. 2017) and the baseline lip reader (trained
without knowledge distillation) have the same sequence-to-
sequence architecture, WAS is trained using the same train-
ing strategy as LIBS, and is used interchangeably with base-
line in the paper. As can be seen from Table 2, LIBS substan-
tially exceeds the baseline under different teacher model ar-
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Table 2: The performance of LIBS when using different
teacher models on the CMLR dataset.

Model BLEU CER

WAS 64.13 38.93%
Teacher 1 90.36 9.83%
LIBS 69.99 31.27%

Teacher 2 90.95 9.23%
LIBS 66.66 34.94%
Teacher 3 87.73 12.40%
LIBS 66.58 34.76%

Table 3: Effect of the proposed multi-granularity knowledge
distillation.

Methods BLEU CER WER

CMLR

WAS 64.13 38.93% -
WAS +LKD1 67.23 34.42% -
WAS +LKD2 68.24 33.17% -
WAS +LKD3 66.31 35.30% -
WAS +LKD1+LKD2 68.53 32.95% -
LIBS 69.99 31.27% -

LRS2

WAS 39.72 48.28% 68.19%
WAS +LKD1 41.00 46.04% 66.59%
WAS +LKD2 41.23 46.01% 66.31%
WAS +LKD3 41.18 46.91% 66.65%
WAS +LKD1+LKD2 41.55 45.97% 65.93%
LIBS 41.91 45.53% 65.29%

chitectures. It is worth noting that although the performance
of Teacher 2 is better than that of Teacher 1, the correspond-
ing student network is not. This is because the feature di-
mensions of Teacher 2 speech recognizer and lip reader are
different. This implies that distill knowledge directly in the
same dimensional feature space can achieve better results. In
the following experiments, we analyze the lip reader learned
from Teacher 1 on the CMLR dataset.

Effect of the multi-granularity knowledge distillation.
Table 3 shows the effect of the multi-granularity knowledge
distillation on CMLR and LRS2 datasets. Comparing WAS,
WAS +LKD1, WAS +LKD1 + LKD2 and LIBS, all met-
rics are increasing along with adding different granularity
of knowledge distillation. The increasing results show that
each granularity of knowledge distillation is able to con-
tribute to the performance of LIBS. However, the smaller
and smaller extent of the increase does not indicate that the
sequence-level knowledge distillation has greater influence
than the frame-level knowledge distillation. When only one
granularity of knowledge distillation is added, WAS +LKD2

shows the best performance. This is due to the design that the
context-level knowledge distillation is directly acting on the
features used to predict characters.

On the CMLR dataset, LIBS exceeds WAS by a margin
of 7.66% in CER. However, the margin is not that large on

Table 4: The performance of LIBS when trained with differ-
ent amount of training data on the CMLR dataset.

Percentage of
Training Data

Metrics WAS LIBS Improv

100% CER 38.93% 31.27% 7.66% ↓
BLEU 64.13 69.99 5.86 ↑

20% CER 60.13% 50.50% 9.63% ↓
BLEU 42.69 50.65 7.96 ↑

Table 5: Performance comparison with other existing frame-
works on the CMLR and LRS2 datasets.

Methods BLEU CER WER

CMLR

WAS 64.13 38.93% -
CSSMCM - 32.48% -

LIBS 69.99 31.27% -
LRS2

WAS 39.72 48.28% 68.19%
TM-seq2seq - - 49.8%

CTC/Attention - 42.1% 63.5%
LIBS 41.91 45.53% 65.29%

the LRS2 dataset, only 2.75%. This may be caused by the
differences in the training strategy. On LRS2 dataset, CNN
is first pre-trained on the MV-LRS dataset. Pre-training gives
CNN a good initial value so that better video frame feature
can be extracted during the training process. To verify this,
we compare WAS and LIBS trained without the pre-training
stage. The CER of WAS and LIBS are 67.64% and 62.91%
respectively, with a larger margin of 4.73%. This confirms
the hypothesis that LIBS can help to extract more effective
visual features.

Effect of different amount of training data. Compared
with lip video data, the speech data is easier to collect. We
evaluate the effect of LIBS in the case of limited lip video
data on CMLR dataset. As mentioned before, the sentences
are grouped into subsets according to the length, and only
the first subset is used to train the lip reader. The first subset
is about 20% of the full training set, which contains 27,262
sentences, and the number of characters in each sentence
does not exceed 11. It can be seen from the Table 4, when the
training data is limited, LIBS tends to yield an even greater
performance gain: the improvement on CER increases from
7.66% to 9.63%, and from 5.86 to 7.96 on BLEU.

Comparison with state-of-the-art methods. Table 5
shows the experimental results compared with other frame-
works: WAS (Chung et al. 2017), CSSMCM (Zhao, Xu,
and Song 2019), TM-seq2seq (Afouras et al. 2018) and
CTC/attention (Petridis et al. 2018). TM-seq2seq achieves
the lowest WER on the LRS2 dataset due to its transformer
self-attention architecture (Vaswani et al. 2017). Since LIBS
is designed for the sequence-to-sequence architecture, per-
formance may be improved by replacing RNN with trans-
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(a) WAS (b) WAS +LKD1 (c) WAS +LKD1 + LKD2 (d) LIBS

Figure 2: Alignment between the video frames and the predicted characters with different levels of the proposed multi-
granularity knowledge distillation. The vertical axis represents the video frames and the horizontal axis represents the predicted
characters. The ground truth sentence is set up by the government.

(a) WAS

(b) LIBS

Figure 3: Saliency maps for WAS and LIBS. The places where the lip reader has learned to attend are highlighted in red .

former self-attention block. Note that, despite the excellent
performance of CSSMCM, which is designed for Chinese
Mandarin lip reading, LIBS still exceeds it by a margin of
1.21% in CER.

Visualization

Attention visualization. The attention mechanism gener-
ates explicit alignment between the input video frames and
the generated character outputs. Since the correspondence
between the input video frames and the generated charac-
ter outputs is monotonous in time, whether alignment has
a diagonal trend is a reflection of the performance of the
model (Wang et al. 2017). Figure 2 visualizes the align-
ment of the video frames and the corresponding outputs
with different granularities of knowledge distillation on the
test set of LRS2 dataset. Comparing Figure 2(a) with Fig-
ure 2(b), adding sequence-level knowledge distillation im-
proves the quality of the end part of the generated sen-
tence. This indicates that the lip reader enhances its under-
standing of the semantic information of the whole sentence.
Adding context-level knowledge distillation (Figure 2(c)) al-
lows the attention at each decoder step to be concentrated
around the corresponding video frames, reducing the focus
on unrelated frames. This also makes the predicted charac-
ters more accurate. Finally, the frame-level knowledge dis-
tillation (Figure 2(d)) further improves the discriminability
of the video frame features, making the attention more fo-
cused. The quality and the comprehensibility of the gener-
ated sentence is increased along with adding different levels
of knowledge distillation.

Saliency maps. Saliency visualization technique is em-
ployed to verify that LIBS enhances lip reader’s ability to
extract discriminant visual features, by showing areas in
the video frames the model concentrated most when pre-
dicting. Figure 3 shows saliency visualisations for the base-
line model and LIBS respectively, based on (Smilkov et al.
2017). Both the baseline model and LIBS can correctly fo-
cus on the area around the mouth, but the salient regions for
baseline model are more scattered compared with LIBS.

Conclusion

In this paper, we propose LIBS, an innovative and effec-
tive approach to training lip reading by learning from a pre-
trained speech recognizer. LIBS distills speech-recognizer
knowledge of multiple granularities, from sequence-,
context-, and frame-level, to guide the learning of the lip
reader. Specifically, this is achieved by introducing a novel
filtering strategy to refine the features from the speech rec-
ognizer, and by adopting a cross-modal alignment-based
method for frame-level knowledge distillation to account
for the sampling-rate inconsistencies between the two se-
quences. Experimental results demonstrate that the proposed
LIBS yields a considerable improvement over the state of the
art, especially when the training samples are limited. In our
future work, we look forward to adopting the same frame-
work to other modality pairs such as speech and sign lan-
guage.

Acknowledgements

This work is supported by National Key Research and De-
velopment Program (2016YFB1200203) , National Natural

6923



Science Foundation of China (61976186), Key Research and
Development Program of Zhejiang Province (2018C01004),
and the Major Scientifc Research Project of Zhejiang Lab
(No. 2019KD0AC01) .

References
Afouras, T.; Chung, J. S.; Senior, A. W.; Vinyals, O.; and Zis-
serman, A. 2018. Deep audio-visual speech recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence.
Assael, Y. M.; Shillingford, B.; Whiteson, S.; and de Freitas,
N. 2016. Lipnet: Sentence-level lipreading. arXiv preprint.
Bahdanau, D.; Cho, K.; and Bengio, Y. 2015. Neural machine
translation by jointly learning to align and translate. Interna-
tional Conference on Learning Representations.
Bengio, S.; Vinyals, O.; Jaitly, N.; and Shazeer, N. M. 2015.
Scheduled sampling for sequence prediction with recurrent
neural networks. In International Conference on Neural In-
formation Processing Systems - Volume 1.
Bu, H.; Du, J.; Na, X.; Wu, B.; and Zheng, H. 2017. Aishell-
1: An open-source mandarin speech corpus and a speech
recognition baseline. In 2017 20th Conference of the Orien-
tal Chapter of the International Coordinating Committee on
Speech Databases and Speech I/O Systems and Assessment.
Chan, W.; Jaitly, N.; Le, Q.; and Vinyals, O. 2016. Listen,
attend and spell: A neural network for large vocabulary con-
versational speech recognition. In IEEE International Confer-
ence on Acoustics, Speech and Signal Processing.
Chatfield, K.; Simonyan, K.; Vedaldi, A.; and Zisserman, A.
2014. Return of the devil in the details: Delving deep into
convolutional nets. arXiv preprint arXiv:1405.3531.
Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning
phrase representations using rnn encoder–decoder for statisti-
cal machine translation. In Conference on Empirical Methods
in Natural Language Processing.
Chorowski, J.; Bahdanau, D.; Cho, K.; and Bengio, Y.
2014. End-to-end continuous speech recognition using
attention-based recurrent nn: First results. arXiv preprint
arXiv:1412.1602.
Chung, J. S., and Zisserman, A. 2017. Lip reading in profile.
In Procedings of the British Machine Vision Conference 2017.
Chung, J. S.; Senior, A. W.; Vinyals, O.; and Zisserman, A.
2017. Lip reading sentences in the wild. In Proceedings of the
IEEE conference on computer vision and pattern recognition.
Graves, A.; Fernández, S.; Gomez, F.; and Schmidhuber, J.
2006. Connectionist temporal classification: labelling unseg-
mented sequence data with recurrent neural networks. In In-
ternational Conference on Machine learning.
Gupta, S.; Hoffman, J.; and Malik, J. 2016. Cross modal dis-
tillation for supervision transfer. In Proceedings of the IEEE
conference on computer vision and pattern recognition.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition.
Hinton, G. E.; Vinyals, O.; and Dean, J. 2015. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531.

Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8).
Hou, Y.; Ma, Z.; Liu, C.; and Loy, C. C. 2019. Learning
to steer by mimicking features from heterogeneous auxiliary
networks. In AAAI Conference on Artificial Intelligence.
Kim, Y., and Rush, A. M. 2016. Sequence-level knowledge
distillation. In Conference on Empirical Methods in Natural
Language Processing.
Panayotov, V.; Chen, G.; Povey, D.; and Khudanpur, S. 2015.
Librispeech: an asr corpus based on public domain audio
books. In 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002. Bleu:
a method for automatic evaluation of machine translation. In
Annual Meeting of the Association for Computational Linguis-
tics.
Petridis, S.; Stafylakis, T.; Ma, P.; Tzimiropoulos, G.; and Pan-
tic, M. 2018. Audio-visual speech recognition with a hybrid
ctc/attention architecture. In 2018 IEEE Spoken Language
Technology Workshop (SLT), 513–520. IEEE.
Romero, A.; Ballas, N.; Kahou, S. E.; Chassang, A.; Gatta, C.;
and Bengio, Y. 2014. Fitnets: Hints for thin deep nets. arXiv
preprint arXiv:1412.6550.
Shillingford, B.; Assael, Y.; Hoffman, M. W.; Paine, T.;
Hughes, C.; Prabhu, U.; Liao, H.; Sak, H.; Rao, K.; Bennett,
L.; et al. 2018. Large-scale visual speech recognition. arXiv
preprint arXiv:1807.05162.
Smilkov, D.; Thorat, N.; Kim, B.; Viégas, F.; and Wattenberg,
M. 2017. Smoothgrad: removing noise by adding noise. arXiv
preprint arXiv:1706.03825.
Stafylakis, T., and Tzimiropoulos, G. 2017. Combining resid-
ual networks with lstms for lipreading. Proc. Interspeech
2017.
Sterpu, G.; Saam, C.; and Harte, N. 2018. Attention-based
audio-visual fusion for robust automatic speech recognition.
In Proceedings of the 2018 on International Conference on
Multimodal Interaction.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention
is all you need. In Advances in neural information processing
systems, 5998–6008.
Wang, Y.; Skerry-Ryan, R.; Stanton, D.; Wu, Y.; Weiss, R. J.;
Jaitly, N.; Yang, Z.; Xiao, Y.; Chen, Z.; Bengio, S.; et al. 2017.
Tacotron: Towards end-to-end speech synthesis. Proc. Inter-
speech 2017 4006–4010.
Wolff, G. J.; Prasad, K. V.; Stork, D. G.; and Hennecke, M.
1994. Lipreading by neural networks: Visual preprocessing,
learning, and sensory integration. In Advances in neural in-
formation processing systems.
Wu, L.; Tian, F.; Zhao, L.; Lai, J.; and Liu, T.-Y. 2018. Word
attention for sequence to sequence text understanding. In
Thirty-Second AAAI Conference on Artificial Intelligence.
Zhao, Y.; Xu, R.; and Song, M. 2019. A cascade sequence-
to-sequence model for chinese mandarin lip reading. arXiv
preprint arXiv:1908.04917.

6924


