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Abstract

Learning representations for feature interactions to model
user behaviors is critical for recommendation system and
click-trough rate (CTR) predictions. Recent advances in this
area are empowered by deep learning methods which could
learn sophisticated feature interactions and achieve the state-
of-the-art result in an end-to-end manner. These approaches
require large number of training parameters integrated with
the low-level representations, and thus are memory and com-
putational inefficient. In this paper, we propose a new model
named “LorentzFM” that can learn feature interactions em-
bedded in a hyperbolic space in which the violation of trian-
gle inequality for Lorentz distances is available. To this end,
the learned representation is benefited by the peculiar geo-
metric properties of hyperbolic triangles, and result in a sig-
nificant reduction in the number of parameters (20% to 80%)
because all the top deep learning layers are not required. With
such a lightweight architecture, LorentzFM achieves compa-
rable and even materially better results than the deep learning
methods such as DeepFM, xDeepFM and Deep & Cross in
both recommendation and CTR prediction tasks.

Introduction

Recommendation system and ads click-trough rate (CTR)
prediction both have profound impact on web-scale big data,
and have been received a lot of attention in both academia
and industrial community. In these systems, the critical
problem is to predict the probability of clicks, which will
be used to rank the candidate items or ads.

These problems have been successfully tackled by super-
vised learning methods, in which user profiles and item at-
tributes are used as input features. The challenge is that,
the data for web-scale recommendation systems is mostly
discrete and categorical, resulting in an extreme large and
sparse feature space to optimize. Feature sparsity of this kind
is commonly handled by constructing feature interactions
which are modeled by inner product of their low dimen-
sional representations. In this so-called factorization ma-
chine model (Rendle 2010), the naive inner product is not
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expressive enough for spurious or implicit feature interac-
tions. Therefore, higher-order factorization machine (Blon-
del et al. 2016) is proposed to learn higher-order feature in-
teractions efficiently. On the other hand, deep learning based
approaches have successfully enhanced the performance sig-
nificantly because sophisticated feature interactions can be
captured. Besides, another merit of the deep learning meth-
ods is that they can reduce human efforts in feature engineer-
ing. To name a few, DeepFM (Guo et al. 2017) integrates the
deep neural networks on top of the factorization machine,
and the Deep & Cross neural network (DCN) (Wang et al.
2017) takes outer product of features at the element wise
and vector wise level such that higher order feature interac-
tions can be learned in an automatic and explicit fashion. In
DCN, the order of interactions is determined by the number
of multi-layer perceptron (MLP) layers. However, by using
multiple layers of MLPs it is inefficient to learn multiplica-
tive feature interactions. Therefore, in xDeepFM (Lian et al.
2018) it is proposed to use convolution neural network to
replace MLP.

In this paper, we re-examine the building block for these
models: the inner product between feature representations.
To this end, we propose to learn the low-dimensional repre-
sentations in a hyperbolic geometry equipped with Lorentz
distance, such that the triangle inequality for feature vec-
tors could be violated. Our work is inspired by the work
on collaborative metric learning (CML) (Hsieh et al. 2017),
where the inner product is replaced by the distance between
feature vectors, but following a completely different path.
As opposed to the work of CML, in which the authors ar-
gue that triangle inequality in a Euclidean space should be
strictly obeyed, we propose to take advantage of the sign of
the triangle inequality. Specifically, we construct our score
function for feature interactions not by the inner product or
distance between feature vectors, but by examining the tri-
angle formed by them in a hyperbolic space. This reason for
our approach is two-folded: (1) a hyperbolic space is intrin-
sically a lot more capacious than the Euclidean space; (2)
the proposed score function will provide a robust objective
function to learn fine-grained feature interactions. As a re-
sult, the embedding learned by this score function are there-
fore ready to use directly, just as the vanilla factorization ma-



chine. Our experiments on several benchmark datasets show
that, even without using any deep learning layers on top of
the embedding layer, the proposed approach will achieve the
state-of-the-art performance with reducing up to 82.9% in
training parameters and 69.7% in training time compared to
the strong deep learning baselines such as DeepFM, DCN
and xDeepFM.

Our Contributions

Overall, the primary contributions of this paper can be sum-
marized as follows:

e We propose to learn feature interactions with a score func-
tion measuring the validity of triangle inequalities. This
score function is bounded and dimension agnostic, which
opens up a novel viewpoint on learning the fine-grained
structure of interacting features.

e We conduct extensive experiments on a wide range
of real-world datasets. Our results demonstrate that
LorentzFM achieves state-of-the-art performance, com-
pared to existing deep learning approaches.

e We thoroughly investigate the number of training param-
eters and training time to understand its cost in resource.

Why Learning Triangle Inequality?
In this section, we first provide some technical background
about hyperbolic geometry and Lorentz distance. With these
definitions, we will show that Lorentz distances for a triangle
could violate triangle inequality. The motivation is to show
how it is related to the metric learning in Euclidean space.

Hyperbolic Geometry and Lorentz Distance

Hyperbolic geometry aims to study non-Euclidean space
with a constant negative curvature. Due to its negative curva-
ture, hyperbolic geometry has very different properties com-
pared to the Euclidean geometry.

First, the circumference and area of a circle in the hy-
perbolic space grow exponentially with the radius, as op-
posed to the linear and quadratic growth rate in Euclidean
space. Therefore, the capacity of embeddings in the hy-
perbolic space of the same upper bound in radius is much
larger than its Euclidean counterpart. Secondly, the triangle
inequality Eq. (6) with Lorentz distance defined in Eq. (5)
defined therein can be violated. This property enables us to
characterize the pairwise relation between points in the hy-
perbolic space by the sign of the inequality.

There are several important models of hyperbolic space
for computation purpose: the Poincaré ball model, the hyper-
boloid model, the Klein model and so on. These models all
describe the same geometry and can be connected by trans-
formations that preserve geometric properties of the hyper-
bolic space such as isometry. In the following, we only in-
troduce the technical basics of the hyperboloid model, which
will be used throughout the paper.

Hyperboloid Model Let us define the Lorentzian inner
product between u, v € R" ! as

n
(u,v)z = —ugvp + E Uy Vp -
i=1

ey
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The hyperboloid of dimension 7, H™P C R consists of
the following set of points:

W = (x e R lall} =Bz 2 B}, @)

where |[x||% = (x,x). is the Lorentzian norm of the vec-
tor x. With this definition, for every vector x € H™P | the
component z is not a free parameter, and is given by

n
i=1

The associated geodesic distance between two points is
given as

3)

dy(u,v) = arccosh(—(u, v) ). 4)
Note that the origin vector of the hyperboloid model H™*
is 0 = (8,0,...,0), and its Lorentzian inner product with
vector x is simply (0,x), = —x¢ < .

When 3 = 1, the model is called a unit hyerboloid model,
which will be used throughout the paper. Without introduc-
ing any confusions, we will simply call it hyperboloid model
and use H" to denote H™!.

Lorentz Distance The squared Lorentz distance, or
Lorentz distance in short, between u, v € H" is given by

&)

It satisfies almost all axioms of Euclidean geometry but the
triangle inequality, which is one of the most crucial geomet-
ric property with positive definitive Riemannian metric. It
states that for any three points, x, y and z, any two pairwise
distances d(-, -) should be greater or equal to the remaining
pairwise distance:

d(x,y) < d(x,2z) + d(z,y). (6)

In the hyperbolic space, the geodesic distance defined in Eq.
(4) between three points also satisfies this property. How-
ever, the inequality could be violated with Lorentz distances,
because the Riemannian metric is negative. Consider the tri-
angle formed by the origin 0 and other two points u and v
in Figure 1. When the two points are far apart on the oppo-
site side of x1 axis, the triangle inequality is violated. On the
other hand, the triangle inequality holds if the two points are
on the same side of x; axis.

dz(u,v) = [u— vz = -2 - 2(u,v),.

Learning Triangle Inequalities

As pointed out in Hsieh et al. (2017), learning the distance
in the embedding space rather than inner product has advan-
tages to learn a fine-grained embedding space that could cap-
ture the representation not only for item-user interactions,
but also for item-item and user-user distances. Essentially,
the so-called metric learning scheme is blessed by the con-
straint of triangle inequality.

In contrast to collaborative metric learning scheme, we
argue that the feature interaction between two points can be
learned by the sign of the triangle inequality for Lorentz dis-
tance, instead of using the distance itself. Formally, our tar-
get score function is written as

dz(x,y) — d7(x,0) — d(0,y)

S(x,y) = (0,%)2(0,y)z ’

(7
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Figure 1: Visualization of the hyperboloid model 2. In this
model, triangles could (a) violates Lorentz triangle inequal-
ity and (b) obeys triangle inequality for points on the hyper-
boloid.
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Figure 2: The 2D landscape for the score function in the (a)
triangle learning scheme (e.g., Eq. (7)) and (b) metric learn-
ing scheme using geodesic distance in a 2D hyperboloid
model.

where 0 = (1,0,---,0) is the origin. The nominator is
simply the difference between the two sides of the triangle
inequality, and the denominator is used to bound the score
function.

The advantage of using Eq. (7) is that, the function is
bounded in [—0.5, 2] in all dimensions. Therefore, the score
function is free from the curse of dimensionality, compared
to the collaborative metric learning scheme. To illustrate the
landscape of the function, we plot Eq. (7) for two points in
2D in Figure 2 (a). Because each point on the 2D hyper-
boloid has only one free parameter, we plot the landscape
of the score function by setting the z-axis and y-axis corre-
sponding to the free parameter of each point respectively in a
2D plane. We also plot the landscape for collaborative met-
ric learning scheme using the geodesic distance defined in
Eq. (4) in Figure 2 (b). By comparison, we can observe that
the landscape for our approach is smooth and bounded, but
the score function for collaborative metric learning scheme
is unbounded. The bounded property is promising because
the embedding vectors are free to be far away from the ori-
gin with a smooth growth in the score function.

Lorentzian Factorization Machine

In this section, we first give an overview of our proposed
Lorentzian Factorization Machine or LorentzFM for short,
named after learning the triangle inequality equipped with
Lorentz distance. Next, we describe each component of the
model in some greater details. Finally, we present a detailed

6472

description of how to optimize the model.
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Figure 3: The architecture of LorentzFM. It comprises an in-
put layer, a Lorentz embedding layer and a triangle pooling
layer to aggregate feature interactions.

Input Sparse Features

Overview

The goal of our approach is to map the original sparse fea-
tures into a low-dimensional space. As shown in Figure 3,
our purposed method takes the sparse feature vector V, as
input, followed by a Lorentz embedding layer that projects
all features into the same hyperbolic space. Next, we feed
the embeddings of all fields into a novel triangle pooling
layer, which is coined as an aggregation function of all fea-
ture pairs to measure the soft “validness” of triangle inequal-
ity in overall. Unlike the recent state-of-the-arts neural archi-
tectures built upon Euclidean embeddings, LorentzFM does
not need any extra parameters. In particular, for given sparse
input V., the output of the pooling layer is the model output
score:

d
Sprm(Ve) = Z T (vi,vj)xiz;,

i,j=1,i%j

()

where v;, v, € H" are embedding vector for each input fea-
ture field, and 7 (-, -) is the feature interaction function. Al-
though formally in Eq. (8) the linear term is missing, it ac-
tually reappears in the pooling function, 7 (-,-), as shown
later.

Lorentz Embedding Layer

The embedding layer is a lookup table to project sparse fea-
tures to low-dimensional dense vectors in the Lorentz space.
Formally, let v¥ € H™ be the embedding vector for the k-th
feature, whereas the O-th component is given by the con-
straint as Eq. (3).

In some cases, categorical features can be multi-valued.
For example, the genre of movie “Titanic” could be either
“Drama” or “Romance”. We use multiple fields for these cat-
egorical features under a universal encoding and pad them
with “unknown” tags to ensure each sample is aligned in
feature dimension.

Triangle Pooling Layer

We then feed the embedding vectors into the triangle pooling
layer, which is an aggregation function that converts a set of



embedding vectors to one vector:
d%(u,v) — d%(0,u) — d%(0,v)

2<0a U>L<0,V>£
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T(U, V) =

©)
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linear term

UoVo

interaction term

In the second line we use the definition of Lorentz distance
and Lorentz inner product. Owing to the normalization de-
nominator, the linear term emerges, as shown in the last line.

Objective and Learning

The objective function to optimize both recommendation
system and CTR prediction is the binary cross-entropy
(BCE):

arg min > —yilog(pi) — (1= yi)log(1 —p;),  (10)

where p;s are the probabilities for the i-th sample input vec-
tor Vg(f) and computed as p; = O’(SLFM( QE,Z))), and y;s are
the true labels. Even though Bayesian Personalized Rank-
ing (BPR) loss (Rendle et al. 2009) proves to be useful in
common recommendation systems, we do not use it because
the BCE loss is sign-sensitive, which is the desired property,
while the BPR loss is not.

The parameters of our model are learned by using Riema-
nian stochastic gradient descent (RSGD) (Bonnabel 2013).
As shown by Nickel and Kiela (2018), the parameters are
updated by the following form

Or+1 = expy, (—n grad f(0r)), (11

where grad f(6;) is the gradient defined in the Riemannian
manifold and 7 is the learning rate. The Riemanian gradi-
ent is obtained by multiplying the gradient in the Euclidean
space by the Lorentz metric, and then performing an orthog-
onal projection onto the tangent space spanned by the cur-
rent parameter set. Finally, the parameter update is given by
the following exponential map

expy, (x) = cosh(||v[[)x + sinh(|[v]|¢) (12)

v
Ivlle
which maps a tangent vector v in the tangent space onto the
Lorentz manifold. Details can be found in Nickel and Kiela
(2018).

Since the score function Eq. (7) is bounded and dimension
independent, it is not necessary to apply an Lo regularization
term over the embedding vector, because it will create a re-
sisting gradient towards the origin of the hyperboloid model.

Experiment

In this section, we evaluate LorentzFM with four real-word
datasets. We aim to answer the following research questions:

e RQI1: Compared with the state-of-the-art deep learning
based methods, how does our method perform?
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e RQ2: What is the resource cost for LorentzFM compared
to existing deep learning based methods?

e RQ3: How can we interpret feature interactions learned
by LorentzFM?

Steam MovieLens KKBox Avazuf
#Samples 1.23M 573K 2.6TM  40.4M
#User Fields 1 5 7 -
#Item Fields 11 7 6 -
#Fields 12 12 12 21
#Users 26.6K 6.0K 21.1K -
#Items 5.9K 3.1K 9.3K -
#Features 46.2K 9.4K 38.2K 972K
Sparsity 99.22% 96.85% 98.64% -

Table 1: Statistics of datasets after data preprocessing. T In
Avazu dataset there are no explicit indicators for item ID and
user IDs, so we leave the corresponding rows blank.

Datasets and Preprocessing

We use Steam, MovielLens and KKBox datasets to evalu-
ate the recommendation task and Avazu dataset for the CTR
task. The datasets are briefly described as follows.

e Steam!' is a dataset crawled from Steam database, which
includes rich information such as users’ playing hours,
games’ price, category and publisher efc. We keep posi-
tive samples by setting the threshold of playing hours to
100.

e MovieLens? is a set of benchmark datasets for evaluating
recommendation algorithms. We use the MovieLens 1M
version and keep samples with ratings above 3.

e KKBox® dataset is adopted from the WSDM cup 2018
Challenge provided by the music streaming service
KKBox. This dataset includes demographic information
about the users and structured meta data about the songs.
The original dataset has a binary label and we only keep
the positive samples.

e Avazu* is an ads click-through dataset with more than
40 millions instances. It consists of 10 days of ad click-
through data with only sparse features.

For the three recommendation datasets we process the
dataset as follows: (1) keeping only positive ratings as de-
scribed above and filter the {KKBox, Steam, MovieLens}
dataset to {20, 20, 5}-core setting; (2) randomly splitting
{10K, 10K} samples for {validation, testing}, and the rest as
training set. For the Avazu dataset, we remove the timestamp
field and then replace features less than 5 times by a univer-
sal “unknown” tag. We randomly select 80% samples for

"http://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data

“https://grouplens.org/datasets/movielens/ 1 m/

3https://www.kaggle.com/c/kkbox-music-recommendation-
challenge

*https://www.kaggle.com/c/avazu-ctr-prediction



Steam MovieLens KKBox Avazu

MRR HR@10 NDCG MRR HR@10 NDCG MRR HR@10 NDCG AUC Logloss
FM 0.1042 0.1898 0.2376 0.0638 0.1258 0.1966 0.0578 0.0998 0.1735 0.7582 0.3920
NFM 0.1213 0.2286 0.2591 0.0723 0.1446 0.2082 0.0586 0.1086 0.1779 0.7641 0.3884
DeepFM 0.1284 0.2408 0.2664 0.0780 0.1548 0.2143 0.0637 0.1140 0.1843 0.7674 0.3864
xDeepFM  0.1228 0.2316 0.2615 0.0791 0.1570 0.2156 0.0639 0.1148 0.1846 0.7677 0.3865
DCN 0.1213 0.2261 0.2598 0.0749 0.1512 0.2119 0.0644 0.1136 0.1848 0.7677 0.3863
LorentzFM 0.1362 0.2592 0.2746 0.0780 0.1533 0.2129 0.0733 0.1295 0.1938 0.7775 0.3828

Table 2: Best performance of each model with fixed embedding size 10 on the test set.

training and, 10% for validation and 10% for testing. Data
statistics are shown in Table 1.

Experiment Settings

Evaluation Metrics For each positive user-item pair in the
recommendation task, we calculate the following three rank-
ing metrics to evaluate the performance over al/l unobserved
samples:

e MRR is the average of the reciprocal ranks of the test
items by their scores over the entire ranking list.

o HR@10 measures the relative orders among positive and
negatives within the top 10 of the ranking list.

e NDCG accounts for the position of the test items by as-
signing higher scores to top ranks over the entire ranking
list.

For the CTR prediction task, we use AUC (Area Under the
ROC curve) and logloss (binary cross-entropy) for evalua-
tion. AUC measures the probability that an instance predic-
tion will be ranked a higher score to a randomly chosen neg-
ative item, and in contrast logloss measures the distance be-
tween the predicted score and the ground truth label for each
sample.

Compared Baselines
are our baselines:

We consider the following models

e FM (Rendle 2010) combines the second-order feature in-
teraction as well as a first order term.

e NFM (He and Chua 2017) can learn implicit high-order
features by stacking MLP on top of the FM model.

e DCN (Wang et al. 2017) concatenates MLP and Cross
Network, which takes outer product of concatenated fea-
ture vector at bit-wise level. It can extract both the implicit
and explicit high-order features.

e DeepFM (Guo et al. 2017) combines the FM model and
deep MLP to get the low and high-order features.

e xDeepFM (Lian et al. 2018) takes out product at the
vector-wise level and applies the convolution layers to get
the high-order explicit and implicit features.
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Training Details

We implement LorentzFM and all baselines in PyTorch’
(Paszke et al. 2017), and for each model the reported per-
formance is given by performing grid search over the hyper-
parameters on the validation set, with early stopping at 20
epochs. The embedding size is set to 10 for all models for
fair comparisons. For the recommendation task, for each-
item pair in the training set, we randomly sample 10 unob-
served items together with the given user as negative sam-
ples. MRR is the metric for early stopping. For the CTR task,
we use the original binary labels for training, and logloss is
monitored for early stopping .

LorentzFM Details Burn-in period is set to 25 epochs.
For the recommendation task, we tune the learning rate €
[0.05, 0.1, 0.2, 0.3] with RSGD and batch size € [64, 128,
256, 512]. For the CTR prediction task, the learning rate is
tuned € [0.1, 0.2, 0.3] and batch size is set to 4096.

Baselines Details The loss function is BPR loss for the
recommendation task and BCE loss for the CTR task. We
tune the dropout rate p € {0, 0.1, ..., 0.5}, the MLP layers
€ [[512, 256], [400, 400], [100, 100]], and the batch size €
[64, 128, 256, 512]. Learning rate is set to 0.001 with Adam
optimizer (Kingma and Ba 2015). We use an Ls regulariza-
tion with A\ = 1075, For the CTR prediction task, all hyper-
parameters except for the embedding size are set identical to
the original paper.

Performance Comparison (RQ1)

Table 2 reports our experiment results of each individual
model on the four datasets with fixed embedding size 10. For
each dataset, all the deep learning methods (NFM, DeepFM,
xDeepFM and DCN) substantially outperform FM. It is ex-
pected because additional neural net layers built on top
of the second-order feature interaction layer will incor-
porate higher-order feature interactions. The performance
between these deep learning models are close upon fine-
tuning over the hyper-parameters. Surprisingly, LorentzFM
achieves even better results compared to these deep learning
models significantly except for the MovieLens dataset. We
observe that in MovieLens the number of sparse features is
5-100 times smaller than the other three datasets, which re-
flects that LorentzFM is especially powerful when the data
is extremely sparse.

Shttps://pytorch.org/
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Figure 4: Performance comparison on the test set w.r.z. different embedding sizes for the Steam dataset.

# Training Parameters

Training Time per Epoch (seconds)

Steam MovieLens KKBox Avazu Steam MovieLens KKBox Avazu
FM 507k 103k 420k 10.68M 124.0 82.4 648.3 312.1
NFM 519k 115k 432k 11.36M 158.7 87.7 746.6 478.2
DeepFM 717k 313k 634k  11.10M 159.2 87.1 693.3 450.7
xDeepFM 865k 498k 808k 11.46M 391.0 2234 1340.2 1459.8
DCN 530k 126k 444k 11.24M  152.6 62.16 666.8 547.2
LorentzFM 415k 85k 344k 8.75M  160.7 67.6 664.2 522.2
—A% 21.8% 82.9% 574%  22.1% -8.1% 69.7% 50.4%  4.6%

Table 3: Number of training parameters and training time per epoch according to the best performance in Table 2. The last row
corresponds to the reduced percentage in training parameters or training time of LorentzFM, compared to the best performed

baseline.

In order to understand the impact of embedding size on
LorentzFM as well as the compared baselines, we conduct
control experiments on the Steam dataset by holding the
best hyper-parameter settings for each model in Table 2,
while varying the embedding size € [5, 10, 15, 20]. Figure
4 demonstrates that in general the performance of all models
increases with embedding size except for FM. Note that the
performance of LorentzFM surpasses over other deep learn-
ing methods at embedding size € [10, 15, 20].

Resource Cost Comparison (RQ2)

Table 3 compares the amount of training parameters and the
training time per epoch between LorentzFM and the best
tuned baselines. In order to compare the training time fairly,
we use the same batch size for each model. The number of
training parameters for LorentzFM is 9 times feature size,
because the zeroth component of each embedding vector is
not a free parameter. In the last row of Table 3, we show the
reduced percentage of the corresponding training parame-
ters and training time when LorentzFM is compared with
the best performing baseline. Because LorentzFM does not
need any deep learning layers on top of the triangle pooling
layer, it could reduce up to 82.9% training parameters and
69.7% in training time compared to xDeepFM.

Case Study (RQ3)

The fine-grained feature interactions are the essence for
LorentzFM to outperform deep learning models. Therefore,
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it is expected that the structure of the feature interactions is
capable to explain the human behavior. To demonstrate this,
we sample a typical user (user ID “76561198071045315)
whose almost all positive ratings are free in price from the
Steam dataset. We then plot the heatmap of feature interac-
tion score of a positive item and a negative item from the
test set for both LorentzFM and FM. The result is shown in
Figure 5, in which we mask the diagonal elements. From the
heatmap we observe the following:

e For the positive sample, the game is free of charge. The
feature interaction score between “UserID” and “Price”
learned by LorentzFM is highlighted with score 0.4, indi-
cating that price free is strongly preferred by the user, see
Figure 5 (a). However, as shown in Figure 5 (c), the infor-
mation about this fine structure is missing in the heatmap
for FM, because the inner product between the embedding
of this “UserID” and “Price” is -0.14.

e For the negative sample, the price of the game is $14.99.
In this case, the score learned by LorentzFM between
“UserID’ and “Price” is the most negative among oth-
ers, as shown in Figure 5 (b), meaning that the negative
sample is recognized mostly due to its price. On the other
hand, the inner product between “UserID” and “Price” is
not dominating for FM.

This case study shows that compared to FM, the interactions
between feature pairs learned from LorentzFM are more in-
formatively related to the underlying facts according to the
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Figure 5: Visualization of the heatmap of score functions
from LorentzFM for (a) a positive sample and (b) a negative
sample, and from FM for the same (c) positive sample and
(d) negative sample.

sign and the magnitude of the pairwise score.

Related Work

Factorization machine (FM) (Rendle 2010) and field-aware
factorization machine (FFM) (Juan et al. 2016) are two of
the most well-known models for both recommendation sys-
tems and CTR predictions. FM models the sparse feature
interactions by learning latent factors, and FFM introduced
field aware factors to increase the model capacity and ex-
pressiveness. However, FFM consumes huge memory due to
its field awareness and henceforth its scalability is restricted.
Therefore, higher-order factorization machine (Blondel et
al. 2016) is proposed to model feature interactions beyond
quadratic level.

The research community of CTR prediction recently pays
more attention to the deep learning models, due to their
strong capabilities in feature extraction. Wide & Deep model
was initially introduced for jointly training wide linear mod-
els and deep neural networks to capture both shallow and
deep representations. However, these advances still require
manual efforts for feature engineering in advance of model
training stage. DeepFM (Guo et al. 2017), Neural FM (He
and Chua 2017) and Deep & Cross Network (Wang et al.
2017) are representative models to combine low-order and
high-order feature interactions to improve the performance
in CTR in an automatic manner. Product-based Neural Net-
works (Qu et al. 2016) tries to capture high-order feature in-
teractions by involving a product layer on top of the embed-
ding layer. Apart from the advances in model architectures,
attention mechanism, which first appears in neural machine
translation models to learn a weighted sum of model outputs,
also finds its impact for CTR and recommendation systems.
Works that incorporate attention mechanism include Deep
Interest Network (Zhou et al. 2018), Attentional Factoriza-

6476

tion Machine (Xiao et al. 2017) and AutoInt (Song et al.
2019).

Traditional research on recommendation system tries to
learn latent factors for user and items based on their pref-
erences (Salakhutdinov and Mnih 2007; Wang, Wang, and
Yeung 2015). In these works, learning latent factors by fac-
torizing the interaction matrix is equivalent to using Eu-
clidean inner product of embeddings of user, item and their
side information. Our work is inspired by the seminal pa-
per collaborative metric learning (Hsieh et al. 2017) which
argues that inner product formulation will result in viola-
tion of triangle inequality in Euclidean space. The authors
propose to learn not only user-item, but also user-user and
item-item distances. This idea is later on generalized to use
hyperbolic distance (Vinh et al. 2018; Chamberlain et al.
2019) for recommendation systems, accompanied by the
recent advances in hyperbolic representation learning and
hyperbolic neural networks (Nickel and Kiela 2017; 2018;
Ganea, Bécigneul, and Hofmann 2018; Sala et al. 2018;
Law et al. 2019; Giilgehre et al. 2019; Bécigneul and Ganea
2019). While hyperbolic representation seems eminent over
Euclidean representations in many applications, especially
for problems with underlying hierarchical structures, previ-
ous study focus on learning the distances rather than the vi-
olation of triangle inequalities in terms of Lorentz distance.
Besides, another type of approach to model feature interac-
tions is to replace the inner product in the FM by circular
correlation or circular convolution, as shown in Tay et al.
(2019).

Conclusion

In this paper, we present a lightweight yet effective model
named LorentzFM for recommendation and CTR prediction
tasks. We propose a new score function by characterizing if
the triangle inequality for Lorentz distance is violated or not
in the hyperboloid model. Our model is advantageous with
its capability in modeling feature interactions with the un-
derlying geometry, without using any deep learning layers.
Empirical experiment results on four real-world benchmark
dataset show that LorentzFM achieves the state-of-the-art
performance, outperforming multiple existing deep learn-
ing baselines, while using fewer training parameters and less
training time.
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