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Abstract

The majority of state-of-the-art deep learning methods are
discriminative approaches, which model the conditional dis-
tribution of labels given inputs features. The success of
such approaches heavily depends on high-quality labeled in-
stances, which are not easy to obtain, especially as the num-
ber of candidate classes increases. In this paper, we study
the complementary learning problem. Unlike ordinary la-
bels, complementary labels are easy to obtain because an
annotator only needs to provide a yes/no answer to a ran-
domly chosen candidate class for each instance. We propose
a generative-discriminative complementary learning method
that estimates the ordinary labels by modeling both the con-
ditional (discriminative) and instance (generative) distribu-
tions. Our method, we call Complementary Conditional GAN
(CCGAN), improves the accuracy of predicting ordinary la-
bels and is able to generate high-quality instances in spite of
weak supervision. In addition to the extensive empirical stud-
ies, we also theoretically show that our model can retrieve
the true conditional distribution from the complementarily-
labeled data.

Introduction

Deep supervised learning has achieved great success in var-
ious applications such as visual recognition (Krizhevsky,
Sutskever, and Hinton 2012; He et al. 2015) and natural
language processing (Kim 2014). Despite the effectiveness
of supervised classifiers, acquiring labeled data is often ex-
pensive and time-consuming. As a result, learning from
weak supervision has been studied extensively in recent
decades, including but not limited to semi-supervised learn-
ing (Kingma et al. 2014), multi-instance learning (Zhou et
al. 2012), learning from side information (Hoffman, Gupta,
and Darrell 2016), and learning from data with noisy la-
bels (Natarajan et al. 2013; Liu and Tao 2016; Xia et al.
2019; Cheng et al. 2017).

In this paper, we consider a recently proposed weakly-
supervised classification scenario, i.e., learning from com-
plementary labels (Ishida et al. 2017; Yu et al. 2018). Unlike
an ordinary label, a complementary label specifies a class
that an input instance does not belong to. Given an instance
from a class, it is laborious to choose the correct class label
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from many candidate classes, especially when the number
of classes is relatively large or the annotator is not familiar
with the characteristics of all candidate classes. However, it
is less demanding and inexpensive to choose one of the in-
correct class as a complementary label for an instance. For
example, when an annotator is labelling an image containing
an animal that she has never seen before, she can easily iden-
tify that this animal does not belong the usual animal classes
he can see in daily life, such as, “not dogs”. In medical field,
a doctor may not be able to identify the exact disease type
given symptoms. However, he/she can easily obtain comple-
mentary labels denoting some disease types a patient does
not belong to.

Existing complementary learning methods modified the
ordinary classification loss functions to enable learning
from complementary labels. (Ishida et al. 2017) proposed
a method that provides a consistent estimate of the classi-
fier from complementarily-labeled data where the loss func-
tion satisfies a particular symmetric condition. However, this
method only allows classification loss functions with cer-
tain non-convex binary losses for one-versus-all and pair-
wise comparison. Later, (Yu et al. 2018) proposed to use
the forward loss correction technique (Patrini et al. 2017)
that learns the conditional, PY |X , from complementary la-
bels, where X denote the input features and Y denote la-
bels. (Ishida et al. 2018) derived an unbiased estimator of
the true classification risk with arbitrary loss functions from
complementarily-labeled data.

To clarify the differences between learning with ordinary
and complimentary labels, we define the notion of “effective
sample size”, which is the number of instances with ordi-
nary labels that carries the same amount of information as
instances with complementary labels of a given size. Since
the complementary labels are weak labels, they carry only
partial information about the ordinary labels. Hence, the ef-
fective sample size nl for complementary learning is much
smaller than the given sample size n (i.e., nl << n). Current
methods for learning with complementary labels need a rela-
tively large training set to ensure low variance for predicting
ordinary label.

Although nl is small under complementary learning set-
tings, we can still use all samples with size n to estimate the
instance distribution PX . However, current complementary
methods focus on modeling conditional PY |X and thus fail
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to account for information hidden in PX , which is essential
in complementary learning.

To improve the prediction performance, we propose a
generative-discriminative complementary learning approach
that learns both PY |X and PX|Y in a unified framework. Our
main contributions can be summarized as follows:

• We propose a Complementary Conditional Generative
Adversarial Net (CCGAN ), which simultaneously learns
PY |X and PX|Y from complementary labels. Because
the estimate of PX|Y benefits from PX , it provides con-
straints on PY |X and helps reduce its estimation variance.

• Theoretically, we show that our CCGAN model is guar-
anteed to learn PX|Y from complementarily-labeled data.

• Empirically, we conduct comprehensive experiments on
benchmark datasets, including MNIST, CIFAR10, CI-
FAR100, and VGG Face; demonstrating that our model
gives accurate classification prediction and generates
high-quality images.

The code is at https://github.com/xuyanwu/Complementary-
GAN.

Related Works

Generative Adversarial Nets Generative Adversarial
Nets (GANs) are a class of implicit generative mod-
els learned by adversarial training (Goodfellow et al.
2014). With the development of new network architec-
tures (e.g., (Brock, Donahue, and Simonyan 2019)) and sta-
bilizing techniques (e.g., (Miyato et al. 2018)), GANs gen-
erates high-quality images that are indistinguishable from
real ones. Conditional GANs (CGANs) (Mirza and Osindero
2014) extend the GAN models to generate images given spe-
cific labels, which can be used to model the class conditional
PX|Y (e.g., AC-GAN (Odena, Olah, and Shlens 2017), Pro-
jection cGAN (Miyato and Koyama 2018), and TAC-GAN
(Gong et al. 2019)). However, training of CGANs requires
ordinary labels for the images, which are not available un-
der the complementary learning settings. To the best of our
knowledge, our proposed CCGAN is the first conditional
GAN that is trained with complementary labels. The most
related works to us are the robust conditional GAN ap-
proaches that aim to learn a conditional GAN from labels
corrupted by random noise (Thekumparampil et al. 2018;
Kaneko, Ushiku, and Harada 2018). However, our method
generates better quality images and more accurate predic-
tion, by utilizing complementary labels.

Semi-Supervised Learning Under semi-supervised
learning settings, we are provided a relatively small number
of labeled data and plenty of unlabeled data. The basic
assumption for the semi-supervised methods is that the
knowledge on PX gained from unlabeled data carries useful
information for inferring PY |X . This principle has been
implemented in various forms, such as co-training (Blum
and Mitchell 1998), generative modeling (Odena 2016;
Kumar, Sattigeri, and Fletcher 2017), etc. Inspired by
the commonalities between complementary learning and
semi-supervised learning, i.e., more data are available to

estimate PX than PY |X ; we propose to make use of PX to
help infer PY |X in complementary learning.

Background

In this section, we first introduce the concept of learning
from so-called complementary labels. Then, we discuss a
state-of-the-art discriminative complementary learning ap-
proach, (Yu et al. 2018), which is the most relevant to our
method.

Problem Setup

Let two random variables X and Y denote the features and
the labels, respectively. The goal of discriminative learning
is to infer a decision function (classifier) from independent
and identically distributed training set {xi, yi}ni=1 ⊆ X ×Y
drawn from an unknown joint distribution PXY , where X ∈
X = R

d and Y ∈ Y = {1, . . . ,K}. The optimal function,
f∗, can be learned by minimizing the expected risk R(f) =
E(X,Y )∼PXY

�(f(X), Y ), where E denotes the expectation
and � denotes a classification loss function. Because PXY is
unknown, we usually approximate R(f) using its empirical
estimation Rn(f) =

1
n

∑n
i=1 �(f(xi), yi).

In the complementary learning setting, for each sample x,
we are given only a complementary label ȳ ∈ Y \ y which
specifies a class that x does not belong to. That is to say, our
goal is to learn f that minimizes the classification risk R(f)
from complementarily-labeled data {xi, ȳi}ni=1 ⊆ X × Y
drawn from an unknown distribution PXȲ , where Ȳ denote
the random variable for complementary label. The ordinary
loss function, �(·, ·), cannot be used since we do not have
access to the ordinary labels (yi’s). In the following, we ex-
plain how discriminative learning can be extended in such
scenarios.

Discriminative Complementary Learning

Existing Discriminative Complementary Learning (DCL)
methods modified the ordinary classification loss function
� to the complementary classification loss �̄ to provide a
consistent estimation of f . Various loss functions have been
considered in the literature, such as one-vs-all ramp/sigmoid
loss (Ishida et al. 2017), pair-comparison ramp/sigmoid loss
(Ishida et al. 2017), and cross-entropy loss (Yu et al. 2018).
Here we briefly review a recent method that modifies the
cross-entropy loss for deep learning with complementary la-
bels (Yu et al. 2018). The general idea is to view the ordinary
label Y , as a latent random variable. Suppose the classifier
has the form f(X) = argmaxi∈[K] gi(X), where gi(X) is
an estimation for P (Y = i|X). The loss function for com-
plementary labels is defined as �̄(f(X), Ȳ ) = �(Mᵀg, Ȳ ),
where g = (g1(X), . . . , gK(X))ᵀ and M is the transition
matrix satisfying

P (Ȳ = j|X) =
∑
i �=j

p(Ȳ = j|Y = i)︸ ︷︷ ︸
Mij

P (Y = i|X). (1)

(Ishida et al. 2017; 2018) assumed the uniform setting in
which M takes 0 on diagonals and 1

K−1 on non-diagonals.
(Yu et al. 2018) relaxed this assumption by allowing other
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values on non-diagonals and proposed a method to estimate
M from data. It has been shown in (Yu et al. 2018) that
the classifier f̄n that minimizes the empirical estimation of
R̄(f), i.e.,

R̄n(f) =
1

n

n∑
i=1

�̄(f(xi), ȳi), (2)

converges to the optimal classifier f∗ as n → ∞.

Proposed Method

In this section, we will present the motivation and de-
tails of our generative-discriminative complementary learn-
ing method. First, we demonstrate why generative mod-
eling is valuable for learning from complementary labels.
Second, we present our Complementary Conditional GAN
(CCGAN ) model that is trained using complementarily-
labeled data and provide theoretical guarantees. Finally, we
discuss several practical factors that are crucial for reliably
training our model.

Motivation

It is guaranteed that existing discriminative complementary
learning approaches lead to optimal classifiers, given suffi-
ciently large sample size. However, due to the uncertainty
introduced by the complementary labels, the effective sam-
ple size is much smaller than the sample size n. If we have
access to samples with ordinary labels {xi, yi}ni=1, we can
learn the classifier fn by minimizing Rn(f). Since knowing
the ordinary labels is equivalent to having all the K−1 com-
plementary labels, we can also learn fn with ordinary labels
by minimizing the empirical risk

R̄′
n(f) =

1

n(K − 1)

n∑
i=1

K−1∑
k=1

�̄(f(xi), ȳik), (3)

where ȳik is the k-th complementary label for the i-th ex-
ample. In practice, since we only have one complementary
label for each instance, we are minimizing R̄n(f) as shown
in Eq. (2), rather than R̄′

n(f). Note that R̄n(f) approximates
R̄′

n(f) by randomly picking up one complementary label
for the i-th example, which implies that the effective sam-
ple size is roughly n/(K − 1). In other words, although we
provide each instance a complementary label, the accuracy
of the classifier learned by minimizing R̄n is close to that of
a classifier learned with n/(K − 1) examples with ordinary
labels.

Because the effective sample size is usually much smaller
than the actual sample size, complementary learning resem-
bles semi-supervised learning, where only a small propor-
tion of instances are associated with ordinary labels. In semi-
supervised learning, PX can be estimated with more unla-
beled samples compared to PY |X , which requires labels to
estimate. Therefore, modeling PX is beneficial because it al-
lows us to take advantage of unlabeled data. This justifies the
motivation of introducing a generative term in complemen-
tary learning. A natural way to utilize PX is to model the
class-conditional, PX|Y . PX imposes a constraint on PX|Y
indirectly since PX =

∫
P (X|Y = y)P (y)dy. Therefore, a

more accurate estimation of PX will improve the estimation
of PX|Y and thus PY |X .

Complementary Conditional GAN (CCGAN )

Given the recent advances in generative modeling using
(conditional) GANs, we propose to use conditional GAN to
model PX|Y in the paper. A conditional GAN learns a func-
tion G(Y, Z) that generates samples from a conditional dis-
tribution QX|Y , neural network is used to parameterize the
generator function, and Z is a random samples drawn from
a canonical distribution PZ . To learn the parameters, we can
minimize certain divergence between QX,Y and PXY by
solving the following optimization:

min
G

max
D

E
(X,Y )∼PXY

[φ(D(X,Y ))]

+ E
Z∼PZ ,Y∼PY

[φ(1−D(G(Z, Y ), Y ))], (4)

where φ is a function of choice and D is the discriminator.
However, the conditional GAN framework cannot be di-

rectly used for our purpose for the following two reasons:
1) the first term in Eq. (4) cannot be evaluated directly, be-
cause we do not have access to the ordinary labels. 2) the
conditional GAN only generates X’s and does not infer the
ordinary labels. A straightforward solution would be to gen-
erate (x, y) from the learned conditional GAN model and
to train a separate classifier on the generated data. However,
such two-step solution results in a sub-optimal performance.

To enable generative-discriminative complementary
learning, we propose a complementary conditional GAN
(CCGAN ) by extending the TAC-GAN (Gong et al. 2019)
framework to deal with complementarily-labeled data. The
model structures of GAN, TAC-GAN, and our CCGAN
are shown in Figure 1. TAC-GAN decomposes the joint
distributions as PXY = PY |XPX and QXY = QY |XQX

and match the conditional distributions and marginal
distributions separately. The marginals PX and QX are
matched using adversarial loss (Goodfellow et al. 2014),
and PY |X and QY |X are matched by sharing a classifier
with probabilistic outputs. However, PY |X is not accessible
in a complementary setting since the ordinary labels are not
observed. Therefore, PY |X and QY |X cannot be directly
matched as in TAC-GAN. Fortunately, we make use of the
relation between PY |X and PȲ |X ( Eq. (1) ) and propose
a new loss matching PY |X and QY |X in a complementary
setting. Specifically, we learn our CCGAN using the
following objective

min
G,C

max
D,Cmi

E
X∼PX

φ(D(X))

+ E
Z∼PZ ,Y∼PY

φ(1−D(G(Z, Y )))

⎫⎬
⎭ a©

+ E
(X,Ȳ )∼PXȲ

�(Ȳ , C̄(X)) b©

+ E
Z∼PZ ,Y∼PY

�(Y,C(G(Z, Y )))

+ E
Z∼PZ ,Y∼PY

�(Y,Cmi(G(Z, Y )))

⎫⎬
⎭ c©,

(5)
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Figure 1: Model structure.

where � is the cross-entropy loss, C is a function modeled
by a neural network with softmax layer as the final layer to
produce class probability outputs, C̄(X) = MᵀC(X), and
Cmi is another function modeled by a neural network with
class probability outputs. From the objective function, we
can see that our method naturally combines generative and
discriminative components in a unified framework. Specifi-
cally, the component b© performs pure discriminative com-
plementary learning on the complementarily-labeled data
(only learns C), and the components a© and c© perform
generative and discriminative learning simultaneously (learn
both G and C).

The three components in Eq. (5) correspond to the fol-
lowing three divergences: 1) component a© corresponds to
Jensen-Shannon divergence between PX and QX , 2) com-
ponent b© represents KL divergence between PȲ |X and
Q′

Ȳ |X , and 3) component c© corresponds to KL divergence
between Q′

Y |X and QY |X , where Q′
Y |X is a conditional dis-

tribution of ordinary labels given features modeled by C
and Q′

Ȳ |X is a conditional distribution of complementary
labels given features implied by Q′

Y |X through the relation
Q′

Ȳ |X = MᵀQ′
Y |X . The following theorem demonstrates

that minimizing these three divergences in our objective can
effectively reduce the divergence between QY X and PY X .
Theorem 1 Let PY X and QY X denote the data distribution
and the distribution implied by our model, respectively. Let
Q′

Y |X (Q′
Ȳ |X ) denote the conditional distribution of ordi-

nary (complementary) labels given features induced by the
parametric model C. If M is full rank, we have

dTV (PXY , QXY ) ≤ 2c1
√
dJS(PX , QX)

+ c2‖M−1‖∞
√
dKL(PȲ |X , Q′

Ȳ |X)

+ c2
√
dKL(QY |X , Q′

Y |X), (6)

where dTV is the total variation distance, dJS is the Jensen-
Shannon divergence, dKL is the KL divergence, and c1 and
c2 are two constants.

A proof of Theorem 1 is provided in Section S1 of the sup-
plementary file. An illustrative figure that shows the rela-
tions between the quantities in Theorem 1 is also provided
in Section S2 of the supplementary file.

Practical Considerations

Estimating Prior PY In our CCGAN model, we need
to sample the ordinary labels y from the prior distribution
PY , which needs to be estimated from complementary la-
bels. Let P̄Ȳ = [PȲ (Ȳ = 1), . . . , PȲ (Ȳ = K)]ᵀ be
the vector containing complementary label probabilities and
P̄Y = [PY (Y = 1), . . . , PY (Y = K)]ᵀ be true label proba-
bilities. We estimate P̄Y by solving the following optimiza-
tion:

min
P̄Y

‖P̄Ȳ −MᵀP̄Y ‖2,

s.t. ||P̄Y ||1 = 1 and P̄Y [i] ≥ 0. (7)

This is a standard quadratic programming (QP) problem and
can be easily solved using a QP solver.
Estimating M If the annotator is allowed to choose to as-
sign either an ordinary label or a complementary label for
each instance, the matrix M will be unknown because of the
possible non-uniform selection of the complementary labels.
In (Yu et al. 2018), the authors provided an anchor-based
method to estimate M , we also follow the same technique.
Please refer to (Yu et al. 2018) for more details.
Incorporating Unlabeled Data In practice, we may have
access to additional unlabeled data. We can readily incorpo-
rate such unlabeled data to improve the estimation of the first
term in Eq. (5), which further improves the learning of G
through the second term in Eq. (5) and eventually improves
the classification performance.

Experiments

To demonstrate the effectiveness of our method, we present
a number of experiments examining different aspects of
our method. After introducing the implementation de-
tails, we evaluate our methods on three datasets, including
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MNIST (LeCun and Cortes 2010), CIFAR10, CIFAR100
(Krizhevsky, Nair, and Hinton ), and VGGFACE2 (Cao
et al. 2018). We compare classification accuracy of our
CCGAN with the state-of-the-art Discriminative Learning
(DCL) method (Yu et al. 2018) and show the capability
of CCGAN to generate good quality class-conditioned im-
ages from complementarily-labeled data. In addition, abla-
tion studies based on MNIST are presented to give a more
detailed analysis of our method. To be notified, we also have
the Inception Score and Fréchet Inception Distance (FID) to
measure the generative performance of our model, the result
is shown in S3.

Implementation Details

Label Generation All the four datasets have ordinary
class labels, which allows generating labels to evaluate our
method. Following the procedure in (Ishida et al. 2017), the
label for each image was obtained by randomly picking a
candidate class and asking the labeler to answer “yes” or
“no” questions. In this case, The candidate classes are uni-
formly assigned to each image, and therefore the transition
matrix M satisfies Mi,j = 1/(K − 1), i 
= j;Mi,j =
0, i = j. Also, data are usually biased, and the annotators
also tend to hold biased choices based on their experience.
Thus transition matrix M could be biased (Yu et al. 2018).
For uniformed M we assume M is known. However, for
biased M , we consider both cases when true M is given,
and M needs to be estimated during training time. To be
notified, when generating complementary data, we assume
M is known.
Training Details We implemented our CCGAN model in
Pytorch. We trained our CCGAN model in an end-to-end
strategy, which means the classifier and GAN discriminator
share the common bottom to neck conventional layers ex-
cept for the final fully-connected softmax layer as well as
mutual information learner. To train our CCGAN model,
we optimized the whole objective equation 5 using Adam
(Kingma and Ba 2014) with learning rate 2e− 4, β1 = 0.0,
β2 = 0.999 for both D and G network, where we train 2
steps of D and 1 step of G in each iteration for 10,000 iter-
ation in total. To train our baseline DCL model, we apply
the same training strategy as (Yu et al. 2018) for all dataset.
For the additional VGGFACE2 dataset, we apply the same
training settings as CIFAR100. We adopted data augmenta-
tion for all datasets except MNIST, where we first resized all
images to 32×32 resolution, employed random croppings to
change the image into 28×28 and then applied zero-padding
to turn the image back with 32× 32 resolution.

MNIST

We first evaluate our model on MNIST, which is a handwrit-
ten digit recognition dataset that contains 60K training im-
ages and 10K testing images, with size 32 × 32. We chose
Lenet-5 (LeCun and Cortes 2010) as the network structure
for the DCL method and the C network in our CCGAN .
We employed the DCGAN network (Radford, Metz, and
Chintala 2015) as the backbone of our CCGAN . Due to
the simplicity of MNIST data, the accuracy of learning is
close to that of learning with ordinary labels if we use all

(a)

(b)

Figure 2: Test accuracy on (a) MNIST dataset and (b) CI-
FAR10 dataset. x axis represents the proportion rl of labeled
data in the training set S.

60K training samples. Therefore, we sample a subset of 6K
images as our basic sampling set S for training.

In the experiments, we evaluate all the methods under dif-
ferent sample sizes. Specifically, we randomly re-sampled
subsets with rl × 6K samples, where rl = 0.1, 0.2, . . . , 1;
and trained all the methods on these subsets. The classifica-
tion accuracy was evaluated on the 10k test set. We report
the results under the following three settings: 1) We only
use samples with complementary labels, ignoring all ordi-
nary labels, to train our model CCGAN and baseline DCL.
2) We also train ordinary classifier such that all labeled data
are provided with ordinary labels (Oracle). This classifier is
trained with the strongest supervision possible, representing
the best achievable classification performance. The results
are shown in Figure 2 (a).

It can be seen from the results that our CCGAN method
outperforms DCL under different sample sizes, and the
gap increases as the sample size reduces. our method out-
performs DCL by a large margin. The results demon-
strate that generative-discriminative modeling is advan-
tageous over discriminative modeling for complementary
learning. Figure 3 (a) shows the generated images from
TAC −GAN (Oracle) and our CCGAN . We can see that
our CCGAN generates high-quality digit images, suggest-
ing that CCGAN is able to learn PX|Y very well from
complementarily-labeled data.

CIFAR10

We then evaluate our method on the CIFAR10 dataset, which
consists of 10 classes of 32×32 RGB images, including 60K
training samples and 10K test samples. We deploy ResNet18
(He et al. 2015) as the structure of the C network in our
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���� CCGAN

(a)

TAC −GAN(Oracle)

���� CCGAN

(b)

ACGAN

TAC −GAN(Oracle)

���� CCGAN

(c)

TAC −GAN(Oracle)

���� CCGAN

(d)

TAC −GAN(Oracle)

Figure 3: Synthetic results. (a)Mnist, (b)Cifar10, (c)Cifar100, (d)Vggface100

Method
rl 0.2 0.4 0.6 0.8 1.0

VGGFACE100

Ordinary label (Oracle) 0.673 0.804 0.870 0.891 0.917

DCL 0.378 0.685 802 0.849 0.884
CCGAN 0.447 0.728 0.822 0.865 0.896

CIFAR100

Ordinary label (Oracle) 0.439 0.804 0.870 0.891 0.917

DCL 0.252 0.452 0.561 0.609 0.651
CCGAN 0.320 0.520 0.571 0.632 0.660

Table 1: This table shows the test accuracy on VG-
GFACE100 and CIFAR100 dataset.

model. Since training GANs on the CIFAR10 dataset is un-
stable, we utilize the latest conditional structure Big-GAN
(Brock, Donahue, and Simonyan 2018) for our CCGAN
backbone. If without mention, the following dataset experi-
ments apply the same settings.

We evaluate all the methods following the same proce-
dure used in the MNIST dataset. The results are shown in
Figure 2 (b). Again our method consistently outperforms
the DCL method for different sample sizes. Figure 3 (b)
shows the generated images from TAC − GAN (Oracle)
and our CCGAN . It can be seen that our CCGAN suc-
cessfully learns the appearance of each class from comple-
mentary labels.

CIFAR100 and VGGFACE100

We finally evaluate our method on CIFAR100 and VG-
GFACE2 data, different from CIFAR10, CIFAR100 dataset
contains 100 classes and each class has 500 images in aver-
age and 10.000 testing images of 100 classes in total. VG-
GCAE2 is a large-scale face recognition dataset. The face
images have large variations in pose, age, illumination, eth-
nicity, and profession. The number of images for each per-
son (class) varies from 87 to 843, with an average of 362

images for each person. We randomly sampled 100 classes
and constructed a dataset for evaluation of our method. We
selected 80% data as the training set S and the rest 20% as
the testing set. Since our CCGAN model can only gener-
ate fixed-size images, we re-scaled all training images into
32× 32.

Because the number of classes is relatively large, the ef-
fective labeled sample size is approximately n/99, where
n is the total sample size. In case of limited supervision,
neither DCL nor our CCGAN can converge. Thus, we ap-
plied the complementary label generation approach in (Yu
et al. 2018), which assumed only a small subset of candidate
classes can be chosen as complementary labels. In specific,
we randomly selected 10 candidate classes as the potential
compelementary label each class, and assigned them with
uniform probabilities.

We used the same evaluation procedures used in MNIST
and CIFAR10. The classification accuracy is reported in Ta-
ble 1. It can be seen that our method outperforms DCL
by 5% when the proportion of labeled data is smaller than
0.3 and is slightly better than DCL when the proportion
is larger than 0.5. Figure 3 (c) shows the generated images
from TAC−GAN (Oracle) and our CCGAN . We can see
that CCGAN generates images that are visually similar to
the real images for each person.

Biased M training

According to (Yu et al. 2018), we also implement the biased
transition matrix M setting. During the training time, we
test two settings: 1) we assume true M used for generating
data is known; 2) M can not be acquired and needs to be es-
timated. For the unknown M , we follow the same settings
as (Yu et al. 2018) and apply the same anchor method to es-
timate M . The other training settings are the same as above
experiments. The result is shown in Table 2.
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Method
rl 0.2 0.6 1.0 0.2 0.6 1.0

True M Esimated M

MNIST

DCL 0.675 0.866 880 0.563 0.787 0.894
CCGAN 0.839 0.908 0.918 0.773 0.837 0.916

CIFAR10

DCL 0.413 0.658 0.724 0.282 0.624 0.713
CCGAN 0.559 0.767 0.815 0.440 0.740 0.757

CIFAR100

DCL 0.2814 0.582 663 0.176 0.381 0.574
CCGAN 0.320 0.621 0.664 0.206 0.445 0.589

VGGFACE100

DCL 0.461 0.769 0.863 0.161 0.660 0.836
CCGAN 0.533 0.805 0.866 0.174 0.681 0.850

Table 2: This table shows the test accuracy on MNIST, CI-
FAR10, CIFAR100, and VGGFACE100 when M is biased.

Figure 4: Test accuracy. x axis denotes number of assigned
complementary labels per image. classifier trained on ordi-
nary labeled data as the Oracle.

Ablation Study

Here we conduct ablation studies on MNIST to study the
details and validate possible extensions of our approach.
Multiple Labels In this experiment, we give an intuitive
strategy to verify the effectiveness of generative modeling
for complementary learning. In ordinary supervised learn-
ing, discriminative models are usually preferred than gener-
ative models because estimating the high-dimensional PX|Y
is difficult. To demonstrate the importance of generative
modeling in complementary learning, we propose to assign
multiple complementary labels to each image and observe
how the performance changes with the number of comple-
mentary labels. The classification accuracy is shown in Fig-
ure 4. We can see that the accuracy of our CCGAN and
DCL both increases with the number of complementary la-
bels. When the number of complementary labels per image
is large, DCL performs better than our CCGAN because
the supervision information is sufficient. However, in prac-
tice, the number of complementary labels for each instance
is typically small and is usually one. In this case, the ad-
vantage of generative modeling is obvious, as demonstrated
by the superior performance of our CCGAN compared to
DCL.
Semi-Supervised Learning In practice we might have eas-
ier access to unlabeled data which can be incorporated
into to our model to perform semi-supervised complemen-
tary learning. On the MNIST dataset, we used the addi-
tional 90% data as unlabeled data to improve the estima-

Figure 5: Test accuracy of SCCGAN

tion of the first term in our objective Eq. (5). We denote
the semi-supervised method as Semi-supervised comple-
mentary Conditional GAN(SCCGAN ). The classification
accuracy w.r.t. different proportion of labeled data is shown
in Figure 5. We can see that SCCGAN further improves
the accuracy over CCGAN due to the incorporation of un-
labeled data.

Conclusion

We study the limitation of complementary learning as a
weakly supervised learning problem, where the effective su-
pervised information is much smaller compared to the sam-
ple size. To address this problem, we propose a generative-
discriminative model to learn a better data distribution, as
a strategy to boost the performance of the classifier. We
build a conditional GAN model (CCGAN) which learns
a generative model conditioned on ordinary class labels
from complementary labeled data, and unify the genera-
tive and discriminative modeling in one framework. Our
method shows superior classification performance on sev-
eral datasets, including MNIST, CIFAR10, and CIFAR100
and VGGFACE100. Besides, our model generates high-
quality synthetic images by utilizing complementary labeled
data. In addition, we give a theoretical analysis that our
model can converge to true conditional distribution learning
from complementarily-labeled data.
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