
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Local Regularizer Improves Generalization

Yikai Zhang,1∗ Hui Qu,1* Dimitris Metaxas,1 Chao Chen2

1Department of Computer Science, Rutgers University
2Departments of Biomedical Informatics, Stony Brook University

{yz422, hui.qu, dnm}@cs.rutgers.edu, chao.chen.cchen@gmail.com

Abstract

Regularization plays an important role in generalization of
deep learning. In this paper, we study the generalization
power of an unbiased regularizor for training algorithms
in deep learning. We focus on training methods called Lo-
cally Regularized Stochastic Gradient Descent (LRSGD). An
LRSGD leverages a proximal type penalty in gradient de-
scent steps to regularize SGD in training. We show that by
carefully choosing relevant parameters, LRSGD generalizes
better than SGD. Our thorough theoretical analysis is sup-
ported by experimental evidence. It advances our theoretical
understanding of deep learning and provides new perspec-
tives on designing training algorithms. The code is available
at https://github.com/huiqu18/LRSGD.

1 Introduction

Deep learning has achieved great success in practice. Due
to its expressive power, deep models can easily fit data and
achieve sufficiently low empirical risk (Raghu et al. 2017;
Lin and Jegelka 2018; Cohen, Sharir, and Shashua 2016;
Brutzkus et al. 2017). Meanwhile, it is crucial to have a better
control of the generalization performance. In recent years,
substantial work has been done toward understanding and
improving generalization of deep nets. (Zhang et al. 2016;
Belkin, Ma, and Mandal 2018; Belkin, Hsu, and Mitra 2018;
Neyshabur et al. 2017; Arora et al. 2018).

In machine learning, regularization is known to improve
generalization both theoretically and empirically (Tibshi-
rani 1996; Hoerl and Kennard 2000; Krogh and Hertz 1992;
Bousquet and Elisseeff 2002; Friedman, Hastie, and Tibshi-
rani 2001). In addition to classical regularization, new reg-
ularizors have been specifically designed for deep learning.
Spectral norm based regularizors (Yoshida and Miyato 2017;
Brock, Donahue, and Simonyan 2018; Farnia, Zhang, and Tse
2019; Miyato et al. 2018) are applied to improve performance
of deep learning in applications. In (Neyshabur et al. 2018;
Bartlett, Foster, and Telgarsky 2017; Golowich, Rakhlin,
and Shamir 2018), analysis suggests that parameter with
smaller norm leads to tighter generalization bounds. En-
tropy based regularizor (Chaudhari et al. 2017) is proposed
to encourage training algorithm to produce flat minimas,

∗equal contribution
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

which are believed to generalize well (Chaudhari et al. 2017;
Wu, Zhu, and others 2017). While reducing generalization
gap, these regularizors also introduce bias to the objective
function. With a biased objective function, the optimization
result may not achieve the lowest possible empirical risk. As
the performance of a model is determined by both the em-
pirical risk and the performance gap, it is preferable to have
regularizors introducing minimal or no bias, while achieving
small generalization gap. In this work, we aim at such goal
and investigate whether a regularizor can improve the gen-
eralization of deep learning model without biasing the loss
function?.

We answer this question by introducing proximal type
penalty function to regularize deep net training (Rockafellar
1976; Combettes and Pesquet 2011; Parikh, Boyd, and others
2014). At t-th iteration of the training, the proximal type
quadratic penalty λ/2‖w − wt−1‖22 enforces search region
of parameterw to be close towt−1. It works as a local regular-
izor so each gradient step is relatively stable. Different from
regularizors that directly apply to loss, the proximal type
regularizor is only used to stablize each gradient decent step
and does not affect the loss or objective function. Therefore
the local regularizor serves as an Unbiased Regularizor.

The proximal type algorithm has been well applied in
machine learning problems (Xiao and Zhang 2014; Shalev-
Shwartz and Zhang 2014; Lin, Mairal, and Harchaoui 2015;
Li et al. 2014; 2014). As a quadratic function, the proximal
regularizor improves the convexity of loss surface, and thus
accelerates optimization algorithms (Lin, Mairal, and Har-
chaoui 2015; Allen-Zhu 2018a; 2018b; Paquette et al. 2018;
Nesterov 2012). Recently, researchers have revisited such
regularizor in non-convex optimization context, due to its
power in convexifying loss surface and improving optimiza-
tion efficiency. However, so far, little is known about its
generalization power.

In this paper, we study local regularized optimization al-
gorithm which applies proximal type regularizor to stabilize
training process. Specifically, we focus on methods that com-
bines such local regularizor with SGD (called LRSGD) and
prove for the first time that local regularizor can indeed im-
prove generalization bound of SGD. Our analysis relies on
the algorithmic stability property of a training algorithm, i.e,
the prediction of a trained model does not change much when
one training sample is switched. Such stability of a learning

6861



algorithm was first introduced by Bousquet and Elisseeff
(Bousquet and Elisseeff 2002) to show that minimizer of a
regularized loss is uniformly stable. Elisseeff et al. extend
the algorithmic stability to randomized algorithms (Elisseeff,
Evgeniou, and Pontil 2005). Hardt et al. (Hardt, Recht, and
Singer 2016) analyzed the stability of iterative algorithms
using a progressive divergence argument.

Our analysis show locally regularized SGD is stable and
indeed minimizes empirical loss no slower than SGD. Par-
ticularly, LRSGD has an inner loop SGD to minimize the
regularized objective function. We analyze two variants of
LRSGD by setting the number of iterations of the inner loop
SGD to a random number (called LRSGD-R) or a constant
(called LRSGD-C). These two methods complement each
other; one is more stable and the other converges faster. We
provide the following theoretical results.

1. LRSGD-R has a better stability (Theorem 4.4) while main-
taining the same convergence rate as SGD (Lemma 4.6)
which lead to better generalization bound than SGD,.

2. LRSGD-C has significantly less dependence on variance
of gradients than SGD, thus converges faster (Lemma
4.10). Meanwhile, LRSGD-C has the same amount of
stability guarantee per iteration as SGD (Theorem 4.9),
thus generalizes better than SGD.

Our theoretical results are supported by experiments. We
observe consistently better generalization performance of
LRSGD-R and LRSGD-C over SGD on different neural net
architectures. Local regularization has many desirable proper-
ties and can be combined with state of the art optimization al-
gorithms e.g., Adam (Kingma and Ba 2014), AdaGrad(Duchi,
Hazan, and Singer 2011). It has been and will continue being
exploited to design novel training algorithms.

Outline. Section 2 introduces basic notations, assumptions
on loss functions and optimization methods. Section 3 con-
tains known results about SGD and our new stability bound
for SGD, which is tighter in reasonable parameter regime.
In Section 4, analysis about stability and convergence re-
sults for both LRSGD-R and LRSGD-C are presented. In
section 5, we provide experimental evidence to support our
theoretical results. Due to space constraints, we only present
simplified theorems, leaving full theorems and proofs to the
supplemental material.

2 Preliminaries

This section begins with some classic conditions for ana-
lyzing optimization algorithms (Nesterov 2013; Allen-Zhu
2018a). The following conditions regulate the behavior of
0-th order, 1st order and 2nd order derivatives of f(x).
Condition 2.1 (C2.1). A twice differentiable function f(x)
is
• �-Lipschitz smooth, or equivalently �-Hessian bounded if

‖∇f(x)−∇f(y)‖ ≤ �‖x− y‖.
• G-Lipschitz continuous, or equivalently G-gradient

bounded if ‖f(x)− f(y)‖ ≤ G‖x− y‖.
• B-bounded if |f(x)| ≤ B.

Next we introduce the non-convexity coefficient δ, which
measures how ‘non-convex’ a function is.

Algorithm 1 SGD
1: Input: h(w),M, η, w′
2: Initialization w0 = w′
3: for k = 1, · · · ,M do
4: Randomly pick Ik ∈ [n] samples
5: wk+1 = wk − ηk∇hIk(wk)
6: end for
7: Return wM

Algorithm 2 LRSGD
1: Input: T , f(x), λ
2: Initialize w0

3: for t = 1, · · · , T do
4: Gt(w) = f(w) + λt

2 ‖w − wt‖2
5: wt+1 = SGD(Gt(w),Mt, ηt, wt)
6: end for
7: Return wT

Condition 2.2 (C2.2: δ-non-convex). A function f(x) is δ-
non-convex if f(x) ≥ f(y) + 〈∇f(y), x− y〉 − δ

2‖x− y‖2.

Note that δ is universally bounded by the smooth parameter
�. We use κ = δ/� ≤ 1 as an inverse condition number in
the paper. One can also show that the minimal eigenvalue
of the Hessian of f(x) is lower bounded by −δ. We next
demonstrate the SGD and LRSGD algorithms:

SGD The SGD takes h(w) the object function,M the num-
ber of iterations, η the learning rate andw′ the initialization as
input. Denote by Ik a mini-batch sample set randomly picked
in the k-th iteration to compute the stochastic gradient of a
loss function h(w), ∇hIk(wk) = 1

|Ik|
∑
zj∈Ik ∇hj(wk, zj).

Throughout this paper, wk denotes the parameter obtained by
SGD, η and α denote step size interchangeably upon different
conditions.

Next condition regulates the behavior of the stochastic gra-
dients. This is crucial for stochastic gradient to be informative
instead of being dominated by noise (Rakhlin et al. 2012;
Allen-Zhu 2018a).

Condition 2.3 (C2.3: σ2-variance-bounded stochastic gra-
dients). Let σk = ∇hIk(wk) − ∇h(wk) be the difference
between the stochastic gradient and the exact gradient. We
say h(x) has σ2-variance-bounded stochastic gradients if
‖σk‖2 ≤ σ2 (or σ-variance-bounded, in short).

LRSGD An LRSGD also takes gradient descent steps. In
each iteration, instead of directly computing the gradient of
the loss ∇f(w), it solves an auxiliary loss function Gt(w) =
f(w) + λt

2 ‖w − wt‖2 using an inner loop SGD. The inner
loop SGD algorithm minimizes the augmented loss function
Gt(w) with Mt number of iterations and ηt learning rate.
The output of the inner loop SGD is the next gradient update,
wt+1. There are several parameters: the penalty weight λt,
the SGD learning rate ηt and the number of iterations of SGD
Mt. A family of LRSGD algorithms can be derived by setting
them differently, which include SGD (λt = 0, Mt = 1).

In general, people prefer setting λt to be bigger than the
non-convexity coefficient δ, so that the auxiliary function

6862



Gt(w) becomes convex, and is easier to solve. Note that by
replacing SGD in inner loop, the framework of LRSGD can
be adopt to other training algorithm e.g. Adam (Kingma and
Ba 2014).

When λt is non-zero, it plays a role as an inverse learning
rate λt = 1/α′

t for the outer loop update. This is because the
update rule could be re-written as wt+1 = wt−α′

t∇f(wt+1)
if one can get an exact solution achieving first order stationary
point of Gt(w) in each iteration. In rest of the papers, α′

t =
1/λt represents step size of LRSGD and ηt denotes learning
rate in inner loop SGD. In addition, ηkt , k ∈ [Mt], t ∈ [T ] are
used to represent learning rate in k-th iteration of inner loop
SGD and t-th iteration of outer loop LRSGD.

3 Convergence and Stability of SGD

In this section we define uniform stability and relate it to the
generalization gap. In Sections 3 and 3, we review known re-
sults and adopt them into our notations. In Section 3 we prove
a new stability bound of SGD based on the non-convexity co-
efficient δ. The new bound can be tighter than the existing one
in reasonable parameter regime. Another purpose of this new
result is: similar analysis can be applied to LRSGD, making
it easier to compare the stabilities of the two algorithms.

Convergence of SGD

The following known lemma (Allen-Zhu 2018a; Ge et al.
2015; Reddi et al. 2016) describes a lower bound on how
much progress is made in each iteration in expectation. In
the lemma, αt represents the step size of SGD (also known
as learning rate), which controls the magnitude of the step
toward the negative gradient direction. We use α instead of η
(as used in Algorithm 1) for ease of comparison with Lemma
4.6 and 4.10 in Section 4.

Lemma 3.1 (One round convergence of SGD). Assume Con-
ditions C2.1 and C2.3 hold, by picking step size αt ≤ 1/(2�)
in each round SGD has the following progress:

E [f(wt)− f(wt+1)] ≥ E

[αt
2
‖∇f(wt)‖2

]
− αtσ

2

Remark 3.2. If one uses the exact gradient (the variance
bound of gradient σ = 0), by picking αt = 1/(2�), one
can achieve the well-known O(�B/T ) convergence result
(Nesterov 2013). In Lemma 3.1, the variance term σ2 which
comes from noise of stochastic gradient slows down the
convergence. For large σ, the SGD step is not guaranteed to
decrease function loss. This side effect of SGD is remedied
in Section 4 by a scheme of LRSGD which improves the
generalization in a ‘train faster’ fashion.

Stability and Generalization Bound of SGD

In this section we present known stability result of SGD,
We begin with reviewing the concept of stability and its
connection with generalization gap, i.e., the difference be-
tween the empirical risk and the population risk. (Bousquet
and Elisseeff 2002; Elisseeff, Evgeniou, and Pontil 2005;
Hardt, Recht, and Singer 2016). Denote by S1 = {x1, ..., xn}
the training set with n samples, and S2 be a perturbed twin of
S1 by replacing the i-th observation xi with x′i. Throughout

this paper, we denote by v and w the parameters trained using
S1 and S2 respectively.

The empirical risk of parameter w on a training set S
is: RS(w) = 1

n

∑n
i=1 f(w;xi) , and the population risk of

parameter w is: R(w) = Ex[f(w;x)]. We denote by A(·) a
randomized optimization algorithm (SGD or LRSGD), which
employs the iterative update rule. We say A(·) is uniformly
stable if the change of the output model is bounded when a
sample in training set is switched. Formally:
Definition 3.3 (ε-uniform randomized stability). A random-
ized algorithm A(·) is ε-uniformly stable if for two datasets
of size n, S1 = {x1, . . . , xi, . . . , xn} and its perturbed twin
S2 = {x1, . . . , x′i, . . . , xn}, we have

sup
x

EA[|f(A(S1);x)− f(A(S2);x)|] ≤ ε,

where x represents a test sample from population. Equiva-
lently, we may say the stability of A(·) is ε.

One can apply a symmetric argument to show that :ε-
uniformly stable property of A(·) implies that the expected
generalization gap of A(·) is bounded by ε (Bousquet and
Elisseeff 2002; Hardt, Recht, and Singer 2016). Therefore,
a tight stability bound implies a tight generalization bound.
For the rest of the paper, we will focus on stability bounds,
instead of generalization bounds. We conclude this section
by recalling the known stability result of SGD from (Hardt,
Recht, and Singer 2016) with slight revision. We incorpo-
rate the non-convexity coefficient δ into the original stability
result to derive below Theorem.
Theorem 3.4. Assume Conditions C2.1 and C2.2 hold, SGD
with T iterations using step size αt = c/(t�) has stability:

εSGD = O

(
1

n
T

cκ
cκ+1B

1
cκ+1

)
(1)

Remark 3.5. The non-convexity coefficient δ gives a more
flexible description of the loss function. Note that above
bound depends on the inverse condition number κ = δ/�.
The fact that δ ≤ � makes above bound slightly better than
original statement in (Hardt, Recht, and Singer 2016) (The-
orem 3.12). When δ = �, the theorem becomes the original
result for SGD. Details of such revision is included in sup-
plementary materials.

A New Stability Bound for SGD

We prove a new stability bound for SGD (Theorem 3.6)
which is complimentary to the known result (Theorem 3.4).
Compared with Theorem 3.4, our new theorem eliminates
the dependence on function value, and thus achieving a better
bound for large value of B (B > log2(n)). This new bound
is also easier to compare with the stabilities of LRSGD, as
we will prove.

We stress that the proof is nontrival and can be found in
the supplemental material.
Theorem 3.6. Assume Conditions C2.1 and C2.2 hold, SGD
with T (T > n) iterations using step size αt = c/(t�) has
stability:

εSGD = O

(
log(n)T cκ

n1+cκ

)
= Õ

(
T cκ

n1+cκ

)
(2)

6863



Remark 3.7. Note that for the bound in Theorem 3.4 to
be nontrivial we need 1

nT
cκ

cκ+1B
1

1+cκ ≤ 2B as εSGD =
E[|f(w; z)− f(v; z)|] is uniformly bounded by 2B. This au-
tomatically gives 1

nT
cκ

cκ+1 ≤ 2B
cκ

cκ+1 . Consider the bound
in Theorem 3.6: Õ

(
( 1nT

cκ
cκ+1 )cκ+1

)
, it removes the depen-

dence on B with additional cκ on the power number. From
the ratio of two bounds one can derive that if cκ ≤ 1

3 and
B ≥ log2(n), Theorem 3.6 has a tighter bound than Theorem
3.4. Note that B ≥ log2(n) is a classic setting in regression
problems with quadratic loss.

4 Convergence and Stability of LRSGD

In this section we analyze the stability of LRSGD and com-
pare it with SGD. We start by formalizing LRSGD and its
relationship with existing algorithms. In Section 4 and 4, we
propose two schemes of LRSGD by setting the number of iter-
ations of the inner loop SGD to a random number(LRSGD-R)
or a constant(LRSGD-C). We show LRSGD could either im-
prove the progress made in each iteration (LRSGD-C) or help
reduce the divergence quantity in each iteration thus make
the training algorithm more stable (LRSGD-R). We leave
proof details to supplemental material.

LRSGD-R: A More Stable Algorithm

We define the first scheme LRSGD-R by setting the number
of iterations of the inner loop SGD, Mt, to a random number.
In each iteration, Mt generated from a geometric distribution
Geo(γ) with success probability γ, namely, Pr(Mt = K) =
(1−γ)K−1γ. For ease of analysis, we introduce an additional
parameter θ which fully determines γ. We will later show
how θ controls a balance between stability and convergence
of LRSGD-R. Formally,

Definition 4.1 (LRSGD-R). LRSGD-R is Algorithm 2 with
the following setting: step size in inner loop SGD ηt = θ/λt
where θ ≤ 1/4, number of iterations Mt ∼ Geo(γ) where
γ = log(1/(1−θ))

log(1/θ) .

Remark 4.2. Setting the number of iterations Mt to be a
Geometric random variable could significantly simplify the
analysis in convergence, so that we can explicitly compare
the progress made in each iteration with SGD. This trick
first appears in (Lei et al. 2017; Lei and Jordan 2017) to
control stochastic variance reduction algorithm. The choice
of success rate of Geometric distribution γ is proper. Given
θ ≤ 1/4, θ2

1−θ ≤ log(1/(1−θ))
log(1/θ) ≤ θ

(1−θ)2 ≤ 2θ. As one can
see, θ controls the upper and lower bounds of γ thus plays a
crucial role in generating Mt. E[Mt] =

1
γ ≥ 1

2θ , smaller θ
results in larger Mt in expectation.

Analysis of LRSGD-R In this section we show that
LRSGD-R achieves better generalization performance. In
each iteration, LRSGD-R reduces the same loss as SGD,
while the stabilities deteriorate in a better rate. Thus when
both LRSGD-R and SGD reach a sufficiently low empirical
risk, the former generalizes better.

Stability LRSGD-R: Following theorems state that
LRSGD-R achieves better algorithmic stability compared

to SGD (Theorem 3.4 and 3.6). The key idea of the proof
is by applying the strongly convexity of regularized loss
function to bound the one round divergence of LRSGD-R
and carefully balancing the hyper-parameters. We leave the
details in supplementary material.

The following theorem is a direct comparison with Theo-
rem 3.4 of SGD.

Theorem 4.3 (Stability of LRSGD-R). Assume Con-
ditions C2.1 and C2.2 hold, let t0 = (2(1 −
θ)cG2/�)1/(q+1)T q/q+1), q = (1 − θ)cκ. If one run SGD
with step size αt = c/(t�) for first t0 rounds then apply
LRSGD-R for T − t0 iterations with λt = ct�, one can
achieve following stability:

εLRSGD-R = O

(
1

n
T

(1−θ)cκ
1+(1−θ)cκB

1
1+(1−θ)cκ

)
(3)

The following theorem is a direct comparison with Theo-
rem 3.6 of SGD.

Theorem 4.4 (Stability of LRSGD-R). Assume Conditions
C2.1 and C2.2 hold, LRSGD-R with T (T > n) iteration
using parameter λt = ct� has stability:

εLRSGD-R = Õ

(
T (1−θ)cκ

n1+(1−θ)cκ

)
(4)

Remark 4.5. Compared with the SGD bound in Theorem
3.6, the stability bound in Theorem 4.3 and Theorem 4.4 gives
approximately 1−θ improvement on the power number of T .
We may set θ to up to 1/4 to have the tightest stability bound.
However, there is a catch. As we will show later, bigger θ
will slow down the convergence.

Convergence of LRSGD-R We next show LRSGD-R
achieves a convergence rate comparable to SGD (Lemma
3.1). We compare the lower bound of improvement made by
SGD and LRSGD in each iteration. Following lemma states
that LRSGD-R converges no slower than SGD.

Lemma 4.6. (one round convergence of LRSGD-R) Assume
Conditions C.2.1, C.2.2 and C.2.3 hold, and E[·] is taken
over the random variable from Geometric distribution and
the stochastic gradient oracle, we have following inequality
by picking γ ≤ 2θ, λt ≥ 2� and θ = λtηt ≤ 1/4:

E [f(wt)− f(wt+1)] ≥ α′
t

2
E
[‖∇f(wt+1)‖2

]− α′
tθσ

2

Similar to Lemma 3.1, we can prove a convergence guar-
antee by telescoping the Lemma 4.6 for LRSGD-R. Unfortu-
nately, we can not apply a classical fixed step size analysis to
explicitly derive iteration complexity bound due to necessity
of decreasing step size in stability analysis. However, we
stress that by comparing with Lemma 3.1, we have a fair
comparison with SGD.

Remark 4.7. The convergence rate is not slowed down as
αt in Lemma 3.1 has the same scale as α′

t by setting λt =
t�. Indeed, the dependence of the bound on the variance of
gradient in Theorem 4.6 is improved by a factor of θ.

6864



A balance between stability and convergence. Note that
θ adjusts the balance between stability improvement and con-
vergence improvement over SGD. When θ → 0, the stability
improvement brought by local regularizor vanishes. But the
algorithm converges with a faster rate than SGD, as the vari-
ance term in the RHS of Equation (4.6), (−α′

tθσ
2), increases

with θ → 0. As θ increases, the stability is improved while
the convergence rate slows down. When θ reaches its upper
bound 1/4, one achieves only a constant improvement on
variance dependence but an approximately Ω

(
(Tn )

cκ/4
)

im-
provement on stability. A sweet spot might be found in future
analysis and careful tuning in experiments. See Section 5 for
an experimental study.

Can we do faster? We have seen that by pushing θ to
its upper bound, generalization power is maximized. When
we push θ to the other end, we alleviated side effect of vari-
ance in stochastic optimization and improve the convergence.
However, this setting of LRSGD-R is impractical as the ex-
pected number of iterations Mt goes to ∞ as θ goes to 0.
This motivates us to design another scheme with maximal
convergence rate while maintaining a stability on par with
SGD.

LRSGD-C: Train faster

We propose another scheme, LRSGD-C, by setting the num-
ber of iterations of the inner loop SGD Mt to a large enough
constant. In this case, we show how to boost convergence
by exploiting the strong convexity of Gt(w) in an optimal
fashion, yet still has on-par stability increase as SGD for
each round. Overall, since LRSGD-C converges with less
iterations than SGD, it has a better stability. We use ψ as a
precision parameter of LRSGD-C which controls the opti-
mality of the solution of Gt(w) for every t ∈ [T ]. In sum,
smaller ψ (and better optimization) demands a larger number
of iterationsMt in the inner loop SGD, as a price for accurate
solution.

Definition 4.8. LRSGD-C is LRSGD with the following
setting: pick the inner SGD learning rate and number of itera-
tions to be ηkt = 1

(λt−δ)k and Mt ≥ 4�2(G2+σ2)
ψ2(λt−δ) , respectively.

Here k ∈ [Mt] represents the k-th gradient step within the in-
ner loop SGD. t ∈ [T ] represents the t-th outer loop iteration
of LRSGD-C. ψ is the aforementioned precision parameter.
G and δ2 represent the norm upper bound and variance of
stochastic gradient.

Since Gt(w) is (λt − δ)-strongly convex, one can choose
a 1/(k(λt − δ)) step size to achieve the optimal convergence
rate O(1/Mt) for Gt(w) in stochastic setting (Rakhlin et
al. 2012; Nemirovski et al. 2009). Thus we use inner loop
SGD to achieve a precise solution to approximate the exact
proximal type update wt+1 = wt − α′

t∇f(wt+1) up to ψ
error. The noise coming from stochastic gradient can thus be
avoided.

Analysis of LRSGD-C In this section we analyze stability
and convergence behavior of LRSGD-C. We show that in
each iteration, LRSGD-C reduces significantly more loss than
SGD, while their stabilities deteriorate in a same rate. There-
fore, LRSGD-C requires much fewer iterations to achieve a

sufficiently low empirical risk. Thus LRSGD-C loses much
less stability compared with SGD and generalizes better.

Stability LRSGD-C: In following theorems we show
LRSGD-C achieves the same algorithmic stability compared
to SGD (Theorem 3.4 ) with a proper choice of parameter
setting.

Theorem 4.9. Assume Conditions C2.1 and C2.2 hold, let
t0 = (2cG2/�)1/(q+1)T q/q+1), q = cκ. If one run SGD
with step size αt = c/(t�) for first t0 rounds then apply
LRSGD-C for T − t0 iterations with λt = ct�, one can
achieve the same stability as SGD:

εLRSGD-C = O

(
1

n
T

cκ
cκ+1B

1
cκ+1

)
(5)

Now we demonstrate that this setting could significantly
improve the convergence progress made in each outer loop
iteration.
Convergence of LRSGD-C: Similar to Section 4, we com-
pare the convergence progress of SGD with LRSGD-C by
comparing progress made in each iteration. We describe the
one round convergence behavior of LRSGD-C and compare
it with that of SGD (Lemma 3.1).

Lemma 4.10. (one round convergence of LRSGD-C) Assume
Conditions C2.1 ,C2.2 and C2.3 hold. Let α′

t = 1/(2λt).
LRSGD-C has the following one round progress :

E [f(wt)− f(wt+1)] ≥ α′
t

2
E
[‖∇f(wt+1)‖2

]− α′
tψ

2

Remark 4.11. Compared with rate of SGD in Lemma 3.1,
the σ2 on the RHS has been replaced by ψ2. A smaller value
of ψ is prefered and one can reduce value of ψ by increasing
the number of inner loop iterations Mt. Note that bigger Mt

will not hurt the convergence rate, which is measured by the
number of outer loops iterations.

Better with noisy gradient / small batch-size. Above
analysis also suggests that LRSGD-C framework is better
at handling noisy gradient, as its one-round progress bound
depends on ψ2 rather than the variance of gradient σ2. Indeed,
we observe that variance will dominate the gradient norm
with mini-batch size(see Figure S.1 in supplemental material).
The implication is for settings where we have to use small
batch-size due to memory constraints, LRSGD will be much
more effective, as we will demonstrate in experiments.

5 Experiments

We empirically show the generalization power of LRSGD-
R and LRSGD-C. We show that they generalize better than
SGD for different network architectures. We also use ablation
studies to show (1) how LRSGD-R balances between stability
and efficiency; and (2) LRSGD-C is more robust to noisy
gradients than SGD, when the batch size is small.

Dataset and network architectures. All experiments are
based on the CIFAR10 dataset which consists of 10 classes of
32×32 color images, with 6k images per class (Krizhevsky
and Hinton 2009). They are split into train and test sets with
50k and 10k images, respectively. We use similar data aug-
mentations as (He et al. 2016): zero-padding with 4 pixels on

6865



Table 1: Average test accuracies (%) on LeNet, VGG16, and
ResNet18 on the CIFAR10 dataset.

LeNet VGG16 ResNet18

SGD 75.09 ± 0.55 91.76 ± 0.19 94.78 ± 0.10
LRSGD-R 76.71 ± 0.17 92.66 ± 0.14 95.80 ± 0.08
LRSGD-C 76.50 ± 0.23 92.49 ± 0.22 95.63 ± 0.07

each side and randomly cropping into an image of size 32×32.
We also pre-process the images by normalizing them with
per-channel mean and standard deviation. We use three deep
neural networks, i.e., LeNet (LeCun et al. 1998), VGG16
(Simonyan and Zisserman 2014) and ResNet18 (He et al.
2016). The momentum and weight decay parameters of SGD
are set to be 0.9 and 0.0001.

The Generalization Performance of LRSGD

We train the networks using the setting in which SGD
achieves state-of-the-art accuracy, i.e., the number of iter-
ation is 13.7e4 (350 epochs), the batch size is 128, and the
learning rate is α = 0.1 initially and decayed by 10 in itera-
tion 5.8e4 and 9.8e4 (epoch 150 and 250).

For LRSGD-R, we set γ = 0.1, λt = 0.01/α. For LRSGD-
C, Mt = 10 and λt = 0.01/α. We run each method for 10
times and report the mean and standard deviation of the
test accuracies (in %) of the converged models in Table 1.
Compared with SGD, both LRSGD-R and LRSGD-C achieve
better generalization performance on all three architectures.
In Figure 1, we draw the train and test curves for one out of
the 10 runs. We observe all methods get stabilized after the
first learning rate decay (iteration 5.8e4). LRSGD perform
better than SGD. LRSGD-R is slightly better than LRSGD-C.
They are consistent with our theoretical analysis.

Figure 1: Train and test losses and accuracies on ResNet18
(top two) and VGG16 (bottom two).

Figure 2: Balance between stability and speed for LRSGD-R:
Left: train (blue curve) and test losses (orange curve) as γ
increases. Right: hitting time (number of iterations for the
training loss to reach 0.65, orange curve) and generalization
gap (blue curve) as γ decreases.

LRSGD-R: Balancing Between Stability and Speed

We showed in Section 4 that the paramter θ controls the
balance between stability and efficiency of LRSGD-R. In this
section, we empirically study how θ affects the performance
of LRSGD-R. Note that θ directly determines γ, the success
probability of the geometric distribution for generating the
number of iterations of the inner loop SGD, Mt. We directly
tune the parameter γ and observe how it affects the algorithm
from one extreme to another.

We train the LeNet with LRSGD-R using different val-
ues of γ ∈ [1/2, 1/3, 1/5, 1/10, 1/20], corresponding to
E[Mt] = 2, 3, 5, 10, 20, respectively. λt is set to 0.01/α.
The number of iterations is 3.4e4 (350 epochs) and batch
size is 512. The learning rate schedule is the same as that in
Section 5. The results are shown in Figure 2. We measure the
convergence rate by the hitting time (number of iterations)
of LRSGD-R when the training loss reaches a fixed thresh-
old, 0.65. The stability of the algorithm is measured by the
generalization gap (test loss - train loss). As γ decreases, the
train loss decreases and generalization gap monotonically
increases. Meanwhile the hitting time decreases. There is a
trade-off between training efficiency and stability, supporting
our theoretical analysis in LRSGD-R. In terms of testing
accuracy, the optimal choice of γ is 0.1.

LRSGD-C: Robust to Noisy Gradient

Analysis shows that LRSGD-C is robust to noisy gradient
as its one round convergence is controlled by ψ2 (Lemma
4.10) while SGD’s one round convergence is affected by the
variance of gradient σ2 (Lemma 3.1). To validate this anal-
ysis, we explore the performance of LRSGD on different
small batch sizes. We train the LeNet with LRSGD-C and
SGD using batch sizes of 4 ∼ 64 , respectively. λt is 0.01/α,
Mt = 10, the number of iterations is 7.8e4 (1 epoch), and the
learning rate of SGD is α = 0.01 initially and decayed every
780 iterations. The learning rate of LRSGD-C is ηk = α/k,
where k is the k-th iteration of inner loop SGD. Test accura-
cies periteration of both SGD and LRSGD-C are presented in
Figure 3 (a). LRSGD-C converges to about 76% accuracies
for all cases, which is close to the best accuracy (76.50%)
using normal batch size (Table 1), while SGD stops at about

6866



71%, which has a larger gap to the result (75.09%) of normal
batch size.

It is known that this technique of decreasing step size im-
proves the tolerance of noisy gradients (Rakhlin et al. 2012).
A natural question is whether it is this technique or the local
regularizer that actually contributes to the robustness to the
noisy gradient. To this end, we run a separate experiment on
a small batch size of 8, where we fix a constant learning rate
ηk = α for each inner SGD iteration. Different α values are
used to make comprehensive comparison. The test accuracies
are shown in Figure 2(b). Values below 0.5 are clamped to
0.5. It is evident that the LRSGD-C achieves better test ac-
curacies than SGD even with fixed inner loop SGD learning
rate, proving that the local regularizer is indeed improving
the robustness to the noisy gradient.

(a) Different batch sizes

(b) Different learning rates

Figure 3: Test accuracies using (a) different batch sizes and
(b) different learning rate: SGD (top) and LRSGD-C (bottom).
X-axis: iterations. Y-axis: different batch sizes or learning
rates.

6 Conclusion

In this paper we analyze uniform stability of a LRSGD. We
theoretically and empirically show that LRSGD framework
improves the generalization performance of deep nets. Specif-
ically, we analyze two schemes of LRSGD (LRSGD-R and
LRSGD-C). LRSGD-R is more stable than SGD while the
convergence is not slow down. We also show that LRSGD-C
is as stable as SGD but with a much faster convergence rate
(in terms of iterations). We also observed that LRSGD-C can
better handle noisy gradient in both analysis and empirical
results. This has applications in scenario where small batch
sizes has to be used due to the limitation of GPU memory,
e.g., in high resolution images synthesis using generative
adversarial networks (GANs) (Goodfellow et al. 2014).

Acknowledgements
We thank anonymous reviewers for helpful comments. This
work was partially supported by NSF IIS-1855759, CCF-
1855760, and CCF-1733843.

References
Allen-Zhu, Z. 2018a. How To Make the Gradients Small
Stochastically. In Proceedings of the 32nd Conference on Neu-
ral Information Processing Systems, NeurIPS.
Allen-Zhu, Z. 2018b. Natasha 2: Faster non-convex optimiza-
tion than sgd. In Advances in Neural Information Processing
Systems, 2676–2687.
Arora, S.; Ge, R.; Neyshabur, B.; and Zhang, Y. 2018.
Stronger generalization bounds for deep nets via a compres-
sion approach. In Proceedings of the 35th International Con-
ference on Machine Learning, ICML.
Bartlett, P. L.; Foster, D. J.; and Telgarsky, M. J. 2017.
Spectrally-normalized margin bounds for neural networks. In
Advances in Neural Information Processing Systems, 6240–
6249.
Belkin, M.; Hsu, D.; and Mitra, P. 2018. Overfitting or perfect
fitting? risk bounds for classification and regression rules that
interpolate. In Proceedings of the 32nd Conference on Neural
Information Processing Systems, NIPS.
Belkin, M.; Ma, S.; and Mandal, S. 2018. To understand deep
learning we need to understand kernel learning. In Proceed-
ings of the 35th International Conference on Machine Learn-
ing, ICML.
Bousquet, O., and Elisseeff, A. 2002. Stability and generaliza-
tion. Journal of machine learning research 2(Mar):499–526.
Brock, A.; Donahue, J.; and Simonyan, K. 2018. Large scale
gan training for high fidelity natural image synthesis. arXiv
preprint arXiv:1809.11096.
Brutzkus, A.; Globerson, A.; Malach, E.; and Shalev-Shwartz,
S. 2017. Sgd learns over-parameterized networks that prov-
ably generalize on linearly separable data. arXiv preprint
arXiv:1710.10174.
Chaudhari, P.; Choromanska, A.; Soatto, S.; LeCun, Y.; Bal-
dassi, C.; Borgs, C.; Chayes, J.; Sagun, L.; and Zecchina, R.
2017. Entropy-sgd: Biasing gradient descent into wide valleys.
In ICLR.
Cohen, N.; Sharir, O.; and Shashua, A. 2016. On the expres-
sive power of deep learning: A tensor analysis. In Conference
on Learning Theory, 698–728.
Combettes, P. L., and Pesquet, J.-C. 2011. Proximal splitting
methods in signal processing. In Fixed-point algorithms for
inverse problems in science and engineering. Springer. 185–
212.
Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgra-
dient methods for online learning and stochastic optimization.
Journal of Machine Learning Research 12(Jul):2121–2159.
Elisseeff, A.; Evgeniou, T.; and Pontil, M. 2005. Stability of
randomized learning algorithms. Journal of Machine Learn-
ing Research 6(Jan):55–79.
Farnia, F.; Zhang, J.; and Tse, D. 2019. Generalizable ad-
versarial training via spectral normalization. In International
Conference on Learning Representations.

6867



Friedman, J.; Hastie, T.; and Tibshirani, R. 2001. The elements
of statistical learning, volume 1. Springer series in statistics
New York.
Ge, R.; Huang, F.; Jin, C.; and Yuan, Y. 2015. Escaping from
saddle points–online stochastic gradient for tensor decomposi-
tion. In Conference on Learning Theory, 797–842.
Golowich, N.; Rakhlin, A.; and Shamir, O. 2018. Size-
independent sample complexity of neural networks. In Pro-
ceedings of the 31st Conference On Learning Theory, 297–
299.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-
Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014. Gen-
erative adversarial nets. In Advances in neural information
processing systems, 2672–2680.
Hardt, M.; Recht, B.; and Singer, Y. 2016. Train faster, gener-
alize better: Stability of stochastic gradient descent. In Inter-
national Conference on Machine Learning, 1225–1234.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 770–
778.
Hoerl, A. E., and Kennard, R. W. 2000. Ridge regression:
biased estimation for nonorthogonal problems. Technometrics
42(1):80–86.
Kingma, D. P., and Ba, J. L. 2014. Adam: Amethod for
stochastic optimization. In Proc. 3rd Int. Conf. Learn. Rep-
resentations.
Krizhevsky, A., and Hinton, G. 2009. Learning multiple layers
of features from tiny images. Technical report, Citeseer.
Krogh, A., and Hertz, J. A. 1992. A simple weight decay can
improve generalization. In Advances in neural information
processing systems, 950–957.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition. Pro-
ceedings of the IEEE 86(11):2278–2324.
Lei, L., and Jordan, M. 2017. Less than a single pass: Stochas-
tically controlled stochastic gradient. In Artificial Intelligence
and Statistics, 148–156.
Lei, L.; Ju, C.; Chen, J.; and Jordan, M. I. 2017. Non-convex
finite-sum optimization via scsg methods. In Advances in Neu-
ral Information Processing Systems, 2348–2358.
Li, M.; Zhang, T.; Chen, Y.; and Smola, A. J. 2014. Efficient
mini-batch training for stochastic optimization. In Proceed-
ings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, 661–670. ACM.
Lin, H., and Jegelka, S. 2018. Resnet with one-neuron hid-
den layers is a universal approximator. In Advances in Neural
Information Processing Systems, 6172–6181.
Lin, H.; Mairal, J.; and Harchaoui, Z. 2015. A universal cata-
lyst for first-order optimization. In Advances in Neural Infor-
mation Processing Systems, 3384–3392.
Miyato, T.; Kataoka, T.; Koyama, M.; and Yoshida, Y. 2018.
Spectral normalization for generative adversarial networks.
arXiv preprint arXiv:1802.05957.
Nemirovski, A.; Juditsky, A.; Lan, G.; and Shapiro, A. 2009.
Robust stochastic approximation approach to stochastic pro-
gramming. SIAM Journal on optimization 19(4):1574–1609.

Nesterov, Y. 2012. How to make the gradients small. Optima
88:10–11.
Nesterov, Y. 2013. Introductory lectures on convex optimiza-
tion: A basic course, volume 87. Springer Science & Business
Media.
Neyshabur, B.; Bhojanapalli, S.; McAllester, D.; and Srebro,
N. 2017. Exploring generalization in deep learning. In
Advances in Neural Information Processing Systems, 5947–
5956.
Neyshabur, B.; Bhojanapalli, S.; McAllester, D.; and Srebro,
N. 2018. A pac-bayesian approach to spectrally-normalized
margin bounds for neural networks. In ICLR.
Paquette, C.; Lin, H.; Drusvyatskiy, D.; Mairal, J.; and Har-
chaoui, Z. 2018. Catalyst for gradient-based nonconvex opti-
mization. In AISTATS 2018-21st International Conference on
Artificial Intelligence and Statistics, 1–10.
Parikh, N.; Boyd, S.; et al. 2014. Proximal algorithms. Foun-
dations and Trends R© in Optimization 1(3):127–239.
Raghu, M.; Poole, B.; Kleinberg, J.; Ganguli, S.; and Dick-
stein, J. S. 2017. On the expressive power of deep neural net-
works. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, 2847–2854. JMLR. org.
Rakhlin, A.; Shamir, O.; Sridharan, K.; et al. 2012. Making
gradient descent optimal for strongly convex stochastic opti-
mization. In ICML, volume 12, 1571–1578. Citeseer.
Reddi, S. J.; Hefny, A.; Sra, S.; Poczos, B.; and Smola, A.
2016. Stochastic variance reduction for nonconvex optimiza-
tion. In International conference on machine learning, 314–
323.
Rockafellar, R. T. 1976. Monotone operators and the proximal
point algorithm. SIAM journal on control and optimization
14(5):877–898.
Shalev-Shwartz, S., and Zhang, T. 2014. Accelerated proxi-
mal stochastic dual coordinate ascent for regularized loss min-
imization. In International Conference on Machine Learning,
64–72.
Simonyan, K., and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.
Tibshirani, R. 1996. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society: Series B
(Methodological) 58(1):267–288.
Wu, L.; Zhu, Z.; et al. 2017. Towards understanding general-
ization of deep learning: Perspective of loss landscapes. arXiv
preprint arXiv:1706.10239.
Xiao, L., and Zhang, T. 2014. A proximal stochastic gradient
method with progressive variance reduction. SIAM Journal on
Optimization 24(4):2057–2075.
Yoshida, Y., and Miyato, T. 2017. Spectral norm regulariza-
tion for improving the generalizability of deep learning. arXiv
preprint arXiv:1705.10941.
Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; and Vinyals, O.
2016. Understanding deep learning requires rethinking gener-
alization. ICLR.

6868


