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Abstract

Unsupervised domain adaptation facilitates the unlabeled tar-
get domain relying on well-established source domain infor-
mation. The conventional methods forcefully reducing the
domain discrepancy in the latent space will result in the de-
struction of intrinsic data structure. To balance the mitigation
of domain gap and the preservation of the inherent structure,
we propose a Bi-Directional Generation domain adaptation
model with consistent classifiers interpolating two intermedi-
ate domains to bridge source and target domains. Specifically,
two cross-domain generators are employed to synthesize one
domain conditioned on the other. The performance of our pro-
posed method can be further enhanced by the consistent clas-
sifiers and the cross-domain alignment constraints. We also
design two classifiers which are jointly optimized to maxi-
mize the consistency on target sample prediction. Extensive
experiments verify that our proposed model outperforms the
state-of-the-art on standard cross domain visual benchmarks.

Introduction

Deep learning gains huge success in diverse applications
across many fields, such as computer vision, data mining,
and natural language processing. In practical application, it
is usually easy to acquire abundant target data. However,
the insufficiency and absence of labels is still a challenge
(Ding, Shao, and Fu 2018; Saito et al. 2018) leading to
exceedingly time-consuming and expensive manual annota-
tion. To solve this problem, domain adaptation is introduced
and has shown excellent performance. It transfers knowl-
edge from external well-labeled source domain to the tar-
get domain (Wei, Ke, and Goh 2016; Ding and Fu 2016;
Yan et al. 2017). The theory of domain adaptation is to dis-
cover the common latent factors across the source and tar-
get domains, and thereby reducing domain mismatch across
domains. Different domain adaptation methods have been
developed, such as feature alignment and domain confusion
adaptation (Pan et al. 2019).

A common practice in domain adaption is to align fea-
ture distribution between source and target domains by min-

∗Corresponding author: Zhengming Ding (zd2@iu.edu). This
work is done under the supervision of Dr. Zhengming Ding.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

imizing domain shift through metrics such as correlation
distances (Yao et al. 2015; Sun, Feng, and Saenko 2016)
or maximum mean discrepancy (MMD) (Ding et al. 2018;
Ding and Fu 2018). Among the recent efforts on domain
adaption, several works (Pan et al. 2019; Pinheiro 2018;
Kang et al. 2019) aim to minimize the MMD-based dis-
tance of cross-domain in the deep neural network. For ex-
ample, (Pan et al. 2019) applies the pairwise reproducing
kernel Hilbert space (RKHS) between the prototypes of the
same class from different domains to reduce the discrep-
ancy of cross-domain. (Kang et al. 2019) divides the do-
main discrepancy into two kinds of class-aware domain dis-
crepancy. Another branch of domain adaptation is to ex-
ploit the domain adversarial training (Tzeng et al. 2017;
Zhang et al. 2018; Saito et al. 2018). For example, (Saito
et al. 2018) maximizes the discrepancy between two classi-
fiers’ outputs to determine target samples without the sup-
port of the source.

Despite the success of previous methods, they suffer from
following limitations. First of all, almost methods apply
a shared generator, which means their domain adaption is
monodirectional. For example, DAN (Long et al. 2015)
aligns source domain to target domain. The features of the
target domain are merely simulated instead of positively tak-
ing part in domain adaption. Therefore, such methods can-
not fully take advantage of the target data. Meanwhile, the
target data has many unknown factors because it may come
from complicated situations. The boundary among different
classes can be not clear, and thereby it hurts the knowledge
transfer. Secondly, most of the previous methods calculate
the domain discrepancy at the domain level, but they ne-
glect the class level where the samples come. Class-agnostic
adaptation aligning source and target data at the domain-
level is possible to cause sub-optimal solutions. These so-
lutions are likely to overfit in the source domain, causing
that performance in the target domain is not as expectancy.

To address these above issues, we propose a Bi-
Directional Generation (BDG) method for unsupervised do-
main adaptation with dual consistent classifiers. The dual
generators interpolate two intermediate domains and syn-
thesize more effective data so that there are more samples
to train the classifiers. Meanwhile, the target samples are
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labeled by the pre-trained network. Apart from minimizing
the adversarial loss on source branch, we employ domain
confusion loss in the target branch so that both domain in-
formation can be more sufficiently utilized. Moreover, we
exploit class-wise loss to preserve the class-level semantic
information when the generators synthesize two intermedi-
ate domains reducing domain discrepancy. Furthermore, the
consistent loss alternatively reduces the classifier discrep-
ancy by minimizing itself directly while the previous meth-
ods implement adversarial training in classifiers by discrep-
ancy loss. In conclusion, the contributions of our paper are
highlighted in three folds as follows:
• We propose a novel bi-directional cross-domain gener-

ation module, which aims to synthesize the intermedi-
ate domains conditioned on each domain. The augmented
samples play as a bridge to reduce the domain discrep-
ancy and preserve the class-level structure during domain
adaption process.

• We explore dual classifiers to enhance the bi-directional
cross-domain generation. Furthermore, a consistent loss
is developed to improve the prediction performance on
unlabeled target samples.

Related Works

In this section, we will briefly introduce two branches of do-
main adaptation, then highlight the difference of our model.

Deep Domain Adaptation

The aim of domain adaptation is to improve the target learn-
ing by using the labeled source knowledge, whose distribu-
tion is different from the target domain. Spurred by the re-
cent advances in computer vision using deep convolutional
neural networks (DCNNs), a number of methods based have
been proposed for unsupervised domain adaptation. In par-
ticular, one common solution is to guide DCNNs to learn
domain feature by minimizing the domain discrepancy with
Maximum Mean Discrepancy (MMD) in reproducing ker-
nel Hilbert space (RKHS) (Gretton et al. 2012). MMD is a
useful and popular non-parametric metric for the measure-
ment in domain discrepancy between source and target do-
mains. Long et al. learns more transferable features through
multi-kernel MMD loss (Long et al. 2015). Then, they fur-
ther extended this work by adding varieties of MMD loss.
For example, RTN (Long et al. 2016) improves DAN by
replacing the multi-kernel MMD loss in DAN with a sin-
gle tensor-based MMD loss and adds the residual module
to AlexNet; JAN (Long et al. 2017) exploits joint maximum
mean discrepancy criterion to the loss in order to learn a
transfer network. Ding et al. explore deep low-rank coding
to extract domain-invairant features by adding MMD as the
domain alignment loss (Ding and Fu 2018). However, these
methods only measuring the domain discrepancy neglect the
difference among classes. Domain adaptation without class
level domain discrepancy transfers source data to target do-
main leading to negative transfer. Most recently, SimeNet
(Pinheiro 2018) solves this problem by learning domain-
invariant features and the categorical prototype representa-
tions. In the same way, CAN (Kang et al. 2019) optimizes

the network by considering the discrepancy of intra-class
domain and the inter-class domain.

Generative Domain adaptation

Another branch of unsupervised domain adaptation in DC-
NNs attempts to exploit a domain discriminator to address
the domain confusion (Ganin et al. 2016; Tzeng et al. 2017;
Zhang et al. 2018). Adversarial adaptation methods mini-
mize the domain discrepancy with a domain discriminator.
Due to the adversarial loss in the objective function, more
transferable representations can be generated (Tzeng et al.
2017). By adversarial adaptation methods, in theory, gener-
ator produces outputs identically distributed as source do-
main. Meanwhile, with sufficient dataset, a GAN network
with encode-decode construction can transfer the same set of
samples in source domain to any random distribution of im-
ages in the target domain. Moreover, adversarial losses with
auxiliary loss can make sure that the learned function can
transfer an individual source sample to the desired domain
more effectively(Zhu et al. 2017). To further reduce domain
discrepancy, Zhu et al. introduces an identity loss to make
sure the transfer can preserve semantic feature between the
input and output. The traditional methods like cycle loss
and identity loss in cycleGAN are too restricted for domain
adaption. Meanwhile, the previous process in domain adap-
tion only focuses on the global transform. Although it can re-
duce the distribution difference as cross domain, it destroys
the class semantic feature in each sample. It leads to that the
classifier trained in this way cannot get the ideal result in the
target domain.

Recently, GTA (Sankaranarayanan et al. 2018) solves this
problem by modifying Auxiliary Classifier GAN(AC-GAN)
and merging the class label and real/fake label. In addition
to GTA, SymNets(Zhang et al. 2019) takes care of this prob-
lems by making the asymmetric design of source and target
task classifiers sharing with them its layer neurons. These
methods apply the MMD in a single branch GAN structure
and get an excellent result. However, in their result, we find
that when the number of samples in the source domain is
insufficient compared with the target domain, the class ac-
curacy can not get the best performance. At the same time,
another method to solve this problem employs the multi-
branch general structure (Wang et al. 2019). And CADA
(Kurmi, Kumar, and Namboodiri 2019) proposes to find
adaptable regions using some estimate of the discriminator.
It pays most attention to detect whether the part of the pic-
ture is transferable or not and does not take the class-level
semantic feature into count.

Differently, we propose a dual generative cross-domain
generation framework by interpolating two intermediate do-
mains to bridge the domain gap. Our proposed method lever-
ages bi-directional cross-domain generators to make two
intermediate domains and use additional target data with
pseudo labels for learning two task-specific classifiers. Our
work is on the exploitation of building bi-directional gener-
ation network with two classifiers, which has not been fully
explored in the literature.
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The Proposed Algorithm

Preliminary and Motivation

Given the unlabeled target domain Xt = {xt}Mj=1 and an
auxiliary source domain Xs = {xs}Ni=1 with correspond-
ing label ys, the target of unsupervised domain adaption is
to utilize the classifier trained in source domain to identify
sample from target domain. Without loss of generality, the
distribution of source data and target data are generally de-
noted as xs ∼ pdata(xs) and xt ∼ pdata(xt) respectively,
and pdata(xt) �= pdata(xs). In order to solve the discrep-
ancy of cross-domain, adversarial network based methods
(Tzeng et al. 2017; Bousmalis et al. 2017; Mancini et al.
2019) include two strategies: align two domains into a latent
domain-invariant space (Lee et al. 2019; Chen et al. 2019)
and reconstruct one domain in another domain space (Zhang
et al. 2019; Roy et al. 2019).

The second strategy transferring source domain into target
domain attempts to enable the distribution of source domain
to be similar with that of target domain (Long et al. 2015;
2017). Under this circumstance, the performance of the clas-
sifier trained in transferring source domain might be fur-
ther promoted in target domain. However, due to the fact
that samples from target domain have none label informa-
tion, the boundary of class in target domain will be overlap-
ping, which triggers overfitting and mismatching situation.
Meanwhile unbalanced domain size may cause insufficient
class-semantic feature when we make unsupervised domain
adaption. Furthermore, the domain classifiers might find
fewer counterparts to align due to cross-domain translations,
rotations, or other transformations. Bi-Directional genera-
tive domain adaptation model with dual adversarial classi-
fiers successfully remedy this weakness, enabling BDG to
achieve excellent results.

Another strategy aligning the features of two domains in
the same latent feature will suffer from the similar prob-
lems. They only employ a generator shared by the source do-
main and target domain (Long et al. 2015; Tsai et al. 2018).
However, the classifier is just trained by the part of latent
space belonging to the source domain. And the training pro-
cess neglects the application of target domain. Thus, when
the number of samples in the target domain is much more
than that in the source domain, the well-trained classifier
fails to have great performance in target domain. In order
to take full advantage of the information of target domain,
the bi-directional generation becomes a promising method.
In order to preserve semantic information in the picture, bi-
directional generation based methods (Huang et al. 2018)
employ the identity loss with L1 norm making a balance be-
tween generating samples and original samples. It can sig-
nificantly reduce distribution discrepancy. However, these
methods obviously lose the class-level semantic structure.
Thus, we propose the Bi-Directional Generation for cross-
domain learning with dual consistent classifiers to capture
class-level semantic information and overcome the problems
of overfitting and mismatching.

DMMD
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Figure 1: Overview of the proposed bi-directional genera-
tion network. It consists of two generators Gs and Gt, two
classifiers Cs and Ct. Cs is fed with Ft and Xt; Ct is fed
with Fs and Ft. M is used to calculate LMMD. D calcu-
lates discrepancy of the two prediction tensors to product
Lcon.

Bi-Directional Cross-Domain Generation

As illustrated in Figure 1, Xs, Xt are source and target
samples, respectively. We propose the cross-domain gener-
ators Gs, Gt to transfer one domain input to the other do-
main distribution. Specifically, two generators are defined
as Gs : Xs → Xt and Gt : Xt → Xs, respectively. Given
the source samples Xs, Gs tries to generate Ft that looks
similar to target samples Xt. Similarly, With Xt, Gt aims to
generate Fs which looks similar to Xs.

We define our bi-directional generation loss in source
branch using the following formulation:

Ls
GAN (Xs) = Ldiss + Lclss

Ldiss = E[logCs(Xs)] + E[log(1− Cs(Gs(Xs)))]

Lclss = E[logCs(Xs, Ys)] + E[logCs(Gs(Xs), Ys)],
(1)

where Ldiss is the discrimination loss and the Lclss repre-
sents the classification loss. Cs aims to classify the trans-
ferred samples Ft and the original samples Xs, which means
it can discriminate Xs as real samples and Ft as fake sam-
ples. Note that Ft as a newly-augmented intermediate do-
main across source and target mitigates the domain gap.
Meanwhile, Ft generated from Gs not only needs to be iden-
tified easily by Cs but also makes Cs have difficult in dis-
criminating which domains it comes from.

Inspired by domain confusion (Tsai et al. 2018), they for-
ward two domain data to a fully-convolutional discriminator
by using a cross-entropy loss for the two classes(i.e. source
and target). In the same way, Ct aims to classify Fs and Ft.
We define our bi-directional generation loss in target branch
using the following equation as:

Lt
GAN (Xs, Xt) = Ldist + Lclst

Ldist = E[logCt(Gs(Xs))] + E[log(1− Ct(Gt(Xt)))]

Lclst = E[logCt(Ft, Ys)] + E[logCt(Fs, Ŷt)],
(2)

In order to align the two domains Xt and Fs on the
target distributions, we employ a pre-trained classifier C0

which is trained on the source domain without any auxiliary
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method. It produces the pseudo label of the target domain,
Ŷt = C0(Xt). It is helpful to transfer data from target do-
main to source domain because C0 preserves the class-level
semantic information of source domain. The discrimination
part of Ct is different from the general idea discriminat-
ing the real or fake sample. It distinguishes which domain
the sample comes from. Specifically, it regards Ft as sam-
ples from source domain and Fs as samples belonging to
target domain. Meanwhile, Ft and Fs generated from Gs,
Gt respectively enable Ct to easily classify them and make
Ct have difficult in recognizing which domain they comes
from. Thus, the proposed method can utilize more informa-
tion from target domain.

Class-wise Cross-Domain Alignment

The Maximum Mean Discrepancy (MMD) (Gretton et al.
2012) is a useful and popular non-parametric metric for mea-
sure discrepancy between cross domains. The MMD loss is
regarded as the discrepancy measure to compare distinct dis-
tributions, which computes the domain discrepancy between
the sample means of the source and target data. Without this
loss, we experimentally find that the performance of the pro-
posed algorithm drops significantly. Inspired by (Wang et al.
2019; Kang et al. 2019), we apply the class-level MMD loss
as well. Our MMD loss includes two terms: global MMD re-
ducing the distance between two domains center point; and
class MMD reducing center point distance in each class be-
tween the source domain and target domain. We express the
objective of MMD constraint in source and target domains
as:

Ls/t
MMD = Ls/t

gMMD +
1

C
Ls/t
cMMD, (3)

where C is the class number. The global MMD in source
branch is defined as:

Ls
gMMD =

∥∥∥∥∥
1

ns

∑

xs∈Xs

Gs(xs)− 1

nt

∑

xt∈Xt

xt

∥∥∥∥∥
2

, (4)

where ns, nt are the number of the source domain and target
domain. It is easy to write similar equations for the target do-
main branch according to (4). And the class MMD in source
branch is computed as:

Ls
cMMD =

C∑

c

∥∥∥∥∥∥
1

nc
s

∑

xs∈Xc
s

Gs(xs)− 1

nc
t

∑

xt∈Xc
t

xt

∥∥∥∥∥∥
2

, (5)

where nc
s, nc

t denote the number of its domain in class c. t is
easy to write similar equations for the target domain branch
according to (5). The difference between our work and oth-
ers is that we calculate two MMD losses: the MMD loss
between Ft and Xt as well as the MMD loss between Fs

and Xs. With pseudo labels of Xt and Fs, we can easily
calculate their Lt

cMMD. This strategy aims to take full use
of target domain and reduce the domain gap with two direc-
tions.

Dual Consistent Classifiers

Dual consistent classifiers refer to that no matter where the
classifiers are trained, they should obtain very similar pre-

diction outputs given the target data. In our work, we em-
ploy two classifiers Ct and Cs, which are trained by samples
from different domains. However, in ideal situation, Ct and
Cs should have similar prediction ability on target samples.
So we introduce the Lcon to regular the two target prediction
outputs. The dual consistent classifiers loss is defined as:

Lcon = ‖Ct(Fs)− Cs(Fs)‖1 , (6)

where Lcon denotes the function measuring L1-norm be-
tween two probabilistic outputs computed from Ct and Cs.
This term indicates how the two classifiers agree on their
predictions. Our goal is to make the two classifiers’ predic-
tion consistent so that it can reduce the domain gap further.
Meanwhile, by utilizing this loss, the two classifiers can trig-
ger each other. It is helpful to make the whole framework
stable during whole training process.

Overall Objective and Optimization

To integrate cross-domain generation, discriminative class-
wise alignment and dual consistent classifiers into one uni-
fied framework, we have our overall objective function as
follows:

L = Ls
GAN +Lt

GAN +λ(Ls
MMD+Lt

MMD)+γLcon, (7)

where λ, γ control the relative importance of the two terms.
The Ls

GAN has been defined in equation (1) and the Lt
GAN

can be calculated by equation (2). The Ls/t
MMD has been de-

clared in equation (3).
To sum up the previous discussion, we need to train two

classifiers which take inputs from the generator and mini-
mize classifier loss, and the generators which try to mimic
the the all objective loss. We optimize this objective in three
steps.
Step A First, we train classifier C0 to classify the source
samples correctly and produce the pseudo label Ŷt of the tar-
get domain Xt and their alignment domain Fs. The pseudo
label Ŷt is utilized to calculate the Ls/t

cMMD and make a clear
boundary of class in target domain, which is helpful to take
full advantage of information from target domain. They are
also beneficial to keep the balance of two branches’ domain
adaption, because the pseudo labels still maintain abundant
domain-invariant representations to guide the Gt. This step
is crucial to implement next steps. We train the networks C0,
whose structure is the same as the classifiers trained by next
step, to minimize cross-entropy loss. The objective is as fol-
lows:

min
C0

L(C0, Xs) = E[logC0(Xs)]. (8)

Step B In this step, we train the classifiers (Cs, Ct) by fix-
ing generators (Gs, Gt). In order to take advantage of rich
domain-invariant representations, we utilize data and their
labels from both domains and train the final models for both
branches. The Cs is fed by Xs and Ft. Meanwhile Ct is
trained by Ft with ys, and Fs with ŷt. Under this circum-
stance, the discrepancy between source domain and target
domain will be reduced dramatically. In addition, the classi-
fiers is not only to minimize the GAN losses but also they
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can also keep coincident in predicting target domain sam-
ples. To realize the this goal, we add a consistent loss on the
loss of classifier. The objective is as follows:

min
Cs,Ct

Ls
GAN + Lt

GAN + γLcon, (9)

where these two classifiers can be optimized.
Step C We train the generators to minimize the full objec-
tive loss by using equation (7) for fixed classifiers. Unlike
the general adversarial process in generator training, which
minimizes the Ldist by regarding the fake samples as real
samples, our method switch the both domain label at the
same time. In detail, the Fs drawn from target domain is
regarded as source domain samples and the Ft is considered
as target domain samples.
Remarks: MCD (Saito et al. 2018) employs two classifiers
trained by source samples jointly with a feature generator.
However, through many experiments, we find that the total
loss becomes diverge with epoch prolonging. In our method,
we adapt the discrepancy loss without classifier adversarial
process. We train the two classifiers Cs processing Xs as
well as Ft and Ct with the input Ft and Fs.

Obviously, the Ct, Cs are different classifiers. Compared
with the (Saito et al. 2018) which shares generator between
both domain, we employ two independent generators Gt,
Gs to implement bi-direction domain adaption. We add the
MMD loss taking the class-level structure information into
count, into the total loss to to replace the discrepancy loss in
(Saito et al. 2018). Meanwhile we adapt discrepancy loss as
consistent loss, which is optimized by classifiers and gener-
ators. Thus, we do not maximize the discrepancy loss when
we train the classifiers. In other words, reducing MMD loss
aims to guide the generators on how to map the source do-
main to the target domain.

Experiments and Results

We evaluate BDG method by the standard benchmarks in-
cluding Office-31 and Office-Home, compared with state of
the art domain adaption methods.

Datasets and Experimental Setup

Office-31 (Saenko et al. 2010), a standard benchmark
for visual domain adaptation, contains 4,652 images and
31 categories from three distinct domains, i.e., images col-
lected from the 1) Amazon website (Amazon domain), 2)
web camera (Webcam domain), and 3) digital SLR camera
(DSLR domain) under different settings, respectively. The
dataset is imbalanced across domains, with 2,817 images in
Amazon domain, 795 images in Webcam domain, and 498
images in DSLR domain. We follow the standard evaluation
protocols for unsupervised domain adaptation (Ganin et al.
2016; Long et al. 2015).
Office-Home (Venkateswara et al. 2017) is a more chal-
lenging dataset for domain adaptation evaluation. It consists
of around 15,500 images in total from 65 categories of ev-
eryday objects in office and home scenes. There are four
significantly different domains: Artistic images (Ar), Clip
Art (Cl), Product images (Pr), and Real-World images (Rw).

The images of these domains have substantially different ap-
pearances and backgrounds. The the number of categories is
much larger than that of Office-31, making it more difficult
to transfer across domains. We evaluate all methods on all
12 adaptation tasks.

Implementation Details

The hyper-parameters λ,γ in the equation(7) are selected
as 1 throughout all experiments. We use ResNet-50(He et
al. 2016) models pre-trained on the ImageNet dataset (Rus-
sakovsky et al. 2015) as the backbone and we remove its
last FC layer. And We fine-tune all convolutional and pool-
ing layers and apply back-propagation to train the classifiers
and generators. There optimizer of the classifiers Cs, Ct is
mini-batch stochastic gradient descent (SGD) with the mo-
mentum of 0.9. At the same time, we use adaptive moment
estimation (Adam) to train the generators Gs, Gt, as in (Sal-
imans et al. 2016). And the learning rate is set to 5.0× 10−4

in all experiments. We report the accuracy result after 20,000
iterations.

To empirically verify the merit of our proposed model,
We compare with both conventional and the state of the
art transfer learning methods including: RTN (Long et al.
2016), ADDA (Tzeng et al. 2017), JAN (Long et al. 2017),
SimeNet (Pinheiro 2018), GTA (Sankaranarayanan et al.
2018), TADA (Wang et al. 2019), STA (Liu et al. 2019),
SymNets (Zhang et al. 2019), SAFN (Xu et al. 2019). All
of them have been introduced in related works section. we
also compare with other domain adaption methods: ResNet-
50 (He et al. 2016) directly exploits the classification model
trained on the source domain to classify target samples;
DANN (Ganin et al. 2016) designs a domain regularizer to
calculated the H-divergence; MADA (Pei et al. 2018) takes
multi-mode structures to get the suitable alignment of differ-
ent data distributions based on multiple domain discrimina-
tors; DSR (Cai et al. 2019) reconstructs the semantic latent
variables and domain latent variables by employing a varia-
tional auto-encoder.

Comparison Results

The classification accuracy on the Office-31 dataset for
unsupervised domain adaptation based on ResNet-50 are
shown in Table 1. For a fair comparison, the results of all
baselines are directly reported from their original papers
wherever available. To be honest, the results on D→A is lit-
tle lower than existing methods. However, we get reasonable
results in almost task, i.e. A→W and A→D. Moreover, the
performance in task W→D and D→W is over all methods.
Taking all into count, the BDG model outperforms all com-
pared methods on mean accuracy.

According to Table 2, the BDG approach overpasses the
compared methods on all transfer tasks on Office-Home.
Moreover, it improves their accuracy significantly in many
tasks, even though this dataset has abundant categories.
Compared with TADA(Wang et al. 2019), the BDG im-
proves more than 6 percents in some transfer learning tasks,
such as Cl→Ar, Pr→Ar. It illustrates that BDG yields larger
improvements on such difficult transfer learning tasks. And
it also suggests that BDG can maintain more class-semantic
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Table 1: Accuracy (%) on Office-31 for unsupervised domain adaption (ResNet)

Method ResNet-50 RTN DANN ADDA JAN MADA SAFN SimNet GTA SymNets TADA BDG

A→W 68.4±0.2 84.5±0.2 82.0±0.4 86.2±0.5 85.4±0.3 90.0±0.1 88.8±0.4 88.6±0.5 89.5±0.5 90.8±0.1 94.3±0.3 93.6±0.4

D→W 96.7±0.1 96.8±0.1 96.9±0.2 96.2±0.3 97.4±0.2 97.4±0.1 98.4±0.0 98.2±0.2 97.9±0.3 98.8±0.3 98.7±0.1 99.0±0.1

W→D 99.3±0.1 99.4±0.1 99.1±0.1 98.4±0.3 99.8±0.2 99.6±0.1 99.8±0.0 99.7±0.2 99.8±0.4 100.0±0.0 99.8±0.2 100±0.0

A→D 68.9±0.2 77.5±0.3 79.7±0.4 77.8±0.3 84.7±0.3 87.8±0.2 87.7±1.3 85.3±0.3 87.7±0.5 93.9±0.5 91.6±0.3 93.6±0.3

D→A 62.5±0.3 66.2±0.2 68.2±0.4 69.5±0.4 68.6±0.3 70.3±0.3 69.8±0.4 73.4±0.8 72.8±0.3 74.6±0.6 72.9±0.2 73.2±0.2

W→A 60.7±0.3 64.8±0.3 67.4±0.5 68.9±0.5 70.0±0.4 66.4±0.3 69.7±0.2 71.6±0.6 71.4±0.4 72.5±0.5 73.0±0.3 72.0±0.1

Avg 76.1 81.6 82.2 82.9 84.3 85.2 85.7 86.2 86.5 88.4 88.4 88.5

Table 2: Accuracy (%) on Office-Home for unsupervised domain adaption (ResNet)

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
DSR 53.4 71.6 77.4 57.1 66.8 69.3 56.7 49.2 75.7 68.0 54.0 79.5 64.9
SymNets 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
TADA 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
BDG 51.5 73.4 78.7 65.3 71.5 73.7 65.1 49.7 81.1 74.6 55.1 84.8 68.7

feature during effective domain adaptation. Moreover, in
the office-home dataset existing unbalanced samples number
problem, the classifier can implement sufficient adversarial
process, which makes the two classifiers be more consistent.
Meanwhile, the large dataset is helpful to calculate Ls/t

MMD,
especially Ls/t

cMMD, because mismatching problem can be
avoided,i.e., some class in Ft or Fs is blank.

Empirical Analysis

t-SNE visualization To further understand the alignment
of distribution, we visualize the features in 2D-space us-
ing the network activations of the FC layer from task
Amazon → webcam (31 classes) learned by ResNet, DAN,
RevGrad and BDG, respectively using t-SNE embeddings
(Donahue et al. 2014). The representations generated by
BDG (Figure 2) form exactly 31 clusters with clear bound-
aries. Compared to ResNet, DAN and RevGrad, as expected,
our t-SNE figure demonstrates the closer distance between
the same classes in different domain. This shows that our
BDG generate more discriminative features for both domain
and confirms our improvement in Tables 1 & 2.

Parameter analysis We conduct experiments to investi-
gate the sensitivity of our method to the balance param-
eters λ, γ. We use control variations method to test two
super-parameters, whose value are selected at the range of
[0.1, 0.2, 0.5, 1, 1.2, 1.5, 2]. For example, when we change
the value of λ, γ is fixed to 1. From Figure 3, as λ go up, the
average accuracy of office-31 dataset increases while accu-
racy of office-home decreases gradually. At the same time,
as γ increase, the average accuracy of every dataset raise and
then go down gradually. In conclusion, hyper-parameters is

quite effective, but the optimal value in each case is different.
We fix λ = 1 and γ = 1 in the other experiments because its
result is more stable than others.

Table 3: The effect of MMD loss and discrepancy loss. The
mean accuracy of Office-home and office-31 are reported.

dataset Variant1 Variant2 Variant3 Variant4 Variant5 BDG

Office-31 81.1 87.4 82.9 82.5 88.3 88.5

Office-Home 61.0 67.8 63.2 63.5 68.2 68.7

Ablation studies We compare our method(“BDG”) with
other variants, to verify the effect of Ls/t

MMD and Ls/t
con.

We adopt the single directional cross-domain generation
method translating target domain to the source domain with-
out Ls/t

MMD as variants 1. Compared to variant 1, we de-
sign another method named variant 2 which includes the
loss function of MMD. variant 3 is the bi-directional Cross-
Domain Generation method with dual classifiers. In addi-
tion, we also design the variant 4 consisting of Ls/t

GAN and
Lcon. Moreover, we also propose the variant 5 including
Ls/t
GAN and Ls/t

MMD to do comparison with other variants. It
can be seen that combining Ls/t

MMD and Lcon improves the
adaption performance. In detail, the mean accuracy of Vari-
ant 2(87.4% in the office-31 dataset) increase significantly,
compared with the result(81.1%) of variant 1. The main rea-
son is that the Ls/t

MMD reduces the domain discrepancy and
maintains the class-level information. The similar situation
also happens in the office-home dataset. When we compare
the variant 3,4,5 and BDG in Table 3, it can be seen that
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(a) ResNet (b) DAN (c) RevGrad (d) BDG

Figure 2: Visualization with t-SNE for different adaptation methods (bested viewed in color).a: t-SNE of ResNet. b: DAN.c:
RevGrad.d: BDG. The input activations of the last FC layer are used for the computation of t-SNE. The results are on Office-31
task Amazon → Webcam.
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(b) Realworld→Product (Office-home)
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(c) Art→Realworld (Office-home)

Figure 3: Parameter study of our algorithm: averaged accuracy with parameter λ,γ learned by (a) webcam→amazon (Office-31),
(b) Art→Realworld (Office-Home), (c) Art→Realworld (Office-Home)(black:λ, red:γ)

the result of variant 4 in two datasets is close to the result
of variant 3. In detail, the result of variant 4 in the office-
home dataset is over only 0.3% than variant 3. However,
when the loss combines the Ls/t

MMD and Lcon, the perfor-
mance improves. So we can get some conclusions according
to Table 3. First of all, it can be proved that Ls/t

MMD takes
an essential role in our method. Second, it also can demon-
strate Lcon is an applicable term in our method. The last but
not the least, bi-directional cross-domain generation method
does work better than single branch structure method.
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Figure 4: The curve of LMMD (red), Ldiscrepancy (black)
and accuracy(blue) during training on task Webcam →
Amazon of the office-home dataset.

Convergence Analysis The Figure 4 shows the whole
training process of our BDG method on task Rw→Pr from
office-home dataset. We notice that the total loss becomes
diverge with epoch prolonging if the full loss include ad-
versarial loss. Therefore, they can get an excellent result in
the middle process but their final result may be much weaker
than the best. We solve these problems by adding the Ls/t

MMD
and Lcon. The Figure4 also reports that accuracy gradually
increases when the Ls/t

MMD and Lcon continuously decrease.
It approves that the training process avoids becoming di-
verge with epoch prolonging due to the effect of two terms.

Conclusion
In this paper, we propose a bi-directional generative cross-
domain generation framework to explore domain adapta-
tion in an unsupervised manner. Previous adversarial domain
adaption approaches with shared generator neglect class fea-
tures by interpolating two intermediate domains to bridge
the domain gap. We add the MMD loss and consistent loss
into loss function to implement bi-directional Cross-Domain
Generation method. The proposed method includes MMD
loss which takes full use of target domain and reduces the
domain gap with two directions, and the consistent loss
which utilizes the task-specific classifiers to align the source
and target features. Experiments on two standard domain
adaption benchmarks verifies the advanced effectiveness of
our algorithm which has better performance than other state-
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of-the-art domain adaptation models.
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