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Abstract

Despite the recent success in probabilistic modeling and their
applications, generative models trained using traditional in-
ference techniques struggle to adapt to new distributions,
even when the target distribution may be closely related to the
ones seen during training. In this work, we present a doubly-
amortized variational inference procedure as a way to address
this challenge. By sharing computation across not only a set
of query inputs, but also a set of different, related probabilistic
models, we learn transferable latent representations that gen-
eralize across several related distributions. In particular, given
a set of distributions over images, we find the learned rep-
resentations to transfer to different data transformations. We
empirically demonstrate the effectiveness of our method by
introducing the MetaVAE, and show that it significantly out-
performs baselines on downstream image classification tasks
on MNIST (10-50%) and NORB (10-35%).

Introduction

A wide variety of problems in machine learning (ML) can
be framed as probabilistic inference in generative models.
In particular, latent variable models learn representations of
data that capture salient characteristics of its underlying dis-
tribution, which can then be used for downstream tasks such
as classification (Klingler et al. 2017). While traditional in-
ference techniques can be slow or even computationally in-
tractable, the advent of amortized (variational) inference
allowed such methods to scale to large datasets, bringing
about significant progress in generative modeling applica-
tions such as image and audio synthesis (Brock, Donahue,
and Simonyan 2018; Oord et al. 2016), molecule generation
(Segler et al. 2017), and more.

However, as the problem domains we face become in-
creasingly more complex and multimodal, a technical chal-
lenge arises: generative models trained using traditional in-
ference techniques struggle to adapt to new data distribu-
tions, even when these new distributions may be closely
related to distributions seen during training. For example,
variational autoencoders (VAEs) trained on the original im-
age distributions have difficulty generalizing to small visual
transformations such as changing the position or quantity of
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objects in the scene. However, we would expect the true gen-
erative model, such as those of humans (Yildirim 2014), to
be invariant to these slight modifications. Therefore, we aim
to address: how do we design an amortized inference algo-
rithm that generalizes across related distributions to learn
transferable representations? Such features would capture
the salient characteristics necessary to allow for better gen-
eralization to related, but unseen distributions at test time.

To address this question, we propose a doubly-amortized
inference procedure that amortizes computation across not
only a set of query inputs, but also a set of different, related
target probabilistic models. More precisely, we derive a new
objective called the MetaELBO which serves as a variational
lower bound across multiple distributions, while also incor-
porating a prior regularization term encouraging each gen-
erative model to match its respective data marginal. We note
that this inference model is not intended to be universal, but
rather tailored to a specific family where each probabilistic
model is similar in structure. Inspired by meta-learning, we
denote this doubly-amortized” inference problem as meta-
inference and let a meta-distribution refer to the probability
distribution over the family of probabilistic models.

As an instantiation of our method, we introduce the
MetaVAE, a VAE trained with the MetaELBO. Empirically,
we first show three demonstrations to build intuition for
meta-inference: 1) clustering, 2) compiled inference, and 3)
learning sufficient statistics on exponential families. Then,
we study image transformations (e.g. rotations, shearing)
on MNIST digits where the MetaVAE learns representa-
tions that transfer to unseen transformations, outperforming
baselines by 10-50%. Finally, we showcase similar improve-
ments of 10-35% on real-world images (NORB). While
the representations learned from other generative models
quickly decay in quality under more severe transformations,
those of the MetaVAE preserve relevant information about
the image while abstracting away unnecessary differences
induced by visual manipulation.

Preliminaries
Exact and Approximate Inference

Let p(x, z) be a joint distribution over a set of latent vari-
ables z € Z and observed variables x € X. An inference
query involves computing posterior beliefs after incorporat-



ing evidence into the prior: p(z|x) = p(x, z)/p(x). This
quantity is often intractable to compute as the marginal like-
lihood p(x) = [, p(e, z)dz requires integrating or sum-
ming over a potentially exponential number of configura-
tions for z. Thus, we are forced to seek approximations.

Approximate inference techniques such as Markov Chain
Monte Carlo (MCMC) sampling (Hastings 1970) and vari-
ational inference (VI) (Jordan et al. 1999; Wainwright and
Jordan 2008) are widely used to approximate the posterior
p(z]z). In VI, we introduce a family of tractable distribu-
tions Q parameterized by ¢ over the latent variables and find
the member (called the approximate posterior), gy~ € Q that
minimizes the Kullback-Leibler (KL) divergence between
itself and the exact posterior:

00+ (2) = argmin D (g (D) |p(=le) ()

This g+ (z) can serve as a proxy for the true posterior dis-
tribution. We note that the solution depends on the specific
value of the observed (evidence) variables & we are condi-
tioning on. For notational clarity, we rewrite the variational
parameters as 1, to make explicit their dependence on x.

One commonly needs to solve multiple inference queries
of the same kind, conditioning on different values of the ob-
served variables x (evidence). Let pp(x) be an empirical
distribution over the observed variables & € X'. Note pp ()
can be different from the marginal p(x) when the model is
mis-specified. The average quality of the variational approx-
imations can then be quantified by:

p(x, 2)
Gy, (2)

where ¢4, (z) can be viewed as an importance distribution.
In practice, pp(x) is unknown but we assume access to a
training dataset D of examples i.i.d. sampled from pp(x)
that can be used to evaluate Eq. 2.

G (2) (2)

pp () HEXE

Amortized Variational Inference

An alternative formulation leverages a technique known as
amortization (Gershman and Goodman 2014), which re-
duces the computational cost of Eq. 2 by casting the per-
sample optimization process as a supervised regression task.
Rather than solving for an optimal ¢y- (z) for every x, we
learn a single deterministic mapping f4 : X — Q to predict
Yy, or equivalently gy-(2z) € Q, as a function of z. Of-
ten, we choose to represent fy4 as a conditional distribution,
denoted by ¢4 (z|x) = fs(x)(z) when scoring a value z.
This procedure introduces an amortization gap, in which
the less flexible parameterization of the inference model re-
places the objective in Eq. 2 with the following lower bound:

p(z, 2)
q4(z|)

This gap refers to the suboptimality caused by amortizing
the variational parameters over the entire training set, as op-
posed to optimizing for each example individually (pulling
the max out of the expectation in Eq. 2). This tradeoff in
expressiveness, however, enables significant speedups.

3)

mgx Ep-D(m) Eq(p(z\m) log
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Learning Latent Variable Models

So far, we have assumed that the true generative model
p(x, z) is given. However, we often only possess a family of
possible models, pg(x, z) parameterized by 6 and the data
set of observations, D. The challenge then, is to choose 6
whose model best explains the evidence. To do so, we max-
imize the log marginal likelihood of the data:

Epp (2 [log po(x)] = Epp (2) [log/pe(w,z)dz] 4)

As mentioned, Eq. 4 is intractable to evaluate. Instead, we
derive the Evidence Lower Bound (ELBO) to Eq. 4 using
¢4 (z|x) as a tractable amortized inference model:

Do (13, Z)

E,,[l > E, E log ———— 5
With Eq. 5 as an objective, we jointly optimize the parame-
ters of the inference and generative models: ¢ and 6.

We may derive an alternative formulation of Eq. 5:

L(¢,0) = —Dxwr(gs(z, z)|lpo(z, 2)) (6)
= —Dkr(pp(z)lpe())
— Epp [Dkr(gs(2]2)[Ipoe(2]2))] (7

where ¢4 (x, z) = f4(x)(2)pp(x). Eq. 7 is comprised of a
maximum likelihood term with a regularization penalty that
encourages the generative model to have posteriors that can
be easily approximated by the inference model. We will re-
visit this intuition once we introduce meta-amortization.
Often, po(x|z) and ¢4 (z|x) are parameterized by deep
neural networks, which is known as a variational autoen-
coder, or VAE (Kingma and Welling 2013). The latent vari-
ables z are learned “features” inferred by g, (z|z) that can
be used in downstream tasks, such as clustering or classifi-
cation. The VAE is popular in many real-world domains: in
medical diagnosis, for example, one can infer the identity of
a disease (z) from observed symptoms (). Given a set of
symptoms from a population of patients, we can fit a VAE
tailored to a disease, e.g. thoracic disease (Mao et al. 2018).

Meta-Amortized Variational Inference

But in practice, physicians often work with several patient
populations that vary across a wide range of socioeconomic
factors. For a new population, clinicians draw on prior expe-
rience from patients with similar symptoms, lowering their
chances of misdiagnosis. We can similarly construct a gen-
erative model that captures this intuition. Instead of training
a VAE on a new population, which would be equivalent to
the physician re-learning how to diagnose an illness, we aim
to share statistical strength between different patient groups
to infer latent features that transfer to similar, but previously
unseen populations.

We formalize this idea into a new algorithm that we call
meta-amortized inference. Recall a (singly)-amortized infer-
ence model for pg(x, z)

log o

fo(@)(2) ®)

max Epp@) |Ef, (@)



which approximates pg(z|x) for various choices of the ob-
served variables, « ~ pp(z). Unlike Eq. 3, we have written
¢4 (z|x) in its alternate form, fy(x)(2).

We are now interested in not one but a set of models,
Jz = {pe,(x,z),i € T} where 7 is a finite set of indices.
Crucially, (like the example above) we make a few simplify-
ing assumptions. First, we assume that the random variables
in each model have the same domains (e.g. X', Z), but the
relationships between the random variables may be differ-
ent. Second, we assume that for each model, we care about
the same inference query py, (z|x). Finally, we assume to
have some knowledge of typical values of the observed vari-
ables for each model in J7: formally, we desire a set M =
{pp;(x),i € I} C M of marginal distributions over the
observed variables. Here, M denotes the set of all possible
marginal distributions over X. Let ppq : Mz — [0,1] de-
note a distribution over M. For example, p may be uni-
form over a finite number of marginals. As p4 is a distribu-
tion over distributions, we refer to it as a meta-distribution.

The naive approach to amortize over a set of models is:

pe.(w,Z)
E,, ~ E, o (x) |Ef,(2) log —————= 9
rrip {mﬁ‘x ol >[ ol 08 wa)(z)” ©
where we separately fit an amortized inference model for
each py,(x,z). However, this approach is prohibitively
expensive as the size of Mz increases, and training
across models is decoupled. We instead propose to doubly-

amortize the inference procedure as follows (we move the
max out once more):

Py, (, 2)

el
(10)

where the original regressor f4(x) is replaced by a doubly-
amortized regressor g, (pp, , ) that takes both the marginal
distribution pp, () and an observation x to return a pos-
terior distribution. Formally, we call such a mapping, g, :
M x X — Q, a meta-inference model. This doubly-
amortized inference procedure must be robust across vary-
ing marginals and evidence, generalizing over M: a large
set of sufficiently similar, previously unseen models.

We note that the choice of pp, (&) as input to g, is criti-
cal in practice. As in Eq. 7, a successful learning algorithm
will learn generative models such as py, () or py, (x, z) that
match pp, (). But similarly to the recent progress in wake-
sleep (Hinton et al. 1995; Bornschein and Bengio 2014;
Le et al. 2018), we found that using observations from the
true marginal pp, (x) led to significantly more stable train-
ing. One may also consider alternate combinations of inputs
for pp, (), which we leave as future work.

m(?X]EPDiNPM {Epp,;(w) [E%(zmww) log

Meta-Amortized Variational Bayes and Learning In
certain settings, we are given a set of generative mod-
els {pex(x,2),i € I}, where each model py- (x, z) with
known parameters captures a marginal distribution, p;(x) €
M. We can then immediately optimize Eq. 10 to obtain the
optimal meta-inference model.

But in many cases the generative models are not known
ahead of time, and therefore we must jointly learn {6;,7 €
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T} along with the parameters of the meta-inference model,
¢. To do so, we consider the objective,

md;ax Epp, ~prt [IIIQaX Ly, (pp, )} (1D

where the inner loss function is defined as:

Lg0.(pp,) = —Dxv(pp, (%) 90 (pD,, @) |Ip(2)p0, ([ 2))
and pp, ()gs(pp,, ) denotes the distribution defined im-
plicitly by first sampling @ ~ p;(x), then sampling z ~
9o (pp,, ). We refer to this lower bound as the MetaELBO,

and a VAE trained with this objective as the MetaVAE.
Lastly, as we did in Eq. 7, we can rewrite the MetaELBO
to a more interpretable form. Similar to fis(a), our regressor

9o(pp,, x) can be represented as a conditional distribution,
denoted ¢4 (z|pp,, ) = 94(pp,, x)(2). Then,
Ls0(pp,) = —DxL(pp, (%)44(2|pD,, T)||Ip(2)py, (x|2))
= —Dxku(pp, (@)]lpy, (x))
— Eqropp, (2 [Dk1 (45 (2IpD, @) [po, (2]).

This form has a penalty term for each distribution pp, (),
encouraging the meta-amortized inference model to perform
well across pp, (x) sampled from the meta-distribution p 4.
We note that if M = {pp}, then g4(pp,, ) = fo(x), and
the MetaELBO is equivalent to ELBO.

Interestingly, we find that the MetaVAE’s learned repre-
sentations transfer well to unseen downstream tasks at test
time. We provide some intuition as to why this is the case.
Samples from the corresponding marginal pp, help to lower
the variance in the meta-inference network’s inferred z’s
for each query point x, regularizing the model’s behavior
to yield more robust representations.

Representing the Meta-Distribution

In Eq. 11, it is not clear how to represent a distribution
pp,(x) as input if we parameterize g4(pp,, ) as a neural
network. One of the main insights from this work is to rep-
resent the marginal distribution as a finite set of samples,

D ={z; ~pp,(x)lj =1,..., N} (12)

or a data set. We can then use D, to define an empirical ana-
logue to gy (p;, ), denoted as gy : XN x X — Q, which
maps a data set with NV samples and an observation to a pos-
terior. Then, there is an equivalent analogue of Eq. 11 where
a marginal, pp, (x) is replaced by a data set, D;.

Implementation Details In practice, for some dataset D;
and input x , we implement the meta-inference model
9de (Di, IB) Ty (CONCAT(CL‘, h¢1 (Dl)) where (;5
{#1, ¢2}. The “summary network™ hy, (-) is a two-layer per-
ceptron (MLP) that ingests each element in D; indepen-
dently and computes a summary representation using the
mean. The “aggregation network” 74, (-) is a second two
layer MLP that takes as input the concatenated summary
and input. The corresponding i-th generative model py, (x|z)
is parameterized by an MLP with identical architecture as
T4, (+). ReLU nonlinearities were used between layers. For
more complex image domains (such as NORB), we use
three-layer convolutional networks instead of MLPs.



Related work

Rapid Adaptation through Meta-Learning. Among the
rich body of work on meta-learning (Vinyals et al. 2016;
Snell, Swersky, and Zemel 2017; Gordon et al. 2018), a com-
mon goal is to train models such that they will rapidly adapt
to new, unseen classification tasks. Although the Neural Pro-
cess (NP) (Garnelo et al. 2018; Kim et al. 2019) is similar
to our work in that it derives predictions for new targets by
conditioning the encoder network on a relevant context set,
it models uncertainty over a distribution of functions. An-
other line of research formulates proper initialization as the
workhorse of successful meta-learning (Finn, Abbeel, and
Levine 2017; Grant et al. 2018). In many ways, our meta-
amortized inference procedure can be thought of as learning
a good initialization for an inference model on a new tar-
get distribution. However, these approaches are not directly
comparable to ours because of their supervised nature.
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(a) VAE (b) NS (c) VHE (d) MetaVAE

Figure 1: Plate diagrams comparing the MetaVAE to exist-
ing generative models. Critically, MetaVAE does not include
a latent variable over models, c.

Few-shot Generative Modeling. This branch of research
aims to train generative models such that they will general-
ize to unseen distributions at test time given only a few ex-
amples. The focus has been on few-shot density estimation,
with approaches ranging from the use of conditioning (Bar-
tunov and Vetrov 2016) to nested optimization (Reed et al.
2017). Meta-inference however is not few-shot, and instead
aims to learn transferable representations for downstream
tasks rather than density estimation alone.

The most relevant prior works include the Neural Statis-
tician (Edwards and Storkey 2016) (NS) and the Variational
Homoencoder (Hewitt et al. 2018) (VHE), two very similar
models that study inference over sets of observations. The
VHE optimizes the following objective,

Em,DNpD []Eq¢(c|D) [Eqd, (zle,z) [1Og Po (:B‘Zv C)]]

—Dxr(gs(zle, )| |p(z]x)) — %DKL(%(CID)HP(C))]
(13)

where D {x1,..,xN} is a set of N samples and ¢
is a global latent variable. We note that if we view D
as an approximation for a marginal distribution, then NS
and VHE also serve as baselines that can perform doubly-
amortized inference. Similar to our proposed inference
model §,(D, x), the distribution ¢(c|D) in Eq. 13 ingests
a data set. However, both the VHE and NS utilize a global
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variable ¢ (isotropic Gaussian). We believe this constraint
is overly restrictive in settings which require transferring to
a diverse set of distributions, hurting generalization perfor-
mance. Instead, the MetaVAE does not impose a distribu-
tional assumption on the different generative models, and
shares a fixed meta-encoder network among separate de-
coders for each dataset. We find that this semi-parametric
approach yields consistently better performance.

Demo: Clustering Mixtures of Gaussians

First, we present a simple clustering example to build intu-
ition for meta-inference. Consider a standard VAE trained
to capture a single mixture of two Gaussian (MoG) dis-
tributions pp(x). Each component has isotropic covari-
ance of 0.1 and mean drawn from the uniform distribu-
tion, U(—5,5). The two components are mixed evenly and
assigned a label of 0 or 1. Then, inference g4 (z|x) with
z € {0,1} as a 1-D binary latent variable amounts to pre-
dicting which component x belongs to, of which the true
cluster label is recoverable up to a permutation.

Now we introduce meta-inference for this task. Given
that an inference model ¢4(z|x) of a VAE can learn to
cluster data from a specific MoG, a meta-inference model
9o (pp,, ) should correspond to a general-purpose cluster-
ing algorithm that can separate out the components of any
related, but previously unseen mixture distribution pp, .

Concretely, we let each distribution pp,(x) ~ pa be a
MoG and train a MetaVAE amortized over N mixtures to
assess how well it can predict z € {0, 1} for a given x for
an unseen test distribution. We measure this clustering ac-
curacy on 1000 unseen but related MoGs sampled from the
same meta-train distribution.

While the VAE has a clustering error of 27.9% due to
cases where there is extreme overlap in mixture components,
the MetaVAE has an error of 9.9% when N = 50. Moreover,
larger NV improved the model’s performance (21.2% error
with N = 10 and 15.8% error with N = 20) as expected.
We include more details and a second study on clustering
MNIST digits in the Appendix'.

Demo: Inference for Classical Mechanics

For a second demonstration, we consider an introductory
problem in classical mechanics: objects sliding down in-
clined planes. Here, we are given a physics simulator that
models a box that faces friction with the plane. Each time
the simulator runs, we see a new box with a different fric-
tion coefficient. The simulator then records the time it takes
for the box to descend to the bottom of the plane. Each sim-
ulator has a different incline plane of length L and incline
angle A, and our task is to infer the coefficient of friction
(2) from the observed descent time (x) given a new simu-
lator. Building on (Le, Baydin, and Wood 2016), we tackle
this problem with “meta-compiled inference” and optimize:

Ly = Epe;; ~pMEm~Pe; (x) [—g¢(z|p9; ) w)] (14)

The meta-distribution M represents all possible simulators
of planes with L € [1,20] and A € [5,85] degrees, and

"https://arxiv.org/pdf/1902.01950.pdf
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Figure 2: (a,b) Examples of planes with two lengths and an-
gles. MSE between true and inferred friction for 304 simu-
lators (lighter is better) using (c) MetaVAE and (d) VAE.

po: (¢, z) represents a fixed simulator. The marginal distri-
bution, pg- () is obtained by repeatedly simulating to build
a data set D; = {a}. Thus the empirical meta-inference
model §4(D;, z) takes the data set and the output of a sin-
gle simulation x as input. We amortize over 25 simulators
with L € {2,4,6,8,10} and A € {20, 30,40, 50,60}, and
model z as a continuous 1-D random variable (interpreted as
friction). After training the MetaVAE, we measure the mean
squared error between the true and inferred friction for un-
seen simulators from M.

Despite seeing only 25 out of 304 simulators, the
MetaVAE transfers well: we get less than 0.001 MSE for
A € ]20,70] and L € [2,20]. A standard VAE trained on
a single simulator (L = 10, A = 45) exhibits both much
worse generalization performance and greater error overall
(notice the scale in the legends).

Demo: Learning Distribution Statistics

Next, we explore whether the MetaVAE is capable of "meta-
learning” the concept of a sufficient statistic for exponential
families (Wainwright and Jordan 2008). Given a set of ran-
dom samples, a sufficient statistic is a function that maps this
set to a vector in R<. For the exponential families, where
each family member has the form p(x) o exp(f - ¢(x))
for some parameter 6, this vector can be used to estimate
the parameters of the distribution. In other words, the ran-
dom samples (dataset) can be fully summarized by the suf-
ficient statistic, without any loss of information. Now con-
sider a vector of random variables (z1,--- ,xy), each dis-
tributed i.i.d from the same distribution with sufficient statis-
tic ¢(x;). For exponential families, the sum Zle o(x;) is
a sufficient statistic for the random vector. As an example,
the number of successes is a sufficient statistic for a vec-
tor of i.i.d. Bernoulli, and the sample mean and variance are
for a vector of Gaussians. With this intuition, we ask the
following: having seen many realizations of random vectors
from different exponential family distributions, can we learn
a sufficient statistic for a new random vector that will be
sufficient for estimating the parameters of its unseen, un-
derlying distribution? We aim to use the MetaVAE’s meta-
inference network to learn this mapping. More precisely, the
meta inference model g4 (pp,,x) should act (as a function
of x) as a sufficient statistic for an unseen distribution pp, .
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Data and Model Setup

In this experiment, we use Gaussian (fixed variance),
log-normal (fixed variance), exponential, symmetric beta,
Laplace (fixed location), and Weibull (fixed scale) as expo-
nential families. We then construct a set Mz of 20-D vec-
tors of random variables where each component is i.i.d. dis-
tributed according to the same distribution. By construction,
a random variable in this set will have only one free param-
eter, which can be found using the statistic learned by the
meta-inference network. We further restrict Mz by bound-
ing the free parameter to be within a range (e.g. Gaussians
with mean between -5 and 5).

After training, we measure how well we can infer the dis-
tributional parameters using the meta-inference model as a
learned statistic for observations from unseen distributions.
We compute the mean squared error (MSE) between the in-
ferred and true parameters. We refer the reader to the Ap-
pendix? for more details.

Experiment Results

Single Exponential Family Each pp,(x) € M is Gaus-
sian with a mean sampled from U(—5,5). At test time,
we measure inference quality on (1) new random vectors
from M whose entries are distributed as Gaussians with un-
seen means sampled from U(—5,5), and (2) a larger meta-
distribution by sampling means from U(—20, 20). We find
the MetaVAE successfully learns the mean of the underly-
ing Gaussians. Interestingly, in Fig. 3(a), we find that the
inference quality only decays near the boundary of the meta-
distribution. We compare the MetaVAE to a VAE trained on
one Gaussian distribution and find that doubly-amortizing
increases the inference quality dramatically. Then we move
to two new exponential families: we similarly construct 30
log-normal random vectors with means from U(—2,2) and
30 Exponential random vectors with rates sampled from
U(0, 3). Like above, Fig. 3(b,c) shows good performance of
meta-inference over M in each case.

(c) Exponential

(a) Gaussian (b) Log-Normal
Figure 3: (a) MSE between the true and inferred mean as
the true mean of pp, spans [—10,10]. The green region
shows the meta-distribution. The orange (dashed) line shows
a singly-amortized VAE trained on a single pp,(x) with
mean [—1.2,1.1] (randomly chosen) and the blue (solid)
line shows the MetaVAE. (b,c) show the MSE between the
true and inferred parameters. The orange line is a singly-
amortized VAE trained on a randomly chosen distribution
([-0.5, 1.8] for log-normal; [1.4, 2.8] for exponential).

Many Exponential Families Finally, we amortize over
many types of distributional families simultaneously: we

*https://arxiv.org/pdf/1902.01950.pdf



construct sets of 30 Gaussian, 30 log-normal, and 30 expo-
nential random vectors (same bounds as above) to train a
MetaVAE. This setup raises an interesting question: can we
do inference for new random vectors comprised of unseen
members of the exponential family (e.g. Weibull)?

We compare the performance a MetaVAE amortized over
the 90 random vectors to 3 different (baseline) MetaVAEs,
each of which is amortized over only 30 random vectors
from one family (e.g. Gaussian). Below, Fig. 4(a-c) plot
the MSE of inferred and true parameters for Gaussian, log-
normal, and exponential (all of which are in M). Due to
the double-amortization gap, the best performing model is
the MetaVAE amortized on random vectors only from that
family. However, the 90-amortized MetaVAE only performs
slightly worse, beating the remaining two baselines dramat-
ically. Next, Fig. 4(d-f) show MSEs for three distributions
not in M: Weibull, Laplace, and Beta. The 90-amortized
MetaVAE consistently outperforms all baselines.

30 Gaussians

. 90 Meta-Amortized

30 Log Normals . 30 Exponentials

B

(d) Exponential

(c) Log Normal

(b) Gaussian

(e) Beta(a, )  (f) Weibull(scale=1) (g) Laplace(loc=0)

Figure 4: Comparison of a MetaVAE amortized over three
members of the exponential family to MetaVAEs amortized
over only a single member. Each subplot shows an unseen
distribution from either the meta-distribution (b,c,d) or an-
other exponential family (e,f,g).

Transformation-Invariance Experiments

To motivate the next set of experiments, imagine designing
a scene understanding algorithm for a self-driving car. The
video datasets used to train deep learning agents are typ-
ically collected in isolated settings, such as in large cities
during favorable weather conditions. However, an agent de-
ployed in the real world may face a variety of new settings
such as paved roads in poorly-lit suburban areas. In such
cases, we would hope the agent could abstract away unnec-
essary sources of variation, such as different lighting condi-
tions, and act upon more salient characteristics in the scene
(e.g. pedestrians) that it has seen previously during training.
Inference in this scenario would mean learning representa-
tions that are “transferable,” or invariant to nuisance trans-
formations such as time of day. We take a step towards this
goal as we study the MetaVAE for image distributions with
explicit transformations, such as rotations or lighting.
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Figure 5: (a-c) Three ways of defining the meta-training
and meta-test splits; (b,c) pose a more difficult generaliza-
tion challenge. (d) Overview of the doubly-amortized infer-
ence procedure. The meta-training set is used to train the
MetaVAE (the test portion is to used to choose best parame-
ters). The meta-test set is for evaluating the learned features,
where the training portion is used to fit a linear classifier and
the test portion is used to compute accuracy.

Datasets We study MNIST and NORB (LeCun et al.
2004), where we amortize over three axes of variation each
(e.g. arange of camera angles or background lighting). Fur-
ther, we vary how different variations are split into meta-
training and meta-test sets, summarized in Fig. 5(a-c). For
instance, we may train the MetaVAE only on images with
bright backgrounds and evaluate on darker images. We con-
sider three meta-splits: interleaved, where every other value
in the range of possible transformations is selected; sparse,
where half the number of values are chosen as in interleaved;
contiguous, where we split the range in two “contiguous”
halves and train only over the first half. Each meta-split is a
different measure of transfer-ability.

Evaluation Metric We evaluate the latent representations
on a downstream classification task. Having trained the em-
pirical meta-inference model §,(D, ) using the meta-train
set, we then embed observations from a distribution in the
meta-test set. Each time we “embed” a test observation x,
we feed in a data set D of samples from the meta-test set.
This way we construct a data set of latent features.

This feature set is split into a training and test subset. For
both MNIST and NORB, each image has a corresponding
label (e.g. digit or object class). Using the training portion
(darker red in Fig. 5d) , we fit a logistic regression classifier
on the representations to predict the labels and compute ac-
curacy on the test subset (lighter red in Fig. 5d). Critically,
logistic regression seeks the best linear split between classes
in the latent space. For it to achieve good accuracy, such a
linear division must already exist. Thus, we treat a higher
classification accuracy as a more transferable, invariant rep-
resentation, as in (Berthelot et al. 2018).
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Figure 6: Examples of interpolating across three transformations each for MNIST and Small NORB. Notice that for NORB
(unlike MNIST), other transformations are not held constant as we vary an individual axis.
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Figure 7: Classification Accuracy on Transformed MNIST and Small NORB for three different splits: interleaved, sparse, and
contiguous. Each subfigure shows the prediction accuracy on the test set of held out transformations — gaps represent the
values used in training the amortized generative model. We compare the performance of MetaVAE (black), the homoencoder
(blue) and the statistician (red) and find appealing results for our proposed model.

Baselines We compare the performance of MetaVAE
against two baselines: the Neural Statistician (NS), a hierar-
chical VAE which models sets of observations with a global
latent variable; and the Variational HomoEncoder (VHE), a
more computationally-efficient variant of NS. To ensure a
fair comparison, we use the same hyperparameters and ar-
chitectures across all models. See Appendix® for details.

Transformed MNIST

Dataset Construction We artificially impose three axes of
variations on MNIST digits. We transform each image with
18 rotations (-180 to 180 by 20 degrees), 15 scales (50% to
200% original size by 10%), and 18 skews (-180 to 180 by
20 degrees). See Fig. 6(a-c) for an example for a single digit.
For each axes of variation, the other two are held constant
e.g. skew and size are constant when varying rotation.

*https://arxiv.org/pdf/1902.01950.pdf
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Results We find consistent evidence that MetaVAE fea-
tures outperform both VHE and NS features across all set-
tings, often by a significant margin. In particular, VHE and
NS have decaying performance as scale increases to 2.0.
Similarly, for extreme shear values near -80 and 80 de-
grees where the image is nearly flat (see Fig. 6¢), VHE and
NS again suffer greatly in performance. However, MetaVAE
features transfer better: we do not notice a drop in accuracy
as scale increases and the effect of significant shearing is
more gradual. This suggests that MetaVAE has learned some
invariances to transformations that NS and VHE lack.

Small NORB

Dataset Construction The NORB dataset contains
grayscale images of real world toys belonging to five
classes: animals, humans, airplanes, trucks, and cars. The
objects were imaged under 6 lighting conditions, 9 eleva-
tions (30 to 70 degrees every 5 degrees), and 18 azimuths
(0 to 340 every 20 degrees). Unlike the MNIST dataset,
extraneous transformations are not held constant as one



transformation is varied. For example, as Fig. 6(f) shows,
the azimuth and elevation (randomly) change as we vary
lighting. This design, while more difficult to amortize, is
more realistic in real world datasets where it is too expensive
to collect data holding all other variables constant.

Results The MetaVAE representations outperform those
of VHE and NS by 10 to 35% accuracy. Overall, we notice
accuracies are much lower in NORB than in MNIST, which
is likely due to the complexity of learning real world im-
age distributions and randomness introduced by variations
in extraneous transformations. We note that the strong per-
formance of the MetaVAE despite varying transformations
is promising support for our approach to meta-amortization,
suggesting that the MetaVAE is able to ignore irrelevant sig-
nals while capturing the principal axes of variation.

Discussion
Experimental Analysis

We aim to quantitatively measure the intuition that amortiz-
ing over a family of transformations should yield represen-
tations that are invariant to that transformation. For exam-
ple, how much does the representation change as we alter
the rotation in MNIST from -180 to 180, or interpolate the
background from dark to light in NORB?

To investigate, we use a MetaVAE amortized over a fam-
ily of transformations (e.g. interleaved rotations) and com-
pare the average Lo distance between the learned represen-
tation of a base (default) image and those of every rotated
image. As a baseline, we compare this distance to the av-
erage Lo distance of a separate family of transformations
(e.g. scale) that this MetaVAE was not amortized over (e.g.
having only seen different rotations during training). Table 1
shows the distances for MNIST and NORB. Consistently,
the lowest distances belong to the class of transformations
that the MetaVAE was amortized over, which supports the
intuition about learning invariances.

Model Dataset | Rotation | Scale | Skew
Rotated MNIST 1.65 4.44 4.09

Scaled MNIST 5.44 2.16 4.92
Skewed MNIST 3.79 4.89 1.47

Model Dataset | Elevation | Azimuth | Lighting
NORB Elevation 0.39 1.16 1.27
NORB Azimuth 1.42 0.44 1.26
NORB Lighting 1.69 1.27 0.26

Table 1: Lo distances between MetaVAE representations.
Each row indicates the datasets used for training; each col-
umn indicates the datasets used to compute representations.

Role of Flexible Global Prior

Next, we investigate the hypothesis that a more flexible prior
over the global latent variable may give the model the ex-
pressivity necessary for better performance on downstream
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classification tasks. Specifically, we compare the MetaVAE
against the VHE equipped with the VampPrior (VP) (Tom-
czak and Welling 2017), which is a learned prior p(c), on
additional MNIST and NORB experiments. We use default
settings from the reference VP implementation (500 compo-
nents, 0.05 mean, and 0.01 std)4:

Dataset | MetaVAE | VHE+VP | VHE

Rotated MNIST 0.885 0.830 0.793
Scaled MNIST 0.893 0.767 0.463
Sheared MNIST 0.844 0.679 0.602
Dataset | MetaVAE | VHE+VP | VHE

NORB Elevation 0.601 0.337 0.309
NORB Azimuth 0.592 0.313 0.286
NORB Lighting 0.548 0.357 0.306

Table 2: Downstream classification accuracy on MNIST
and NORB datasets. The MetaVAE outperforms all relevant
baselines, including the VHE with a learned prior, p(c).

Table 2 shows that while VHE+VP outperforms VHE, its
performance is consistently lower than MetaVAE. Addition-
ally, we note that VP incurs a large computational cost —
VHE+VP uses 5.1M more parameters than the VHE due
to parameterizing “pseudoinputs”’, whereas the MetaVAE
achieves model flexibility with no additional parameters.
This highlights our primary contribution: learning without
an explicit prior is important for the meta-inference problem
where test tasks can be quite different than training tasks.

Conclusion

In summary, we developed an inference algorithm for a
family of probabilistic models. We introduced a meta-
amortized inference paradigm and a new generative model,
the MetaVAE. Through experiments on MNIST and Small
NORB, we showed that the MetaVAE learned transferable
representations that generalize well across similar data dis-
tributions in downstream tasks. We provide reference imple-
mentations in PyTorch, and the codebase for this work is
open-sourced at https://github.com/mhw32/meta-inference-
public. Future work could consider applications of meta-
inference in video prediction (Ramanathan et al. 2015).
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