The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

CD-UAP: Class Discriminative Universal Adversarial Perturbation

Chaoning Zhang,” Philipp Benz,” Tooba Imtiaz, In-So Kweon
Korea Advanced Institute of Science and Technology (KAIST), South Korea
“Equal contribution
chaoningzhang1990 @ gmail.com, {pbenz, timtiaz, iskweon } @kaist.ac.kr

Abstract

A single universal adversarial perturbation (UAP) can be
added to all natural images to change most of their predicted
class labels. It is of high practical relevance for an attacker to
have flexible control over the targeted classes to be attacked,
however, the existing UAP method attacks samples from all
classes. In this work, we propose a new universal attack
method to generate a single perturbation that fools a target
network to misclassify only a chosen group of classes, while
having limited influence on the remaining classes. Since the
proposed attack generates a universal adversarial perturbation
that is discriminative to targeted and non-targeted classes, we
term it class discriminative universal adversarial perturbation
(CD-UAP). We propose one simple yet effective algorithm
framework, under which we design and compare various loss
function configurations tailored for the class discriminative
universal attack. The proposed approach has been evaluated
with extensive experiments on various benchmark datasets.
Additionally, our proposed approach achieves state-of-the-art
performance for the original task of UAP attacking all classes,
which demonstrates the effectiveness of our approach.

Introduction

Deep neural networks (DNNs) are known to be vulnerable
to malicious attacks of visually inconspicuous adversarial
examples (Szegedy et al. 2013; Qiu et al. 2019). The rea-
son behind this intriguing DNN property is not fully under-
stood (Goodfellow, Shlens, and Szegedy 2014; Tanay and
Griffin 2016), however, researchers have exploited this phe-
nomenon to come up with various attack methods (Akhtar
and Mian 2018).

The existing adversarial attack methods can be catego-
rized into image-dependent attacks and image-agnostic at-
tacks (Akhtar and Mian 2018). Image-dependent attacks
craft perturbations that can fool the network for one spe-
cific input image. Due to the image-dependent nature, the
perturbations have to be crafted individually for each tar-
get image (Szegedy et al. 2013). On the other hand, image-
agnostic attacks, also called universal attacks, craft one sin-
gle perturbation for converting every image from a data dis-
tribution into an adversarial example (Moosavi-Dezfooli et

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

6754

100

Images from
00

non-targeted classes targeted classes
>

80
60
40
20

00123456789

Images from

Target Network Class-wise accuracies

(fixed)

Perturbation

Figure 1: Class Discriminative Universal Adversarial Pertur-
bation (CD-UAP). After adding the perturbation, the model
performance on a subset of classes (targeted classes) is sig-
nificantly reduced, while the influence on the non-targeted
classes is limited. We demonstrate this with the results
achieved on CIFAR10 dataset.

al. 2017). The universal nature has the practical benefit that
the perturbations can be crafted in advance, which makes
them more convenient to use for an attacker. However, the
existing universal attacks (Moosavi-Dezfooli et al. 2017;
Neekhara et al. 2019) fool the network for samples from ev-
ery class, which can lead to obvious network misbehavior
and raise suspicion. Consequently, it can be of practical rel-
evance for an attacker to have control over the classes to at-
tack. A natural question arises whether it is possible to craft
a universal perturbation that fools the network only for cer-
tain classes while having minimal influence on other classes.

In this work, we propose the task of class discriminative
UAP (CD-UAP) as shown in Figure 1. To distinguish our
approach from the original UAP by Moosavi-Dezfooli et al.
we term their task of a UAP attacking all classes All-Classes
UAP (AC-UAP). AC-UAP can be seen as a special case of
CD-UAP when all classes are targeted. Nonetheless, in this
work by default, CD-UAP does not attack all classes. Ide-
ally, the proposed CD-UAP negatively affects only the tar-
geted classes. We argue that this property makes the CD-
UAP more covert than the AC-UAP. Strictly speaking, the
proposed attack falls no longer under the category of uni-
versal attacks, since it does not fool a network for samples
from every class. We still term it universal attack, since the
perturbation is still applied to all image samples (Moosavi-

Dezfooli et al. 2017), while aiming to misclassify only the
targeted classes.

The overall objective of the proposed CD-UAP can be
decomposed into two parts: maximizing the attack success
rate for the targeted classes, while minimizing the influ-
ence of the perturbation on the non-targeted classes. In prac-
tice, these two goals contradict each other, and an inevitable
trade-off emerges, therefore, it is a non-trivial task to craft
CD-UAPs. A naive approach is to apply the existing UAP
methods to only the targeted classes. However, perturbations
crafted only on the targeted classes also successfully fool the
network for samples from the non-targeted classes, implying
that naively targeting a subset of classes by UAP (Moosavi-
Dezfooli et al. 2017) cannot achieve the desired attack be-
havior. Moreover, since the perturbations are noise by na-
ture, it is theoretically impossible for them to have no influ-
ence on images of the non-targeted classes. Nonetheless, it
is possible to limit such influence. Recognizing the trade-off
between the two contradicting goals, we propose a simple
yet effective algorithm framework that explicitly addresses
the targeted and non-targeted classes with separated loss
functions. Under this framework, we design and compare
various loss function variants to explore the optimal combi-
nation for this task. The proposed approach has been evalu-
ated on various benchmark datasets for different DNNs. To
sum up, our contributions are as follows:

e We first show the existence of a class-discriminative uni-
versal adversarial perturbation (CD-UAP), that allows
flexible control over the targeted classes to attack, on sev-
eral benchmark datasets: CIFAR10, CIFAR100 and Ima-
geNet.

o Identifying the limitations of the standard UAP attack
method, we propose an efficient algorithm framework, ex-
plicitly handling images from targeted classes and non-
targeted classes with separate loss functions for promot-
ing class discrimination.

e Under the proposed framework, we carefully design
and compare various loss function configurations while
specifically taking into account the balance between the
two contradicting goals.

e Our approach achieves state-of-the-art performance for
the task of AC-UAP, which demonstrates the effectiveness
of our approach.

Related Work

Szegedy et al. first reported the intriguing property of
DNN vulnerability to maliciously crafted small perturba-
tions (Szegedy et al. 2013). Since then, adversarial attacks
and defenses have become an active research field. The read-
ers can refer to (Qiu et al. 2019; Yuan et al. 2019) for a com-
prehensive review and we summarize only the works related
to adversarial attacks (Akhtar and Mian 2018) in this sec-
tion. There are different ways to categorize attacks, such as
targeted and non-targeted attacks, or white-box and black-
box attacks. Here we categorize them into image-dependent
attacks and image-agnostic attacks.

6755

Image-Dependent Adversarial Perturbations

Szegedy et al. proposed to use box-constrained L-BFGS to
generate perturbations that can fool a network (Szegedy et
al. 2013). The Fast Gradient Sign Method (FGSM) (Good-
fellow, Shlens, and Szegedy 2014), which is a one-step at-
tack, was then proposed to update the perturbations via the
direction of the gradients. Iterative FGSM (I-FGSM) (Ku-
rakin, Goodfellow, and Bengio 2016), iteratively performs
the FGSM attack. In each iteration, only a fraction of
the allowed noise limit is added, which contributes to its
higher attack effect compared to FGSM. A momentum term,
which was previously used to train DNNs, is introduced
in Momentum [-FGSM to obtain smoother gradient up-
date directions (Dong et al. 2018). To improve transfer-
ability, Variance-Reduced I-FGSM (Wu et al. 2018) uti-
lizes the averaged gradient of images with Gaussian noise
which replaces the gradient of the original image. Deep-
Fool (Moosavi-Dezfooli, Fawzi, and Frossard 2016) crafts
perturbations iteratively by updating the gradient with re-
spect to the model’s decision boundaries. Other widely used
powerful attacks include the Carlini and Wagner (C&W) at-
tack (Carlini and Wagner 2017), and projected gradient de-
scent (PGD) (Madry et al. 2017), which have been empir-
ically shown to be strong attacks. Image-dependent attacks
target a single image and their main limitation therefore is
that they cannot be computed in advance, but instead have
to be computed on the spot.

Image-Agnostic Adversarial Perturbations

Image-agnostic adversarial perturbations, also widely
known as universal adversarial perturbations (UAP), were
first proposed to construct one single perturbation which
is able to attack most images from a certain data distri-
bution (Moosavi-Dezfooli et al. 2017). Khrulkov and Os-
eledets proposed to craft a UAP based on the Jacobian ma-
trices of the networks hidden layers, resulting in interest-
ing visual patterns (Khrulkov and Oseledets 2018). A data-
free UAP was proposed to maximize the feature change
caused by the perturbation (Mopuri, Garg, and Babu 2017;
Mopuri, Ganeshan, and Radhakrishnan 2018). UAPs were
also extended beyond classification to the field of seman-
tic segmentation (Metzen et al. 2017). In addition, there
have also been attempts to craft UAPs using generative
models (Poursaeed et al. 2018), as well as in in real-
world scenarios (Brown et al. 2017; Athalye et al. 2017;
Sharif et al. 2017). UAPs have the advantage that they can
be computed in advance, which can be more practical for a
potential attacker. However, existing universal attacks can-
not give an attacker the freedom of control over the targeted
classes. In this work, we identify this limitation and propose
class discriminative universal adversarial perturbations (CD-
UAP).

Class Discriminative Universal Attack
Problem Formulation

Conceptually, we aim to craft a single perturbation which
only attacks samples from a group of targeted classes,
while limiting the perturbation influence on samples from

the other classes. This objective involves two contradicting
goals: maximizing the attack rate on samples from the tar-
geted classes and minimizing the accuracy drop for the non-
targeted classes. In this section, we first restate the formula-
tion of AC-UAP and derive a formulation for the proposed
CD-UAP. .

Let X € RY be a data distribution and F' be a classifier,
which maps input images x ~ X to an estimated label F'(x).
Universal perturbations seek a perturbation vector § € R?
that fools the classifier F' on most data points (Moosavi-
Dezfooli et al. 2017), which can be illustrated as

F(x+ 68) # F(x) for most & ~ X.

The perturbations are constrained to be smaller than a certain
magnitude €
6]l <€

to be visually imperceptible to humans. The existing AC-
UAP technique ideally aims to fool the model for all image
samples. We argue that the behavior of a network under such
an attack is suspicious and can easily catch attention of a
user. In order to design a more stealthy attack, we propose
the class discriminative universal attack, through which an
attacker can choose a set of targeted classes S. The algo-
rithm then searches for a perturbation vector 4 which fools
images belonging to S (x; ~ X;), while limiting its influ-
ence on the images belonging to the non-targeted classes
(xne ~ Xp). Therefore, the formulation of AC-UAP can be
extended to fit the objective of CD-UAP as follows:

F(x, + 6) # F(x) for most x, ~ X,
F(xm +9) = F(xm) for most xp ~ Xo,
while keeping the perturbation magnitude limited to a cer-
tain threshold ¢, i.e. ||d]], <.
As a reference value, we report the initial classification
accuracies for the targeted classes Acc, and that for the non-
targeted classes Accy.

Ace, = Ace(F(x),y) for z ~ X,
Accy = Acc(F(mnt), y) for xp ~ Xy,
where y indicates the ground truth label. Furthermore, in our
experiments we use the absolute accuracy drop (AAD) as an
evaluation metric, which is defined for the targeted classes
and the non-targeted classes as:

AAD, = Ace,(F(xy),y) — Ace(F(z+6),y)

AADy = Acen(F (), y) — Acen(F (20 + 0),y),
where, according to the defined objective, higher AAD, and
lower AAD,, are desired. The two metrics can be combined
into one overall metric, i.e., the absolute accuracy drop gap

AAAD as:
AAAD - AADt - AADnt.

Algorithm Framework

Our goal is to design an algorithm achieving efficient gen-
eration of a class discriminative universal perturbation. Re-
ferring to the algorithm to generate universal adversarial per-
turbations introduced in (Moosavi-Dezfooli et al. 2017), two

6756

Algorithm 1: Class Discriminative Universal Perturba-
tion Generation

Input: Data distribution X, Classifier ﬁ', Loss function
L and L, Batch size b, Number of iterations
N, hyper-parameters « and 3

Output: Class discriminative universal perturbation

vector &
Xl7 Xnt g X
6+ 0
for iteration =1,..., N do

By~ X, By ~ Xy |Bt| = |Bnt| = %
,Cw = OC»C[+ ﬁ['nt

gs < VsLy, > Calculate gradient
0 < ADAM (gs) > Update perturbation
. > Project to [, ball
[1o11p
end

Table 1: Experiments on CIFAR100 for the ablation study
of the proposed algorithm framework. Targeted classes are
from 0 to 4. (Acc, = 65.20; Acey = 70.43).

X a [AAD. AAD,
with half-half 1 1 4880 17.31
without half-half 1 1 8.00 1.79
without half-half 19 1 4820 1943
without half-half 1 {5 4700 19.57
only targeted classes 1 0 63.20 53.67

limitations can be identified with regard to our specific prob-
lem: (1) the algorithm speed and (2) its non-discriminative
nature. The algorithm seeks the perturbation ¢, with the min-
imal norm that allows to fool the network for a single data
point x. This process is repeated over the training dataset un-
til a certain fooling ratio is achieved while the perturbations
are accumulated. However, despite its effectiveness, this ap-
proach does not leverage the power of parallel computing
devices, such as GPUs, since in every iteration only a single
image is processed. In our case, we speed up the perturba-
tion crafting process with mini-batch training (Goodfellow,
Bengio, and Courville 2016).

To ensure that the generated universal perturbation is
class-discriminative, a straightforward solution is to include
only the samples belonging to the targeted class in the train-
ing process. One might expect the generated perturbation to
fool the classifier only for samples from the targeted classes.
However, a perturbation crafted only on the targeted classes
deteriorates classification accuracy significantly for the non-
targeted classes as well. The theoretical reason behind this
observation is beyond the scope of this work, however, one
clear take-away is that we need to exploit images from both
targeted classes and non-targeted classes to achieve the de-
sired goal of class discrimination.

Our algorithm framework, explicitly assigning sepa-
rate loss functions to the targeted and the non-targeted
classes, is shown in Algorithm 1. As in most existing at-

Table 2: Experiments on CIFAR10 and CIFAR100 for vari-
ous choices of loss functions. The two accuracies in each en-
try show the AAD, and AAD,,. The initial performances for
CIFARI10 on ResNet20 are Ace, = 90.86, Accy = 92.44;
and for CIFAR100 on ResNet56 are Acc; = 65.20; Accy =
70.43, for targeted classes 0 to 4

ﬁnt

CIFAR| L;

£L‘, ,CB£
84.68 52.52
81.04 25.08

64.66 7.92

1.60 1.15
62.40 46.02
23.40 7.16

_ L:CE

87.04 69.40|84.36 48.48
84.64 54.04(85.74 24.14
88.58 61.54(81.86 10.18

61.20 60.23]60.40 50.50
63.80 55.00(63.40 47.12
63.20 53.67(48.80 17.31

£CE
LL
EBE

EC’E

££
,CBC

83.86 45.06
84.94 23.78
81.52 11.60

62.40 46.35
62.80 47.97
48.00 17.79

10

100

tack methods, gradients for perturbation updates are calcu-
lated with the standard backward propagation process us-
ing an optimizer. We empirically found that the widely used
ADAM (Kingma and Ba 2014; Reddy Mopuri, Krishna Up-
pala, and Venkatesh Babu 2018) optimizer converges faster
than standard SGD.

One main characteristic of Algorithm 1 is the “half-half’
batch data distribution strategy: half of the batch samples are
randomly chosen from the targeted classes, while the other
half is sampled from the non-targeted classes. This strategy
is adopted to avoid imbalance in the batch data distribution.
To illustrate this, we perform different experiments with and
without the half-half’ batch sampling strategy and differ-
ent loss weighting parameters a and 5 to compensate for
data imbalance. The results are reported in Table 1, with the
best loss function configuration found, as discussed in the
next subsection. One naive batch sampling approach could
be randomly selecting the samples from all classes with-
out distinguishing targeted classes and non-targeted classes.
Since the ratio of the targeted classes to non-targeted classes
in the training dataset is 5/95 (i.e. 1/19), much more sam-
ples would be chosen from the non-targeted classes, thereby
dominating the targeted classes. In this case, we observe that
both AAD, and AAD,, are very small. Note that changing
« or (3 proportional to the data ratio of targeted and non-
targeted samples can mitigate this dominance of the non-
targeted classes, however, the performance is still slightly
worse than our proposed “half-half” strategy. Another merit
of the “half-half” strategy is to facilitate the choice of weight
parameters in Eq. 2. Moreover, using only the samples of tar-
geted classes for training also significantly deteriorates the
model performance on the non-targeted classes.

Another core part of the algorithm design is the explo-
ration of different loss function configurations.

Loss Function Design

The loss function design is guided by the following intuitive
principles. (1) For samples from the targeted classes, the loss
function should guide the perturbation to fool the network.
This can be realized through decreasing the logit value for
the corresponding predicted class and optionally increasing

6757

Table 3: Experiments on CIFAR10 with different groups of
targeted classes using VGG16 and ResNet20

F S Ace, AAD, Accyy AADy Aaap
1:5:2] 90.57 78.63 9423 14.74 63.89
o [2:6:2] 9287 6887 9324 21.79 47.08
S [0:4:1] 9240 7500 9386 7.36 67.64
O [5:9:1] 93.86 75.00 92.40 17.56 57.44
Z 0:6:1] 9210 69.24 9553 3.13 66.11
3:9:1] 92.80 78.60 93.90 870 69.90
1:5:2] 88.80 8227 9287 1593 66.34
S [2:6:2] 9230 7933 91.37 2140 57.93
5 [0:4:1] 90.86 81.46 9244 1024 7122
% 5:9:1] 92.44 80.16 90.86 17.36 62.80
& [0:6:1] 90.81 81.33 93.60 4.67 76.66
3:9:1] 91.21 80.99 9267 7.90 73.09

the logit values of the remaining classes. (2) For samples
from the non-targeted classes, the loss function should guide
the perturbation such that the logit of the predicted class re-
mains the highest logit. (3) The objectives of (1) and (2) stay
in conflict with each other, therefore, the loss functions for
both parts need to be designed to have moderate influence on
the gradient update, to avoid dominance of one part over the
other. Taking objectives (1) and (2) into account, we deem it
appropriate to separate the loss function into two parts for
the samples from the targeted classes and those from the
non-targeted classes, shown as

Et(fljt) for T ~ X[
L= 1
{Ent(xnt) for Tt ™~ Ant. ()
Thus, the weighted loss L,, can be expressed as
Ew = a[:t + Bﬁnt- (2)

As discussed in Table 1, using the ’half-half’-strategy and
setting o and [to 1 are appropriate design choices. In prac-
tice, the attack hyper-parameters can be tailored to specific
needs. For example, an attacker can increase the parameter (3
to get a more stealthy attack, consequently the attack success
rate for the targeted classes will decrease. In the following
section, we elaborate different variants of the loss functions
for L; and L. For simplicity, we only indicate the loss part
for L, since in the most naive form, £, can be achieved
through a simple sign change £, = —L,. However, we em-
pirically found that this does not always provide the optimal
solution, compared to the combination of different loss vari-
ants for £ and L.

The cross-entropy loss, here indicated as H(-), is a widely
used loss function for training neural networks, and can be
adapted for training a CD-UAP as follows:

LEF = —H(F(x +6), F(z)). 3)
However, this formulation is prone to suffer from the prop-
erty of the cross-entropy function, which takes logits of all
classes into account. Reflecting on principle (3), we propose

another loss function that directly operates on the logit val-
ues of the corresponding class in a more explicit way:

LF = Le(z+9), €y

Table 4: Experiments on CIFAR100 with different groups of
targeted classes using VGG19 and ResNet56

F S Ace, AAD, Accy AADy Aaap
[0:4:1] 68.00 54.50 70.35 17.04 37.46
o [10:50:10] 63.00 44.00 70.61 17.45 26.55
o [0:9:1) " 7370 4270 69.84 2257 20.13
O [0:90:10] 69.10 43.70 70.36 21.63 22.07
> [0:20:1] 70.60 36.70 70.14 23.27 13.43
[0:95:5] 6820 38.65 70.34 2330 15.35
[0:4:1] 6520 49.00 70.43 16.54 32.46
2 [10:50:10] 61.80 41.80 70.61 16.54 25.26
5 [0:9:1 7130 39.70 70.04 21.96 17.74
Z [0:90:10] 68.10 41.10 70.40 19.95 21.15
2 [0:20:1] 6885 3490 70.50 22.36 12.54
[0:95:5] 6820 3525 70.66 22.05 13.20

where ic(-) indicates the logit value of the predicted class
¢ = argmax F'(z).

Eq. 4 has the drawback that optimization for the corre-
sponding logits is unbounded. For a well trained network,
we speculate that decreasing the logit of the corresponding
class through a perturbation should be easier than increasing
it. Thus, L; is expected to dominate over L, which is sup-
ported by our experimental results (see Table 2). This prob-
lem can be mitigated by modifying the above loss function
through a bounded logit expression:

LY = (Lo(x +) fmjxf/i(er(;))Jr,)
where (s)T = max(s,0).

We explore the effect of different loss functions on CI-
FAR100 and report the results in Table 2. Three major obser-
vations can be made from the results in Table 2. First, when
the loss function is applied only for the targeted classes,
the crafted perturbation deteriorates network performance
on both the targeted and non-targeted classes. More specif-
ically, the AAD, is only slightly lower than AAD,, which
shows that naively crafting the perturbation on images of
the targeted classes cannot generate a class-discriminative
UAP. Second, for the targeted classes, the effect of both LC€
and ££ is relatively dominant, and thus detrimental to model
performance for samples of non-targeted classes. Third, the
effect of £5% is more moderate than £ for both samples
from targeted classes and non-targeted classes, which makes
LB£ a more appropriate loss function, especially for the tar-
geted classes.

Based on the above observations, we choose as the
loss function £,. For samples from the non-targeted classes,
we observe that £°¢ outperforms £5% with a small mar-
gin (i.e. yields a slightly higher AAD, and lower AAD,,).
The same phenomena can be observed for experiments of
CIFAR10. Thus, we choose £¢¢ as the loss function £,;.

To sum up, we first give a definition of the task of CD-
UAP and propose an algorithm framework catering for the
practical needs of high efficiency and class-discrimination.
We then design and compare different loss function config-
urations.

CBL

6758

-e- AAD
60 d t
3 e —i— AAD
e Y °
Qtl Ot —e——e— o o—o—o¢°
<
20 ack——A—A——A————k —
0
0 20 40 60 80 100

Number of Targeted Classes

Figure 2: AAD, and AAD, over the number of targeted
classes on CIFAR100

Experimental Results and Analysis

Before presenting the results of our experiments, we briefly
discuss our experimental setup. The CD-UAP generated by
the best-performing loss configuration found above is then
extensively evaluated on three datasets for various network
architectures.

Implementation Details

For CIFAR and ImageNet datasets, we deploy the [,,-norm
on § with € = 10 and € = 15, respectively, for natural im-
ages in the range of [0, 255]. As discussed earlier, we use
the ADAM optimizer for all experiments, setting the batch
size to 128 for CIFAR10 and CIFAR100 (Krizhevsky, Hin-
ton, and others 2009) experiments, and 32 for experiments
on ImageNet (Deng et al. 2009). In all our experiments,
we train the CD-UAP on the training dataset. Specifically,
we only use the initially correctly classified samples in the
training dataset. The generated CD-UAP is evaluated on the
test dataset. All experiments are conducted with the PyTorch
framework.

Experimental Results

CIFAR10 The results for CD-UAPs on CIFAR10 with
VGG16 (Simonyan and Zisserman 2014) and ResNet20 (He
et al. 2016) are available in Table 3. The targeted classes are
listed under .S in the second column, in the format [first class
index : last class index : step size]. For example, [1 : 5 : 2]
indicates that classes 1, 3 and 5 are selected as the targeted
classes. We observe that for the same trained model, there is
a visible variation when different groups of classes are cho-
sen. Nonetheless, for both VGG16 and ResNet20, the sig-
nificant gap A g4 p between AAD; and AAD,,; shows the
effectiveness of the proposed approach.

CIFAR100 Furthermore, we evaluate CD-UAP on CI-
FAR100 and report the results in Table 4. We observe similar
trends on CIFAR100 as for CIFAR10. The overall perfor-
mance is relatively lower than that for CIFAR10 due to the
increasing complexity of the task. Specifically, we observe
that the performance decreases with the increase of the num-
ber of targeted classes. In Figure 2 we further investigate the
influence of the number of targeted classes on the CD-UAP
performance. The results show that CD-UAP performs best
with either a low (up to 10) or a high (above 90) number of
targeted classes with a relatively lower performance in be-
tween.

Table 5: Experiments on CIFAR100 targeting superclasses using VGG19 and ResNet56

Super Class VGGI19 ResNet56

Aceq AAD, Accy AAD, Apxap ‘ Ace, AAD, Accy AAD, Apap
aquatic mammals 56.20 44.20 70.97 14.05 30.15 | 58.20 43.60 70.80 14.87 28.73
fish 67.00 45.60 70.40 18.25 2735 | 67.80 49.00 70.30 18.45 30.55
flowers 76.40 33.80 69.91 20.57 13.23 | 75.40 30.80 69.90 24.18 6.62
food containers 69.60 5240 70.26 16.28 36.12 | 71.40 54.40 70.11 1644 37.96
fruit and vegetables 79.40 55.60 69.75 18.04 37.56 | 76.60 52.00 69.83 17.65 = 34.35
household electrical devices 70.00 49.20 70.24 1595 33.25 | 75.00 55.60 69.92 16.52 39.08
household furniture 77.40 63.80 69.85 15.76 48.04 | 76.00 60.00 69.86 14.90 45.10
insects 70.20 38.60 70.23 16.99 21.61 | 71.60 45.20 70.09 21.24 23.96
large carnivores 70.20 53.60 70.23 1550 38.10 | 70.40 60.20 70.16 1544 44.76
large man-made outdoor objects | 82.60 66.60 69.58 15.56 51.04 | 81.20 66.20 69.59 1549 50.71
large natural outdoor scenes 79.00 70.80 69.77 13.12 57.68 | 78.40 67.60 69.74 12.13 55.47
large omnivores and herbivores | 69.80 51.60 70.25 18.33 33.27 | 71.40 56.00 70.10 17.15 38.85
medium-sized mammals 72.80 49.40 70.09 1727 3213 | 71.80 54.20 70.08 18.83 35.37
non-insect invertebrates 66.40 40.60 70.43 18.09 22.51 | 66.00 44.60 70.39 18.38 = 26.22
people 52.20 31.60 71.18 14.67 16.93 | 48.40 32.60 71.32 14.85 17.75
reptiles 59.20 43.80 70.81 16.05 27.76 | 59.20 42.80 70.74 17.24 25.56
small mammals 56.00 47.60 70.98 15.14 3246 | 56.40 47.20 70.90 13.34 33.86
trees 66.80 49.60 70.41 15.58 34.02 | 66.60 54.00 70.36 17.05 36.95
vehicles 1 82.20 44.00 69.60 17.99 26.01 | 80.60 51.60 69.62 20.44 31.16
vehicles 2 81.20 5340 69.65 21.33 32.07 | 81.00 62.20 69.60 21.92 40.28

Table 6: Experiments on CIFAR100 targeting 2 super classes simultaneously using VGG19 and ResNet56

Super Class VGGI19 ResNet56

Ace, AAD, Accy AAD. Aaap ‘ Ace, AAD, Accy AAD. Aaap
aquatic mammals + fish 61.60 37.60 71.19 16.86 20.74 |63.00 39.40 70.97 18.26 21.14
flowers + food containers 73.00 29.70 69.92 16.77 1293 | 73.40 32.90 69.81 21.12 11.78
fruit/vegetables + electronics 74.70 43.80 69.73 17.69 26.11 |75.80 46.50 69.54 18.78 27.72
household furniture + insects 73.80 41.30 69.83 17.33 23.97 | 73.80 46.60 69.77 18.38 28.22
large carnivores + outdoors objects 76.40 51.80 69.54 16.62 35.18 | 75.80 59.00 69.54 18.64 40.36
natural outdoors + omnivores/herbivores 74.40 53.80 69.77 17.23 36.57 | 74.90 56.30 69.64 17.02 39.28
medium-mammals + non-ins. invertebrates | 69.60 35.90 70.30 19.26 16.64 | 68.90 44.20 70.31 21.38 22.82
people + reptiles 55.70 30.40 71.84 16.79 13.61 |53.80 32.10 71.99 17.30 14.80
small mammals + trees 61.40 42.40 71.21 16.48 25.92 |61.50 42.70 71.13 17.78 24.92
vehicles 1 & 2 81.70 46.00 68.96 19.78 26.22 |80.80 54.70 68.99 21.43 33.27

CIFAR100 has semantically similar classes which can be
grouped into 20 super classes, each consisting of 5 sub-
classes. For example, the super class fish comprises of aquar-
ium fish, flatfish, ray, shark and trout. We argue that it is
practically meaningful to attack super classes as a group in-
stead of targeting random classes. The results for targeting
one super class on CIFAR100 are shown in Table 5. We ob-
serve a reasonably large gap Ay 4p for all super classes,
with visible variations for different super classes. Attacking
two super classes simultaneously is explored in Table 6. At-
tacking multiple super classes performs inferior to one super
class, indicating that it is harder to craft a CD-UAP with an
increasing variation among the targeted classes.

ImageNet The results for evaluating CD-UAP on Ima-
geNet are available in Table 7. For this experiment, we at-
tack four state-of-the-art networks for five different super
classes, each comprising of three sub-classes. All the results
consistently show a higher AAD,; than AAD,,, resulting in

6759

a non-trivial gap (A4 4p) between them.

Data availability can be a concern in practice. We fur-
ther explore the performance of CD-UAP under limited
data-availability, using 100 images per class in the training
dataset (less than 10% of the whole dataset). For the super-
class of Aircrafts on ResNet50, the CD-UAP can achieve an
absolute accuracy drop of 52.00% and 14.55% for AAD,
and AADy, respectively. Even though less than 10% of the
whole training dataset are used, the CD-UAP still achieves
reasonable performance.

Performance Comparison for AC-UAP AC-UAP attacks
all classes and can be seen as a special case of the pro-
posed CD-UAP when all classes are targeted. For this spe-
cial case, we compare our proposed approach with the exist-
ing UAP methods: UAP (Moosavi-Dezfooli et al. 2017) and
GAP (Poursaeed et al. 2018) in Table 8. We observe that our
proposed approach (with the same constraint ¢ = 10 as UAP
and GAP) outperforms the existing methods by a significant

Table 7: Experiments on ImageNet targeting 1 super class,
€=15.

Super Classes Acc, AAD, Acey AADy Aaap

Frogs 70.0 46.0 71.6 19.5 26.5

° Sharks 80.0 53.3 T71.6 16.8 36.5
8 Aircrafts 78.0 69.3 71.6 17.7 51.6
> Racket Radiator Radio 68.6 42.7 71.6 185 24.2
Space objects 56.7 20.0 71.6 185 1.5

Frogs 70.0 42.0 724 18.0 24.0

=) Sharks 81.3 55.3 723 16.1 39.2
8 Aircrafts 81.3 72.0 724 172 54.8
= Racket Radiator Radio 69.3 37.3 724 17.3 20.0
Space objects 59.3 26.6 724 200 6.6

- Frogs 75.3 520 76.1 185 335
" Sharks 83.3 66.7 76.1 16.1 50.6
z Aircrafts 84.0 65.3 76.1 16.8 48.5
&‘3 Racket Radiator Radio 75.3 46.7 76.1 17.1 29.6
Space objects 59.3 43.3 76.2 204 229

~ Frogs 74.0 48.0 783 17.2 308
i Sharks 80.0 61.3 783 129 484
2 Aircrafts 86.0 78.7 78.3 16.1 626
% Racket Radiator Radio 72.7 44.0 78.3 14.4 29.6
R~ Space objects 64.7 36.7 784 16.7 20.0

Table 8: AC-UAP task performance compared with
UAP (Moosavi-Dezfooli et al. 2017) and GAP (Poursaeed
et al. 2018).

VGG16 VGGI19 ResNet152 Inception-V3

UAP 783 77.8 84.0 —

GAP 83.7 80.1 - 82.7
CD-UAP (£°F) 93.1 93.5 86.8 83.1
CD-UAP (£BL) 937 942 90.2 85.9

margin, achieving state-of-the-art performance for the task
of AC-UAP. Note that our approach is much more efficient
than UAP since we do not deploy the cumbersome Deep-
Fool algorithm, and our approach does not require training
of another network as GAP.

Qualitative Results The generated CD-UAPs on Ima-
geNet are amplified and visualized in Figure 3. Since the
magnitude of the perturbation is relatively small, adding it
to the images will not produce changes perceptible to a hu-
man observer. Thus, we only report the perturbations them-
selves. The generated perturbation patterns are observed to
somehow link to the network type. For VGG networks (Si-
monyan and Zisserman 2014), the crafted perturbations look
like random noise, while those for ResNet tend to demon-
strate some pattern, which however is not interpretable by a
human observer.

CD-UAP Transferability We report the CD-UAP trans-
ferability between different networks in Table 9 from which
there are two major observations. First, for two networks
from the same network family, the CD-UAP tends to trans-

6760

Table 9: Transferability Experiments. * indicates the white-
box CD-UAP.

Es Ft

VGG16

Ace, AAD; Accy

78.00" 69.33* 71.57*
VGG19 78.00 40.00 71.57
ResNet50 78.00 2.00 71.57

ResNetl152 78.00 0.67 71.57

VGG16 81.33 47.33 72.35
VGG19 81.33" 72.00" 72.35*
ResNet50 81.33 7.33 72.35
ResNet152 81.33 5.33 72.35

VGG16 84.00 47.33 76.11
VGG19 84.00 40.67 76.11
ResNet50 84.00* 65.33" 76.11*
ResNet152 84.00 20.67 76.11

VGG16 86.00 54.67 78.29
VGG19 86.00 48.67 78.29
ResNet50 86.00 34.67 78.29
ResNet152 86.00% 78.67* 78.29*

AADy Asap

17.68* 51.65"
14.08 25.92
1.57 043
0.02 0.65

16.41 30.92
17.19* 54.81"
549 1.84
094 439

22.08 25.25
16.82 23.85
16.82* 48.51"
6.88 13.79

2541 29.26
23.86 24.81
15.18 19.49
16.08" 62.59"

VGGI16

VGG19

ResNet50

ResNet152

VGG-16

VGG-19 ResNet-50 ResNet-152

Figure 3: CD-UAP generated for different networks

fer well among them. For example, the CD-UAPs crafted
for VGG16 and VGG19 from the VGGNet-family transfer
well to each other. Second, for networks from different net-
work families, the transferability sometimes fails. For exam-
ple, ResNet can transfer well to VGGNet, but not vice versa.
The reason of this phenomenon is left for future work.

Conclusion

Identifying the limitation of the existing UAP methods, we
proposed class discriminative universal adversarial pertur-
bation (CD-UAP), that aims to attack only images of the
targeted classes, while having minimal influence on other
classes. To generate such perturbation, we proposed a simple
yet effective algorithm framework, which separately deals
with samples from targeted and non-targeted classes. Under
the proposed framework, we design and compare different
loss function configurations to search for the optimal com-
bination for targeted and non-targeted classes. The effective-
ness of our approach is demonstrated through extensive ex-
perimentation on the CIFAR10, CIFAR100 and ImageNet
datasets. Moreover, we found that in-general the task com-
plexity of CD-UAP increases with the number of targeted
classes. For the task of AC-UAP, our proposed approach
achieves state-of-the-art performance, outperforming the ex-
isting methods by a significant margin. We further provide
additional experiments demonstrating the transferability be-
tween different networks.

References

Akhtar, N., and Mian, A. 2018. Threat of adversarial attacks
on deep learning in computer vision: A survey. [EEE Access
6:14410-14430.

Athalye, A.; Engstrom, L.; Ilyas, A.; and Kwok, K. 2017.
Synthesizing robust adversarial examples. arXiv preprint
arXiv:1707.07397.

Brown, T. B.; Mané, D.; Roy, A.; Abadi, M.; and Gilmer, J.
2017. Adversarial patch. arXiv preprint arXiv:1712.09665.

Carlini, N., and Wagner, D. 2017. Towards evaluating the
robustness of neural networks. In 2017 IEEE Symposium on
Security and Privacy (SP), 39-57. 1EEE.

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 248-255. leee.

Dong, Y.; Liao, F.; Pang, T.; Su, H.; Zhu, J.; Hu, X.; and Li,
J. 2018. Boosting adversarial attacks with momentum. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 9185-9193.

Goodfellow, 1.; Bengio, Y.; and Courville, A. 2016. Deep
Learning. MIT Press. http://www.deeplearningbook.org.

Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770-778.

Khrulkov, V., and Oseledets, I. 2018. Art of singular vec-
tors and universal adversarial perturbations. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 8562-8570.

Kingma, D. P, and Ba, J. 2014. Adam: A method for
stochastic optimization.

Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer.

Kurakin, A.; Goodfellow, I.; and Bengio, S. 2016.
Adversarial machine learning at scale. arXiv preprint
arXiv:1611.01236.

Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2017. Towards deep learning models resistant
to adversarial attacks. arXiv preprint arXiv:1706.06083.

Metzen, J. H.; Kumar, M. C.; Brox, T.; and Fischer, V. 2017.
Universal adversarial perturbations against semantic image
segmentation. In 2017 IEEE International Conference on
Computer Vision (ICCV), 2774-2783. IEEE.

Moosavi-Dezfooli, S.-M.; Fawzi, A.; Fawzi, O.; and
Frossard, P. 2017. Universal adversarial perturbations. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 1765-1773.

Moosavi-Dezfooli, S.-M.; Fawzi, A.; and Frossard, P. 2016.
Deepfool: a simple and accurate method to fool deep neural

6761

networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2574-2582.

Mopuri, K. R.; Ganeshan, A.; and Radhakrishnan, V. B.
2018. Generalizable data-free objective for crafting univer-
sal adversarial perturbations. /EEE transactions on pattern
analysis and machine intelligence.

Mopuri, K. R.; Garg, U.; and Babu, R. V. 2017. Fast feature
fool: A data independent approach to universal adversarial
perturbations. In 2017 British Conference on Machine Vi-
sion (BMVC). 1IEEE.

Neekhara, P.; Hussain, S.; Pandey, P.; Dubnov, S.; McAuley,
J.; and Koushanfar, F. 2019. Universal adversarial per-
turbations for speech recognition systems. arXiv preprint
arXiv:1905.03828.

Poursaeed, O.; Katsman, I.; Gao, B.; and Belongie, S. 2018.
Generative adversarial perturbations. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-
tion, 4422-4431.

Qiu, S.; Liu, Q.; Zhou, S.; and Wu, C. 2019. Review of artifi-
cial intelligence adversarial attack and defense technologies.
Applied Sciences 9(5):909.

Reddy Mopuri, K.; Krishna Uppala, P.; and Venkatesh Babu,
R. 2018. Ask, acquire, and attack: Data-free uap generation
using class impressions. In Proceedings of the European
Conference on Computer Vision (ECCV), 19-34.

Sharif, M.; Bhagavatula, S.; Bauer, L.; and Reiter, M. K.
2017. Adversarial generative nets: Neural network at-
tacks on state-of-the-art face recognition. arXiv preprint
arXiv:1801.00349.

Simonyan, K., and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv: 1409.1556.

Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2013. Intriguing proper-
ties of neural networks. arXiv preprint arXiv:1312.6199.
Tanay, T., and Griffin, L. 2016. A boundary tilting persepec-
tive on the phenomenon of adversarial examples. arXiv
preprint arXiv:1608.07690.

Wu, L.; Zhu, Z.; Tai, C.; et al. 2018. Understanding and
enhancing the transferability of adversarial examples. arXiv
preprint arXiv:1802.09707.

Yuan, X.; He, P.; Zhu, Q.; and Li, X. 2019. Adversarial
examples: Attacks and defenses for deep learning. [EEE
transactions on neural networks and learning systems.

