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Abstract

Learning a classifier from positive and unlabeled data may
occur in various applications. It differs from the standard clas-
sification problems by the absence of labeled negative exam-
ples in the training set. So far, two main strategies have typ-
ically been used for this issue: the likely negative examples-
based strategy and the class prior-based strategy, in which the
likely negative examples or the class prior is required to be
obtained in a preprocessing step. In this paper, a new strategy
based on the Bhattacharyya coefficient is put forward, which
formalizes this learning problem as an optimization problem
and does not need a preprocessing step. We first show that
with the given positive class conditional probability density
function (PDF) and the mixture PDF of both the positive class
and the negative class, the class prior can be estimated by
minimizing the Bhattacharyya coefficient of the positive class
with respect to the negative class. We then show how to use
this result in an implicit mixture model of restricted Boltz-
mann machines to estimate the positive class conditional PDF
and the negative class conditional PDF directly to obtain a
classifier without the explicit estimation of the class prior.
Many experiments on real and synthetic datasets illustrated
the superiority of the proposed approach.

Learning a classification from positive and unlabeled data
(LPU) is a task of great importance since it has many prac-
tical applications, such as land-cover classification and doc-
ument retrieval, where positive samples, i.e., labeled objects
of interest, and unlabeled samples are readily available, but
negative samples, i.e., the objects we are not interested in,
are too diverse to be labeled. Generally, traditional classifi-
cation methods are usually inapplicable to LPU problems, as
they assume the availability of explicit negative samples. In
this paper, we focus on using both labeled positive samples
and unlabeled samples to build binary classifiers.

The research on LPU problems dates back to at least the
work of Denis (1998), in which he proved that LPU is pos-
sible as soon as the weight of the target concept is known
by the learner. Liu et al. provided a learning rule for LPU
and analyzed its sample complexity bounds for VC classes
(Liu et al. 2002). Despite the diversity of these analyses, one
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common assumption of LPU methods is that unlabeled data
can help to extract extra information to compensate for the
lack of labeled negative data. Under this assumption, two
general approaches have been proposed: the likely negative
examples-based strategy and the class prior-based strategy.

The former transforms LPU problems to standard classifi-
cation problems by using heuristics to identify a set of likely
negative examples from unlabeled data. Papers using this
idea include (Yu, Han, and Chang 2004; Li and Liu 2003;
Wang et al. 2006; Yu 2005). The disadvantage of this ap-
proach is the difficulty in deciding the size of the extracted
negative set, which may make the final classifier tend to
overfit or underfit, particularly when there is a significant
overlap between the classes. The latter uses the estimated
class information, namely, the class prior, as weights to
train a classifier on the positive data and the unlabeled
dataset directly (Liu et al. 2003; Elkan and Noto 2008;
du Plessis, Niu, and Sugiyama 2014; Kiryo et al. 2017;
du Plessis, Niu, and Sugiyama 2015). These methods have
been reported to be better than the likely negative examples-
based methods. However, the two-step learning strategy may
make the classification performance heavily rely on the esti-
mation of the class prior, which is biased due to the overlap
between the classes and is quite possibly distorted when the
set of labeled positive samples is small. Some effective class
prior estimation methods can be found in the papers (Elkan
and Noto 2008; du Plessis and Sugiyama 2014; Jain, White,
and Radivojac 2016; du Plessis, Niu, and Sugiyama 2017;
Bekker and Jesse 2018).

In this paper, we propose a Bhattacharyya coefficient-
based new strategy for LPU problems. This strategy is based
on the observation that the negative samples should not or
seldom appear in the places where the positive samples of-
ten appear and vice versa, which implies that the negative
class conditional PDF should have a small overlap with
the positive class conditional PDF. To formalize this ob-
servation, a distance measure between the distributions is
needed. Compared with other measures such as the KL di-
vergence, the Bhattacharyya coefficient, known as an intu-
itive and direct description of the overlap, is a bounded mea-
sure, which equals to zero if there is no overlap between
the two distributions (Comaniciu, Ramesh, and Meer 2003;
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Figure 1: An illustration of the minimization of the overlap.
Minimizing the overlap (the shaded area) between the model
positive class conditional PDF (the left line) and the model
negative class conditional PDF (the right line) makes them
far away from each other.

Fukunaga 2013); moreover, the Bayesian error probability is
up bounded by the Bhattacharyya coefficient, then the mini-
mization of which may lead to the decrease of the Bayesian
error (Ray 1989). Actually, the unbounded divergences such
as KL divergence are more suitable for the similarity maxi-
mization problems.

We prove that the class prior can be estimated by min-
imizing the Bhattacharyya coefficient between the positive
class and the negative class if the positive class conditional
PDF and the mixture PDF of both classes are given. Next,
rather than determine the class prior, we consider determin-
ing the negative class conditional PDF directly. To this end,
by using the implicit mixture model of restricted Boltzmann
machines (RBMs) (Nair and Hinton 2009) as the underlying
learning model, the LPU problem is formalized as an opti-
mization problem, where the Bhattacharyya coefficient be-
tween the classes is set as the optimization objective; more-
over, the model PDFs are required to fit the positive sam-
ples and the unlabeled samples simultaneously. Solving the
optimization problem naturally gives the estimations of the
positive class conditional PDF and the negative class con-
ditional PDF, which are guaranteed to be as far away from
each other as possible due to the learning goal (see Fig. 1).

Compared to the existing methods, the proposed strat-
egy has the following traits: 1) It is a new learning strategy
for the LPU problem by formulating LPU as an optimiza-
tion problem without the preprocessing step to extract the
likely negative samples or to estimate the class prior. 2) The
model’s mixture PDF of the positive class and the negative
class is required to fit the unlabeled examples. This feature
enables the proposed method to learn with a small set of la-
beled positive samples.

Preliminaries

In this section, we briefly review the definitions and proper-
ties of the Bhattacharyya coefficient and the implicit mixture
model of RBMs (IRBM), which will be used later as the op-
timization goal and the data descriptor.

Bhattacharyya coefficient

The Bhattacharyya coefficient between two probability den-
sities p1(v) and p2(v), with v ∈ R

d, is defined as

B =

∫
Rd

√
p1(v)p2(v)dv. (1)

Obviously, the values of B are always confined within the
[0, 1] interval.

IRBM

Here, IRBM is used as a mixture model of two RBMs (de-
noted by a positive RBM and a negative RBM) with the
mixed weights implicitly parameterized. A binary indica-
tor q = [q1, q2] was introduced additionally, where q1 = 1
(q2 = 1) represents that the positive (negative) RBM is acti-
vated. Let v ∈ R

d be a vector of visible (observed) variables
and h be a vector of hidden variables. The energy function
of IRBM is

E(v, h, q) =

1

2

∑
i

(vi − ci)
2 −

∑
j

hjdj −
∑
k

qk
∑
i,j

Wijkvihj ,
(2)

where the Gaussian-binary RBM is adopted; ci =∑
k qkCik, dj =

∑
k qkDjk; Wijk,Cik and Djk are model

parameters needed to be trained. The joint distribution de-
fined by the mixture model is

p(v, h, q) = exp (−E(v, h, q)) /Z, (3)

where Z = Σv, h,qexp (−E(v, h, q)) is the partition func-
tion. Let qk = 1(k = 1, 2); by Eq. (3), the PDF defined by
the kth component can also be obtained.

Let θ be the collection of model parameters needed to be
trained. Similar to the RBM, training the IRBM is essentially
minimizing the Kullback–Leibler divergence (KL) between
the empirical data distribution p

data
(v) and the model distri-

bution p(v; θ), which can be fulfilled by the contrastive di-
vergence algorithm (CD): 1) sampling latent variables from
p(h, q|v) and 2) reconstructing data from p(v|h, q). The re-
constructing process can be simply performed on the RBM
appointed by q. The sampling process includes two steps
and is slightly different from that of RBMs. The first step
is to sample q from p(q|v). The second step is to sample
h from the conditional distribution p(h|v) on the selected
RBM determined by q. p(q|v) is given by

p (qk = 1|v) = exp (−F (v, qk = 1))∑
m exp (−F (v, qm = 1))

, (4)

where

F (v, qk = 1) =

1

2

∑
i

(vi − ci)
2 −

∑
j

log

(
1 + exp

(∑
i

Wijkvi

))
.

(5)
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The Proposed Strategy

Theoretical Motivation

Let Y = {+1,−1} be the set of possible labels. With-
out loss of generality, we suppose only the first l cases in{

v1, ..., vN
}

are labeled with the positive label +1 and the
rest are unlabeled. Let P =

{
v1, ..., vl

}
be the set of la-

beled positive samples, and U =
{

vl+1, ..., vN
}

be the set
of unlabeled samples. The goal of our approach is to learn a
function that is equal to p(q1 = 1|v) as closely as possible.
From the Bayesian rule, we have

p(q1 = 1|v) = p(v|q1 = 1)p(q1 = 1)

p(v)
. (6)

Suppose p(v), p(v|q1 = 1) can be learned from the P set
and the U set; then, given the fact that p(v) = p(v|q1 =
1)p(q1 = 1) + p(v|q2 = 1) (1− p(q1 = 1)), all that is
left is to estimate p(v|q2 = 1) or equivalently to estimate
p(q1 = 1). However, because of the lack of negative sam-
ples, their estimation is not straightforward and easy. In this
paper, we follow the intuitive idea that the negative samples
should not appear in the places where the positive samples
often appear; i.e., p(v|q2 = 1) should be located as far away
from p(v|q1 = 1) as possible, which leads to the following
theorem. This theorem, which shows how to obtain an ad-
equate estimation of p(q1 = 1), in the absence of negative
traning samples, is our central result.

Theorem 1. Given p(v) and p(v|q1 = 1) with p(v|q2 = 1)
and p(q1 = 1) unknown, a positive-biased estimator of the
class prior p(q1 = 1), denoted by α̂, can be achieved at the
minimum point by minimizing the Bhattacharyya coefficient
between p(v|q1 = 1) and p(v|q2 = 1) with respect to the
unknown class prior p(q1 = 1). This estimator has a upper
bound, i.e.,

α̂ ≤
(∫

Rd

p2(v|q1 = 1)

p(v)
dv

)−1

. (7)

Furthermore, α̂ equals p(q1 = 1) if the intersection of
Supp {p(v|q2 = 1)} and (Supp {p(v|q1 = 1)})c is not a
null set, where Supp {·} is the support set of a PDF and
(A)

c is the complement of set A.

The proof is given at the end of the paper .
It is worth noting that the upper bound of α̂ is precisely

the positive biased estimator of the class prior proposed in
(du Plessis and Sugiyama 2014), which has been proved to
be unbiased when the class conditional PDFs are completely
nonoverlapping.

A possible approach using the theorem for LPU is to first
estimate p(v) and p(v|q1 = 1) to obtain the class prior α̂.
This, however, does not work well since the theorem re-
quires an accurate estimation of p(v) and p(v|q1 = 1) at
all possible points; the division by p(v|q1 = 1) in the esti-
mation formula of α̂ may exacerbate the estimation error.

Instead of estimating the class prior, we consider us-
ing the theorem to develop a new strategy for LPU prob-
lems to obtain the negative class conditional PDF directly.
Let p(v|q1 = 1; θ1) and p(v|q2 = 1; θ2) be the model

positive and negative PDF respectively, where θ1 and θ2
are model parameters. By setting the minimization of the
Bhattacharyya coefficient between the positive and negative
PDFs as the learning goal and requiring the model mixture
PDF p(v; θ1, θ2) and the positive class PDF p(v|q1 = 1; θ1)
fit the samples over the U set and the samples over the P set,
respectively, this strategy can be formalized as

min
θ

{
B (θ) =

∫
Rd

√
p(v|q1 = 1; θ1)p(v|q2 = 1; θ2)dv

}
s.t. D (p

data
(v|q1 = 1), p(v|q1 = 1; θ1)) = 0

D (p
data

(v), p(v; θ1, θ2)) = 0, (8)

where θ = {θ1, θ2}, D is a divergence measure between dis-
tributions with a zero value when the input distributions are
identical, and p

data
represents the corresponding empirical

data PDF. According to Theorem 1, when the constrained
optimization reaches a minimum, an adequate estimation of
the negative as well as the positive class conditional PDF
associated with α̂ can be obtained.

A Practical Approach

We then aim to use the proposed strategy to create a practical
approach. There are two obstacles to this approach. First, to
formalize the constrained optimization problem (8), a data
descriptor is needed to describe the multi-PDFs; second, the
optimization problem (8) with the constraints imposed on
PDFs is not a standard optimization problem. For the first
issue, IRBM is used as the data descriptor since IRBM cap-
tures the empirical data PDF without the class prior explic-
itly parameterized. The data descriptor can also be any other
model that is a realization of multi-statistical hypothesis,
such as generative neural networks, probabilistic graphical
models and so on. However, additional manipulations are
needed on the class prior if it is explicitly parameterized. For
the second issue, we solve it by introducing the Heaviside
function H(z) and one-dimensional Dirac measure δ0(z),
thereby transforming the constrained optimization into an
unconstrained optimization problem, which is

min
θ

{B(θ) +H (K (p
data

(v), p(v; θ)))

+H (K (p
data

(v|q1 = 1), p(v|q1 = 1; θ1)))} ,
(9)

where θ = {θ1, θ2} is the set of parameters of the IRBM,
respectively; K(·) is the KL divergence, and

H(z) =

{
1, if z > 0
0, if z ≤ 0,

δ0(z) =
d

dz
H(z). (10)

where z ∈ R. As 0 ≤ B(θ) ≤ 1, except that D is external-
ized as KL divergence, the above optimization is equivalent
to the initial problem (8) if the KL divergence between the
empirical data distributions and the corresponding estimated
distributions can be 0. However, due to the limited presen-
tation capacity of two-layer RBMs, the KL divergence in
most cases is usually not exactly equal to 0, which would
make the values of the two H terms always equal to 1. In
addition, the nondifferentiability of functions H(z) and δ0
at the point 0 also introduces difficulties in solving the op-
timization. For these two reasons, we consider replacing the

6764



hard H and δ0 with soft Hε and δε to obtain an soft version
of the optimization problem. Then we obtain

min
θ

{B(θ) +Hε (K (p
data

(v), p(v; θ)))

+Hε (K (p
data

(v|q1 = 1), p(v|q1 = 1; θ1)))} ,
(11)

where we follow the work of (Chan and Vese 2001) and de-
fine

Hε(z) =
1

2

(
1 +

2

π
arctan

(z
ε

))
, δε =

dHε(z)

dz
, (12)

and ε is a small positive real number.
Similar to the training process of IRBM, the gradient de-

scent method is employed to address the above optimiza-
tion problem. For the sake of brevity, the three terms of Eq.
(11) are denoted by B(θ), H1(θ), and H2(θ1); the KL di-
vergences in H1(θ) and H2(θ1) are denoted by K1(θ) and
K2(θ1), respectively. Given the samples vs ∈ U , the estima-
tion value of B(θ) is

B(θ) =
∑

vs

√
p(vs|q1 = 1; θ1)p(vs|q2 = 1; θ2). (13)

The derivative of B(θ) with respect to θk is

∂B

∂θk
=

[∑
vs

p(vs)
√
p(q1 = 1|vs)p(q2 = 1|vs)

∂Fk(v
s)

∂θk

−
(∑

vs p(v
s)
√
p(q1 = 1|vs)p(q2 = 1|vs)∑

v p(v)p(qk = 1|v)

)
(∑

v

p(v)p(qk = 1|v)∂Fk(v)

∂θk

)]
−1

2
√
p(q1 = 1)p(q2 = 1)

,

(14)

where Fk(v
s) = Fk(v

s, qk = 1) (see Eq.(5) and see (Taylor
et al. 2010)) for the details of the derivative computation of
Fk with respect to the model parameters). Obviously, com-
puting the terms associated with the variable v in Eq. (14)
exactly requires summing over the joint space of all possi-
ble visible variables, which is intractable actually. Here, we
circumvent this problem by using the CD learning algorithm
(Hinton 2002). Specially, we sample v from the mixture PDF
to obtain the value of the corresponding expectation terms,
then to obtain the estimated value of the derivative of B(θ).

The derivative of H1(θ) with respect to θ is

∂H1

∂θ
= δε (K1 (θ))

∂K1 (θ)

∂θ
. (15)

The second derivative term on the right side of the equa-
tion, given vs ∈ U , can be computed by the CD algorithm
as presented in the preliminaries. However, the calculation
of the first term is not ready-made due to the time and dif-
ficulty of estimating K1 (θ). An alternative way is replac-
ing the KL divergence by the reconstruction error, which
is based on the following considerations. Note the δε term
serves as a guide in Eq. (15), e.g., it would be bigger if the
current model PDFs fit the data PDFs better. Since the KL
divergence and the reconstruction error have some degree of

consistence, i.e., a smaller KL divergence usually leads to a
smaller reconstruction error, this replacing preserves the ef-
fect of the the δε term and simplifies the calculation process.
Indeed, as we are interested in the minimizing of the opti-
mization problem and not concerned with its precise value,
the reconstruction error may offer favorable trade-offs. Spe-
cially, we use the average reconstruction error (formalized
as the L2 norm) over the unlabeled set U as a substitution of
the divergence K1 (θ), which is defined as

R1(θ) =
1

|U |
∑

vs∈U

‖vs − vr‖ (16)

where |U | is the size of U , and vr is the reconstructed sample
of vs by IRBM.

Similarly, we have the derivative of H2(θ1) with respect
to θ1 is

∂H2

∂θ1
= δε (K2 (θ1))

∂K2 (θ1)

∂θ1
, (17)

where the derivative term can be computed by the CD algo-
rithm over the labeled set P since the derivative is actually
only related to the positive RBM. The δε term is substituted
by δε(R2(θ1)), where

R2(θ1) =
1

|P |
∑

vs∈P

‖vs − vr‖ , (18)

where vs ∈ P and vr is the reconstructed sample of vs by
the positive RBM.

After the computation of the derivative, the parameters of
our model are iteratively updated as shown below:

θnew = θold − ηΔθ, (19)

where η is the learning rate and

Δθ =
∂(B +H1 +H2)

∂θ
(20)

Finally, for any given sample v, following Bayes decision
theory, if p (q1 = 1|v) > p (q2 = 1|v), its label is posi-
tive. Otherwise, its label is negative. The p (q1 = 1|v) can
be computed by Eq. (4). Notice that the computation of Eq.
(20) is just applying the CD algorithm on the P set and on
the U set respectively, so the asymptotic time complexity of
the proposed method is the same as IRBM.

Experiments

In this section, we experimentally evaluate the perfor-
mance of the proposed method on both the real benchmark
datasets and the artificial datasets by comparing it with the
cost-sensitive LPU method (CSLPU) (du Plessis, Niu, and
Sugiyama 2014), the decision tree based class prior esti-
mation method (TIcE) (Bekker and Jesse 2018), the LPU
method with non-negative risk estimator (nnPU) (Kiryo et
al. 2017) and the commonly used one-class method, namely
the Gaussian domain descriptor (GDD) (David 2001), where
we tune the hyparameters of GDD by assuming that the la-
bels of negative samples are known.
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Figure 2: An example of the synthetic dataset with the posi-
tive class prior of 0.3 and μ = 1.

Dataset Description

Synthetic Datasets. The synthetic datasets also used in
(du Plessis and Sugiyama 2014; du Plessis, Niu, and
Sugiyama 2014) were created by sampling from predefined
class-conditional 2D normal distributions, which are

p(v|q1 = 1) = N (μ,Σ0);

p(v|q2 = 1) = N (μ0,Σ0). (21)

where μ0 = [−1,−1], μ = [μ, μ] and Σ0 is a diagonal ma-
trix with the vector [1, 1] on the main diagonal. The value of
μ controls the overlap between the class conditional PDFs,
where a small μ implies a high overlap, while a large μ
means a low overlap. By varying the value of the class prior
and the value of μ, we obtain some datasets with different
class priors and different overlaps (see Fig. 2).

Real Datasets. The MNIST dataset (LeCun et al. 1998)
and the scene dataset (Boutell et al. 2004) are used. MNIST
is a handwritten digit dataset that includes ten classes of 0-
9 and contains 60,000 training images and 10,000 test im-
ages. Additionally, the scene dataset is an image dataset
with 2407 samples in 6 classes. To make them appropri-
ate for LPU problems, we extracted the samples from dif-
ferent class pairs to form new datasets. Specifically, for the
MNIST dataset, in every experiment, six new datasets were
obtained by extracting the samples from the class pairs, in-
cluding 7vs1, 6vs9, 0vs6, 1vs5, 3vs5 and 5vs8. Every dataset
contains the P set, the U set and the T set. The P set con-
sists of 1% of the samples selected randomly from the first
digit of one pair in the training set. The U set consists of
another randomly selected 10% of the samples of the pair
in the training set. The T set contains all the samples of this
pair in the testing set. For the scene dataset, in every experi-
ment, six new datasets were obtained by considering one in
the six classes as the positive class. For the positive class,
25% of the samples were randomly selected to comprise the
P set. The rest of the samples comprise the U set as well as
the T set.

Model Development

The Proposed Method (called LPUb below). The value of
the hyperparameter ε in (12) was fixed at a small value of

0.1 to guarantee that the soft version of Hε and δε is close
enough to their hard version. We used the models with 200
latent variables; the learning rate in (19) was set to 1e-3;
and the momentum was set to 0.5 in the first 5 cycles and
increased to 0.9 after that. The models were trained using
CD-1 until the number of iterations reached 4000. The tem-
perature parameter introduced to scale free energies as in
(Nair and Hinton 2009) was set to 100.
CSLPU. It was implemented by du Plessis, Niu, and
Sugiyama (2014). We used a Gaussian RBF kernel and
followed the empirical approach in (du Plessis, Niu, and
Sugiyama 2014) to tune the hyperparameters. Moreover,
CSLPU needs the class prior to be known first. We used the
method in (du Plessis and Sugiyama 2014) to estimate the
class prior, with the parameters tuned under the same setting
as CSLPU.
TIcE. TIcE is actually a class prior estimation method im-
plemented by Bekker and Jesse (2018). We combined it with
CSLPU to obtain a LPU classifier, which is still called TIcE
here to emphasize its class prior estimation method. The hy-
perparamters of TIcE were set to be the same as in the paper
(Bekker and Jesse 2018).
GDD. It was implemented with the data description toolbox
(dd tools) (Tax 2005), where we used the simple Gaussian
target distribution and tuned two hyperparameters by grid
searching: the error on the target class in the range [0.1, 1]
with a step of 0.1 and the regularization parameter in the
range [0.1, 1] with a step of 0.1. GDD did not need the la-
beled negative data for training. However, to investigate its
best achievable performance, we tuned the hyperparameters
using both the P set and the T set with labels.
nnPU. It was implemented by Kiryo et al. (2017), where
a 6-layer network structure with ReLU (more specifically,
a structure of d-300-300-300-300-1 with d being the num-
ber of input dimensions) was adopted by the model; the
hyperparamters β and γ were set to 0 and 1 respectively.
Also, nnPU needs knowing the class prior beforehand,
which would be estimated by the method in (du Plessis and
Sugiyama 2014) as in the above implementation of CSLPU.
The number of iterations was set to its default number 100
for the real datasets and 1000 for the synthetic datasets to
promise a better performance.

Evaluation Metrics

The empirical error rate w.r.t. the true positive class prior
π is defined as πFP + (1 − π)FN , where FP is the false
positive rate and FN is the false negative rate. We used it as
one of the evaluations as it can reflect how much the classi-
fier model fits the data appropriately. Additionally, for LPU
problems, without the aid of the labeled negative data, the
classifier easily obtains a small precision or a small sensitiv-
ity. Therefore, we also report the F-measure and the G-mean
results. The F-measure and G-mean will be large only when
both precision and sensitivity are large.

Experiments on Synthetic Datasets

Effect of Class Overlap. Every experiment was repeated
ten times. In every experiment, given the positive class prior
fixed at 0.1, varying μ in Eq. (21) from 0.5 to 3 with a step
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(a) Varying overlap (b) Varying class prior

Figure 3: Comparison of empirical error (the first row), F-
measure (the second row) and G-mean (the third row) ob-
tained by different methods on synthetic datasets with (a)
varying the overlap of two classes and (b) varying the posi-
tive class prior.

of 0.5 yielded six synthetic datasets with different overlaps.
Every dataset contains the P set, including 10 positive sam-
ples, and the U set (simultaneously seen as the T set), in-
cluding 800 unlabelled samples, where the positive samples
are sampled independently from the unlabelled samples. The
experimental results represented as the average values of
each indicator are recorded in Fig. 3(a). Fig. 3(a) shows
that with increasing μ, the classification results of all meth-
ods improve more or less because the class overlap of the
datasets decreases. Further, we can see that LPUb provides
a relatively better classification results. Particularly, when
μ = 0.5, 1, 1.5, 2, LPUb achieves an higher F-measure and
G-mean, and almost the minimal empirical error than that
of the other methods. This result indicates that the model
trained by LPUb can fit the data well, thereby implying an
appropriate estimation of the class prior may be obtained
implicitly by LPUb under the condition that only a small
set of labelled positive samples exists and there is a signif-
icant overlap between the two classes. CSLPU and nnPU
are inferior to LPUb at these μ values, which may be at-
tributed to the two-step strategies adopt by the class prior-
based methods. Too few positive samples with a high over-
lap between classes may lead to the estimation bias of the
class prior, thereby causing the performance decline. Addi-

tionally, TIcE is not compared here. TIcE tends to give a
very small class prior estimation in these experiments, due to
the violation of the selected-completely-at-random assump-
tion on the synthetic datasets. The selected-completely-at-
random assumption is the basic assumption of many class
prior estimation methods such as (Bekker and Jesse 2018;
Elkan and Noto 2008). We will compare TIcE with the other
methods on the real datasets.

Effect of Class Prior. Given μ = 1, we sampled from the
mixture PDF samples by varying the positive class prior π
from 0.1 to 0.5 with a step of 0.1 to acquire five datasets in
every experiment. Every dataset has 800 samples that com-
prise the U set (also seen as the T set), and an extra 30 inde-
pendently sampled positive samples to comprise the P set.
Every experiment was performed ten times. The results are
recorded as the average values of the indicators and shown
in Fig. 3(b). As seen from Fig. 3(b), LPUb outperforms the
other three methods with the F-measure, G-mean and em-
pirical error except that at π = 0.1, CSLPU is better in the
empirical error; and nnPU is better in the F-measure. This
observation testifies that LPUb can perform very well with
different class prior, even when the datasets are highly im-
balanced. CSLPU is the suboptimal method. It outperforms
GDD and nnPU with empirical error and F-measure at al-
most all values of π. However, we still observe a high vari-
ation of the performance of CSLPU when the positive class
prior is relatively small. One reason for this phenomenon
is the inaccurate estimation of class prior. Especially, when
π = 0.1, the number of labelled positive samples may be
too sufficient to get a small positive class prior. Nonethe-
less, such problems are not severe for LPUb because LPUb
requires that the model PDF meets the mixture PDF of un-
labelled samples, which makes LPUb explore the data man-
ifold and rectify the current class prior implicitly.

Experiments on Real Datasets

Experiments were performed on the MNIST and scene
datasets. Every experiment was repeated five times. The av-
erage performance results of the newly created datasets are
reported in Fig. 4(a) and Fig. 4(b) seperately according to
the data sources. From both (a) and (b) of Fig. 4, we can
see LPUb provides the best performance regarding the F-
measure, G-mean and empirical error rate on almost each
of the new 12 datasets, except that on a few datasets, the
other methods are slightly better than LPUb in some indica-
tors. This shows that LPUb is an effective practical method.
CSLPU as well as TIcE on the MNIST datasets and nnPU
on the scene datasets are the suboptimal methods. The abil-
ity to learn using unlabeled data makes them generally per-
form much better than the one-class method, namely GDD,
although GDD tuned the hyperparameters in both the P set
and the T set with labels. Notably, Kiryo et al. (2017) has
shown that nnPU is expected to get a better performance
than other LPU methods, e.g. CSLPU., as it solved the over-
fitting problem caused by the negative loss functions. How-
ever, we found that the performance of nnPU on some re-
constructed MNIST datasets is not good and varies largely.
This may be due to the distorted estimation of class prior ob-
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(a) MNIST

(b) scene

Figure 4: Comparison of empirical error (the first column), F-measure (the second column) and G-mean (the third column)
obtained by different methods on the new datasets from (a) MNIST and (b) scene. The methods, in turn, in every group are
LPUb, CSLPU, GDD, nnPU and TIcE

tained under the current experiment settings, which severely
influences the consequent training process of nnPU.

Conclusion

In this paper, we addressed the problem of learning from
positive and unlabeled data and presented a new learning
strategy. In theory, we proved that this strategy can lead to
a good estimation of the negative class conditional density
for the class prior and proposed an implicit RBM model-
based LPU method. A series of experiments verified the su-
periority of the new method. In future work, we will con-
sider applying the kernel trick (Kondor and Jebara 2003;
Jebara and Kondor 2003) or the deep learning architecture
to further improve the performance of LPU methods (Chia-
roni et al. 2018).
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Proof of Theorem 1

Proof. Let α be p(q1 = 1). The Bhattacharyya coefficient,
viewed as a function of α, is expressed as

B(α) =

∫
Rd

√
p(v|q1 = 1) (p(v)− αp(v|q1 = 1))

1− α
dv,

(22)
where 0 ≤ α ≤ α̂ < 1 and

α̂ = inf
p(v|q1=1) �=0

{
p(v)

p(v|q1 = 1)

}
. (23)

We first prove α̂ is the minimum point of B(α). The deriva-
tive of B(α) with respect to α is proportional to

(1− α)
− 3

2

∫
Rd

√
p(v|q1 = 1)

p(v)− p(v|q1 = 1)√
p(v)− αp(v|q1 = 1)

dv.

(24)
Since α < 1 and∫

Rd

√
p(v|q1 = 1)

p(v)− p(v|q1 = 1)√
p(v)− αp(v|q1 = 1)

dv

=

∫
A

p(v)− p(v|q1 = 1)√
p(v)

p(v|q1=1) − α
dv −

∫
A′

p(v|q1 = 1)− p(v)√
p(v)

p(v|q1=1) − α
dv

<

∫
A

p(v)− p(v|q1 = 1)√
1− α

dv −
∫
A′

p(v|q1 = 1)− p(v)√
1− α

dv

= 0, (25)
then B′(α) < 0 and B(α) is a monotonically decreasing
function, where A = {v|p(v) ≥ p(v|q1 = 1)} and A′ =
{v|p(v) < p(v|q1 = 1)}. Recall that α ≤ α̂, then B(α) has
the mimimum value at the point α̂. Next, we prove

α̂ ∈
[
p(q1 = 1),

(∫
Rd

p2(v|q1 = 1)

p(v)
dv

)−1
]
. (26)

Note that p(q1 = 1) is within the feasible region of α, so we
have p(q1 = 1) ≤ α̂ directly. On the other hand, following
α̂ ≤ p(v)

p(v|q1=1) (∀v), we obtain∫
Rd

α̂
p(v|q1 = 1)

p(v)
p(v|q1 = 1)dv ≤

∫
Rd

p(v|q1 = 1) dv.

(27)
Since ∫

Rd

p(v|q1 = 1)dv = 1. (28)
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Then,by Eq. (27), we obtain

α̂ ≤
(∫

Rd

p2(v|q1 = 1)

p(v)
dv

)−1

. (29)

Finally, we will prove α̂ is equal to p(q1 = 1) when the inter-
section of Supp {p(v|q2 = 1)} and (Supp {p(v|q1 = 1)})c
is not a null set. Following from the law of total probability,
we have

p(v) = p(q1 = 1)p(v|q1 = 1)

+ (1− p(q1 = 1)) p(v|q2 = 1).
(30)

Then

inf
p(v|q1=1) �=0

{
p(v)

p(v|q1 = 1)

}
= p(q1 = 1)

+ (1− p(q1 = 1)) inf
p(v|q1=1) �=0

{
p(v|q2 = 1)

p(v|q1 = 1)

}
.

(31)

Apply the restrictions on the supports of densities, we see

inf
p(v|q1=1) �=0

{
p(v|q2 = 1)

p(v|q1 = 1)

}
= 0. (32)

So we have α̂ = p(q1 = 1).

References
Bekker, J., and Jesse, D. 2018. Estimating the class prior in positive
and unlabeled data through decision tree induction. In Proceed-
ings of the 30th AAAI Conference on Artificial Intelligence (AAAI),
2712–2719. AAAI Press.
Boutell, M. R.; Luo, J.; Shen, X.; and Brown, C. M. 2004. Learning
multi-label scene classification. Pattern recognition 37(9):1757–
1771.
Chan, T. F., and Vese, L. A. 2001. Active contours without edges.
IEEE Transactions on image processing 10(2):266–277.
Chiaroni, F.; Rahal, M.-C.; Hueber, N.; and Dufaux, F. 2018.
Learning with a generative adversarial network from a positive un-
labeled dataset for image classification. In Proceedings of the 25th
IEEE International Conference on Image Processing (ICIP), 1368–
1372. IEEE.
Comaniciu, D.; Ramesh, V.; and Meer, P. 2003. Kernel-based ob-
ject tracking. IEEE Transactions on pattern analysis and machine
intelligence 25(5):564–577.
David, MJ, T. 2001. One-class classification, Concept-learning in
the absence of counter-examples. Thesis, Delft Univ.Technol.
Denis, F. 1998. PAC learning from positive statistical queries.
Algorithmic Learning Theory. Berlin: Springer berlin heidelberg.
du Plessis, M. C., and Sugiyama, M. 2014. Class prior estimation
from positive and unlabeled data. IEICE Transactions on Informa-
tion and Systems 97(5):1358–1362.
du Plessis, M. C.; Niu, G.; and Sugiyama, M. 2014. Analysis of
learning from positive and unlabeled data. In Advances in Neural
Information Processing Systems 27 (NIPS), 703–711. MIT Press.
du Plessis, M. C.; Niu, G.; and Sugiyama, M. 2015. Convex formu-
lation for learning from positive and unlabeled data. In Proceed-
ings of the 32th International Conference on Machine Learning
(ICML), 1386–1394. JMLR.org.
du Plessis, M. C.; Niu, G.; and Sugiyama, M. 2017. Class-prior
estimation for learning from positive and unlabeled data. Machine
Learning 106(4):463–492.

Elkan, C., and Noto, K. 2008. Learning classifiers from only
positive and unlabeled data. In Proceedings of the 14th ACM in-
ternational conference on Knowledge discovery and data mining
(SIGKDD), 213–220. ACM.
Fukunaga, K. 2013. Introduction to statistical pattern recognition.
Academic Press.
Hinton, G. E. 2002. Training products of experts by minimizing
contrastive divergence. Neural computation 14(8):1771–1800.
Jain, S.; White, M.; and Radivojac, P. 2016. Estimating the class
prior and posterior from noisy positives and unlabeled data. In
Advances in Neural Information Processing Systems 29 (NIPS),
2685–2693. MIT Press.
Jebara, T., and Kondor, R. 2003. Bhattacharyya and expected like-
lihood kernels. In Learning theory and kernel machines. Springer.
57–71.
Kiryo, R.; Niu, G.; du Plessis, M. C.; and Sugiyama, M. 2017.
Positive-unlabeled learning with non-negative risk estimator. In
Advances in Neural Information Processing Systems 30 (NIPS),
1675–1685. MIT Press.
Kondor, R., and Jebara, T. 2003. A kernel between sets of vectors.
In Proceedings of the 20th International Conference on Machine
Learning (AAAI), 361–368. AAAI Press.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-
based learning applied to document recognition. Proceedings of
the IEEE 86(11):2278–2324.
Li, X., and Liu, B. 2003. Learning to classify texts using positive
and unlabeled data. In Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI), volume 3, 587–592.
Morgan Kaufmann.
Liu, B.; Lee, W. S.; Yu, P. S.; and Li, X. 2002. Partially super-
vised classification of text documents. In Proceedings of the 19th
International Conference on Machine Learning (ICML), 387–394.
Morgan Kaufmann.
Liu, B.; Dai, Y.; Li, X.; Lee, W. S.; and Yu, P. S. 2003. Building text
classifiers using positive and unlabeled examples. In Proceedings
of the 3th IEEE International Conference on Data Mining (ICDM),
179–186. IEEE.
Nair, V., and Hinton, G. E. 2009. Implicit mixtures of restricted
boltzmann machines. In Advances in Neural Information Process-
ing Systems 22 (NIPS), 1145–1152. MIT Press.
Ray, S. 1989. On a theoretical property of the bhattacharyya coef-
ficient as a feature evaluation criterion. Pattern Recognition Letters
9(5):315–319.
Tax, D. 2005. Ddtools, the data description toolbox for matlab.
Delft University of Technology ed.
Taylor, G. W.; Sigal, L.; Fleet, D. J.; and Hinton, G. E. 2010. Dy-
namical binary latent variable models for 3d human pose tracking.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 631–638. IEEE.
Wang, C.; Ding, C.; Meraz, R. F.; and Holbrook, S. R. 2006. Psol:
a positive sample only learning algorithm for finding non-coding
rna genes. Bioinformatics 22(21):2590–2596.
Yu, H.; Han, J.; and Chang, K.-C. 2004. Pebl: Web page classifica-
tion without negative examples. IEEE Transactions on Knowledge
and Data Engineering 16(1):70–81.
Yu, H. 2005. Single-class classification with mapping convergence.
Machine Learning 61(1-3):49–69.

6769


