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Abstract

We study the problem of estimating high dimensional models
with underlying sparse structures while preserving the pri-
vacy of each training example. We develop a differentially
private high-dimensional sparse learning framework using
the idea of knowledge transfer. More specifically, we propose
to distill the knowledge from a “teacher” estimator trained
on a private dataset, by creating a new dataset from auxiliary
features, and then train a differentially private “student” es-
timator using this new dataset. In addition, we establish the
linear convergence rate as well as the utility guarantee for our
proposed method. For sparse linear regression and sparse lo-
gistic regression, our method achieves improved utility guar-
antees compared with the best known results (Kifer, Smith
and Thakurta 2012; Wang and Gu 2019). We further demon-
strate the superiority of our framework through both synthetic
and real-world data experiments.

1 Introduction

In the Big Data era, sensitive data such as genomic data
and purchase history data, are ubiquitous, which necessi-
tates learning algorithms that can protect the privacy of
each individual data record. A rigorous and standard no-
tion for privacy guarantees is differential privacy (Dwork
et al. 2006). By adding random noise to the model param-
eters (output perturbation), some intermediate steps of the
learning algorithm (gradient perturbation), or the objective
function of learning algorithms (objective perturbation), dif-
ferentially private algorithms ensure that the trained models
can learn the statistical information of the population with-
out leaking any information about the individuals. In the
last decade, a surge of differentially private learning algo-
rithms (Chaudhuri and Monteleoni 2009; Chaudhuri, Mon-
teleoni, and Sarwate 2011; Kifer, Smith, and Thakurta 2012;
Bassily, Smith, and Thakurta 2014; Talwar, Thakurta, and
Zhang 2015; Zhang et al. 2017; Wang, Ye, and Xu 2017;
Wang, Gaboardi, and Xu 2018; Jayaraman et al. 2018;
Wang et al. 2019) for empirical risk minimization have been
developed. However, most of these studies only consider the
classical setting, where the problem dimension is fixed. In
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the modern high-dimensional setting where the problem di-
mension can increase with the number of observations, all
these empirical risk minimization algorithms fail. A com-
mon and effective approach to address these issues is to as-
sume the model has a certain structure such as sparse struc-
ture or low-rank structure. In this paper, we consider high-
dimensional models with sparse structure. Given a dataset
S = {(xi, yi)}ni=1, where xi ∈ R

d and yi ∈ R are the in-
put vector and response of the i-th example, our goal is to
estimate the underlying sparse parameter vector θ∗ ∈ R

d,
which has s∗ nonzero entries, by solving the following �2-
norm regularized optimization problem with the sparsity
constraint

min
θ∈Rd

L̄S(θ) := LS(θ) + λ‖θ‖22/2 subject to ‖θ‖0 ≤ s,

(1.1)

where LS(θ) := n−1
∑n

i=1 �(θ;xi, yi) is the empirical loss
on the training data, �(θ;xi, yi) is the loss function defined
on the training example (xi, yi), λ ≥ 0 is a regularization
parameter, ‖θ‖0 counts the number of nonzero entries in θ,
and s controls the sparsity of θ. The reason we add an extra
�2 regularizer to (1.1) is to ensure the strong convexity of
the objective function without making any assumption on
the data.

In order to achieve differential privacy for sparse learn-
ing, a line of research (Kifer, Smith, and Thakurta 2012;
Thakurta and Smith 2013; Jain and Thakurta 2014; Tal-
war, Thakurta, and Zhang 2015; Wang and Gu 2019) stud-
ied differentially private learning problems in the high-
dimensional setting, where the problem dimension can be
larger than the number of observations. For example, (Jain
and Thakurta 2014) provided a differentially private al-
gorithm with the dimension independent utility guarantee.
However, their approach only considers the case when the
underlying parameter lies in a simplex. For sparse linear re-
gression, (Kifer, Smith, and Thakurta 2012; Thakurta and
Smith 2013) proposed a two-stage approach to ensure dif-
ferentially privacy. In detail, they first estimate the support
set of the sparse model parameter vector using some dif-
ferentially private model selection algorithm, and then es-
timate the parameter vector with its support restricted to
the estimated subset using the objective perturbation ap-
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Figure 1: Illustration of the proposed framework: (1). A
“teacher” estimator is trained using the private dataset; (2).
A new private-preserving dataset is generated using the aux-
iliary features and their private predictions output by the
“teacher” estimator; (3). A differentially private “student”
estimator is trained using the newly generated dataset.

proach (Chaudhuri and Monteleoni 2009). Nevertheless, the
support selection algorithm, like exponential mechanism,
is computational inefficient or even intractable in practice.
(Talwar, Thakurta, and Zhang 2015) proposed a differen-
tially private algorithm for sparse linear regression by com-
bining the Frank-Wolfe method (Frank and Wolfe 1956)
and the exponential mechanism. Although their utility guar-
antee is worse than (Kifer, Smith, and Thakurta 2012;
Wang and Gu 2019), it does not depend on the restricted
strong convexity (RSC) and smoothness (RSS) conditions
(Negahban et al. 2009). Recently, (Wang and Gu 2019) de-
veloped a differentially private iterative gradient hard thresh-
olding (IGHT) (Jain, Tewari, and Kar 2014; Yuan, Li, and
Zhang 2014) based framework for sparse learning prob-
lems by injecting Gaussian noise into the intermediate gradi-
ents. However, all the aforementioned methods either have
unsatisfactory utility guarantees or are computationally in-
efficient. For example, the utility guarantees provided by
(Kifer, Smith, and Thakurta 2012; Thakurta and Smith 2013;
Wang and Gu 2019) depend on the �2-norm bound of the in-
put vector, which can be in the order of O(

√
d) and grows

as d increases in the worse case. While the utility guarantee
of the algorithm proposed by (Talwar, Thakurta, and Zhang
2015) only depends on the �∞-norm bound of the input vec-
tor, it has a worse utility guarantee, and its convergence rate
is sub-linear.

Therefore, a natural question is whether we can achieve
the best of both worlds: a strong utility guarantee and high
computational efficiency. To this end, we propose to make
use of the idea of knowledge distillation (Buciluǎ, Caru-
ana, and Niculescu-Mizil 2006; Hinton, Vinyals, and Dean
2015), which is a knowledge transfer technique originally
introduced as a mean of model compression. The origi-
nal motivation of using knowledge distillation is to use a
large and complex “teacher” model to train a small “stu-
dent” model, while maintaining its accuracy. For the differ-
entially private sparse learning problem, similar idea can be
applied here: we can use a non-private “teacher” model to
train a differentially private “student” model, while preserv-
ing the sparse information of the “teacher” model. We no-

tice that several knowledge transfer approaches have been
recently investigated in the differentially private classifica-
tion problem (Hamm, Cao, and Belkin 2016; Papernot et al.
2016; Bassily, Thakkar, and Thakurta 2018; Yoon, Jordon,
and van der Schaar 2018). Nevertheless, the application of
knowledge distillation to the generic differentially private
high-dimensional sparse learning problem is new and has
never been studied before.

In this paper, we propose a knowledge transfer frame-
work for solving the high-dimensional sparse learning prob-
lem on a private dataset, which is illustrated in Figure
1. Our proposed algorithm is not only very efficient but
also has improved utility guarantees compared with the
state-of-the-art methods. More specifically, we first train a
non-private “teacher” model using IGHT from the private
dataset. Based on this “teacher” model, we then construct
a privacy-preserving dataset using some auxiliary inputs,
which are drawn from some given distributions or public
datasets. Finally, by training a “student” model using IGHT
again based on the newly generated dataset, we can obtain
a differentially private sparse estimator. Table 1 summarizes
the detailed comparisons of different methods for sparse lin-
ear regression, and we summarize the contributions of our
work as follows

• Our proposed differentially private framework can be ap-
plied to any smooth loss function, which covers a broad
family of sparse learning problems. In particular, we
showcase the application of our framework to sparse lin-
ear regression and sparse logistic regression.

• We prove a better utility guarantee and establish a liner
convergence rate for our proposed method. For exam-
ple, for sparse linear regression, our method achieves
O
(
K2s∗2

√
log d/(nε)

)
utility guarantee, where K is

the �∞-norm bound of the input vectors, and ε is the
privacy budget. Compared with the best known util-
ity bound O

(
K̃2s∗2 log d/(n2ε2)

)
(Kifer, Smith, and

Thakurta 2012; Wang and Gu 2019) ( K̃ is the �2-norm
bound of the input vectors), our utility guarantee is better
than it by a factor of O

(
K̃2

√
log d/(K2nε)

)
. Considering

that K̃ can be
√
d times larger than K, the improvement

factor can be as large as O
(
d
√
log d/(nε)

)
. Similar im-

provement is achieved for sparse logistic regression.

• With the extra sparse eigenvalue condition (Bickel et
al. 2009) on the private data, our method can achieve
O
(
K2s∗3 log d/(n2ε2)

)
utility guarantee for sparse lin-

ear regression. It is better than the best known result
(Kifer, Smith, and Thakurta 2012; Wang and Gu 2019)
O
(
K̃2s∗2 log d/(n2ε2)

)
by a factor of O

(
K̃2/(K2s∗)

)
,

which can be as large as O
(
d/s∗

)
. Similar improvement

is also achieved for sparse logistic regression.

Notation. For a d-dimensional vector x = [x1, ..., xd]
�, we

use ‖x‖2 = (
∑d

i=1 |xi|2)1/2 to denote its �2-norm, and use
‖x‖∞ = maxi |xi| to denote its �∞-norm. We let supp(x)
be the index set of nonzero entries of x, and supp(x, s) be
the index set of the top s entries of x in terms of magni-
tude. We use Sn to denote the input space with n examples
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Table 1: Comparison of different algorithms for sparse linear regression in the setting of (ε, δ)-DP. We report the utility bound
achieved by the privacy-preserving mechanisms, and ignore the log(1/δ) term. Note that nε � 1, xi denotes the i-th input
vector, and υ is the probability that the support selection procedure can successfully recover the true support.

Algorithm Data Assumption Utility Convergence Utility AssumptionRate

Frank-Wolfe
maxi∈[n] ‖xi‖∞ ≤ 1 O

(
log(nd)
(nε)2/3

)
Sub-linear No(Talwar, Thakurta, and Zhang 2015)

Two Stage
maxi∈[n] ‖xi‖2 ≤ K̃ O

(
˜K2s∗2 log(2/υ)

(nε)2

)
NA RSC/RSS(Kifer, Smith, and Thakurta 2012)

DP-IGHT
maxi∈[n] ‖xi‖2 ≤ K̃ O

(
˜K2s∗2 log d

(nε)2

)
Linear RSC/RSS(Wang and Gu 2019)

DPSL-KT
maxi∈[n] ‖xi‖∞ ≤ K O

(
K2s∗2

√
log d

nε

)
Linear No

λ > 0

DPSL-KT maxi∈[n] ‖xi‖∞ ≤ K
O
(

K2s∗3 log d
(nε)2

)
Linear RSC/RSS

λ = 0 RSC/RSS

and R,R′ to denote the output space. Given two sequences
{an}, {bn}, if there exists a constant 0 < C < ∞ such
that an ≤ Cbn, we write an = O(bn), and we use Õ(·)
to hide the logarithmic factors. We use Id ∈ R

d×d to de-
note the identity matrix. Throughout the paper, we use �i(·)
as the shorthand notation for �(·;xi, yi), and θmin to denote
the minimizer of problem (1.1).

1.1 Additional Related Work

To further enhance the privacy guarantee for training data,
there has emerged a fresh line of research (Hamm, Cao,
and Belkin 2016; Papernot et al. 2016; Bassily, Thakkar,
and Thakurta 2018; Yoon, Jordon, and van der Schaar 2018)
that studies the knowledge transfer techniques for the dif-
ferentially private classification problem. More specifically,
these methods propose to first train an ensemble of “teacher”
models based on disjoint subsets of the private dataset, and
then train a “student” model based on the private aggrega-
tion of the ensemble. However, their approaches only work
for the classification task, and cannot be directly applied
to general sparse learning problems. Moreover, their sub-
sample and aggregate framework may not be suitable for
the high-dimensional sparse learning problem since each
“teacher” model is trained on a subset of the private dataset,
which makes the “large d, small n” scenario even worse.
In contrast to their sub-sample and aggregate based knowl-
edge transfer approach, we propose to use the distillation
based method (Buciluǎ, Caruana, and Niculescu-Mizil 2006;
Hinton, Vinyals, and Dean 2015), which is more suitable for
the high-dimensional sparse learning problem.

2 Preliminaries

In this section, we introduce some background and prelim-
inaries about optimization and differential privacy. We first
lay out the formal definitions of strongly convex and smooth
functions.

Definition 2.1. A function f : Rd → R is λ-strongly con-
vex, if for any θ1,θ2 ∈ R

d,

f(θ1)− f(θ2)− 〈∇f(θ2),θ1 − θ2〉 ≥ λ‖θ1 − θ2‖22/2.

Definition 2.2. A function f : Rd → R is β̄-smooth, if for
any θ1,θ2 ∈ R

d,
f(θ1)− f(θ2)− 〈∇f(θ2),θ1 − θ2〉 ≤ β̄‖θ1 − θ2‖22/2.
Next we present the definition of sub-Gaussian distribu-

tion (Vershynin 2010).
Definition 2.3. We say X ∈ R

d is a sub-Gaussian random
vector with parameter α > 0, if (E|u�X|p)1/p ≤ α

√
p for

all p ≥ 1 and all unit vector u with ‖u‖2 = 1.
We also provide the definition of differential privacy.

Definition 2.4 ((Dwork et al. 2006)). A randomized mech-
anism M : Sn → R satisfies (ε, δ)-differential privacy
if for any two adjacent datasets S, S′ ∈ Sn differing by
one example, and any output subset O ⊆ R, it holds that
P[M(S) ∈ O] ≤ eε · P[M(S′) ∈ O] + δ, where δ ∈ [0, 1).

Now we introduce the Gaussian Mechanism (Dwork and
Roth 2014) to achieve (ε, δ)-DP. We start with the definition
of �2-sensitivity, which is used to control the variance of the
noise in Gaussian mechanism.
Definition 2.5 ((Dwork and Roth 2014)). For two adja-
cent datasets S, S′ ∈ Sn differing by one example, the �2-
sensitivity Δ2(q) of a function q : Sn → R

d is defined as
Δ2(q) = supS,S′ ‖q(S)− q(S′)‖2.

Given the �2-sensitivity, we can ensure the differential pri-
vacy using Gaussian mechanism.
Lemma 2.6. The Gaussian Mechanism M = q(S) + u,
where q : Sn → R

d and u ∼ N(0, σ2Id), satisfies (ε, δ)-
DP for some δ > 0, if σ =

√
2 log(1.25/δ)Δ2(q)/ε.

The above lemma is established in (Dwork and Roth
2014). The original lemma has a constraint on ε ∈ (0, 1),
which can be removed using the notion of Renyi Differen-
tial Privacy (Mironov 2017) and its relationship to (ε, δ)-DP.

Next lemma shows the post-processing property of (ε, δ)-
DP, i.e., the composition of a data independent mapping f
with an (ε, δ)-DP mechanism M also satisfies (ε, δ)-DP.
Lemma 2.7 ((Dwork and Roth 2014)). Consider a random-
ized mechanism M : Sn → R that is (ε, δ)-DP. Let
f : R → R′ be an arbitrary randomized mapping. Then
f(M) : Sn → R′ is (ε, δ)-DP.
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3 The Proposed Algorithm

In this section, we present our differentially private sparse
learning framework, which is illustrated in Algorithm 1.
Note that Algorithm 1 will call IGHT algorithm (Yuan, Li,
and Zhang 2014; Jain, Tewari, and Kar 2014) in Algorithm
2. IGHT enjoys linear convergence rate and is widely used
for sparse learning. Note that for the sparsity constraint,
i.e., ‖θ‖0 ≤ s, the hard thresholding operator Hs(θ) is
defined as follows: [Hs(θ)]i = θi if i ∈ supp(θ, s) and
[Hs(θ)]i = 0 otherwise, for i ∈ [d]. It preserves the largest s
entries of θ in magnitude. Equipped with IGHT, our frame-
work also has a linear convergence rate for solving high-
dimensional sparsity constrained problems.

Algorithm 1 Differentially Private Sparse Learning via
Knowledge Transfer (DPSL-KT)

Input Loss function L̄S , distribution D̃, IGHT parameters
s, η1, η2, T1, T2, function f , θ0, σ

1: θ̂ = IGHT(θ0, L̄S , s, η1, T1)
2: Generate training set: Sp = {(x̃i, y

p
i )}mi=1, where ypi =

〈θ̂, x̃i〉+ ξi, x̃i ∼ D̃, ξi ∼ N(0, σ2)

3: Constructing the new task: L̃(θ) =

(2m)−1
∑m

i=1

(
ypi − 〈θ, x̃i〉

)2
4: θp = IGHT(θ0, L̃, s, η2, T2)

Output θp

Algorithm 2 Iterative Gradient Hard Thresholding (IGHT)

Input Loss function LS , parameters s, η, T , θ0
1: for t = 1, 2, 3, . . . , T do
2: θt = Hs

(
θt−1 − η∇LS(θt−1)

)
3: end for

Output θT

There are two key ingredients in our framework: (1) an
efficient problem solver, i.e., iterative gradient hard thresh-
olding (IGHT) algorithm (Yuan, Li, and Zhang 2014; Jain,
Tewari, and Kar 2014), and (2) the knowledge transfer pro-
cedure. In detail, we first solve the optimization problem
(1.1) using IGHT, which is demonstrated in Algorithm 2,
to get a non-private “teacher” estimator θ̂. The next step is
the knowledge transfer procedure: we draw some synthetic
features {x̃i}mi=1 from a given distribution D̃, and output the
corresponding private-preserving responses {ypi }mi=1 using
the Gaussian mechanism: ypi = 〈θ̂, x̃i〉 + ξi, where ξi is
the Gaussian noise to protect the private information con-
tained in θ̂. Finally, by solving a new sparsity constrained
learning problem L̃ using the privacy-preserving synthetic
dataset Sp = {(x̃i, y

p
i )}mi=1, we can get a differentially pri-

vate “student” estimator θp.
Our proposed knowledge transfer framework can achieve

both strong privacy and utility guarantees. Intuitively speak-
ing, the newly constructed learning problem can reduce the
utilization of the privacy budget since we only require the

generated responses to preserve the privacy of original train-
ing sample, which in turn leads to a strong privacy guar-
antee. In addition, this new learning problem contains the
knowledge of the “teacher” estimator, which preserves the
sparsity information of the underlying parameter. As a re-
sult, the “student” estimator can also have a strong utility
guarantee.

4 Main Results

In this section, we will present the privacy and utility guar-
antees for Algorithm 1. We start with two conditions, which
will be used in the result for generic models. Later, when we
apply our result to specific models, these conditions will be
verified explicitly.

The first condition is about the upper bound on the gra-
dient of the function LS , which will be used to characterize
the statistical error of generic sparse models.
Condition 4.1. For a given sample size n and tolerance pa-
rameter ζ ∈ (0, 1), let ε(n, ζ) be the smallest scalar such
that with probability at least 1−ζ, we have ‖∇LS(θ

∗)‖∞ ≤
ε(n, ζ).

To derive the utility guarantee, we also need the sparse
eigenvalue condition (Zhang 2010) on the function LS ,
which directly implies the restricted strong convex and
smooth properties (Negahban et al. 2009; Loh and Wain-
wright 2013) of the function LS .
Condition 4.2. The empirical loss LS on the training data
satisfies the sparse eigenvalue condition, if for all θ, there
exist positive numbers μ and β such that

μ = inf
v

{
v�∇2LS(θ)v | ‖v‖0 ≤ s, ‖v‖2 = 1

}
,

β = sup
v

{
v�∇2LS(θ)v | ‖v‖0 ≤ s, ‖v‖2 = 1

}
.

4.1 Results for Generic Models

We first present the privacy guarantee of Algorithm 1 in the
setting of (ε, δ)-DP.
Theorem 4.3. Suppose the loss function on each training
example satisfies ‖∇�i(θmin)‖∞ ≤ γ, and D̃ is a sub-
Gaussian distribution with parameter α̃ and the covariance
matrix ‖Σ̃‖2 ≤ β̃, and m ≥ C1α̃s log d for some abso-
lute constant C1. Given a privacy budget ε and a constant
δ ∈ (0, 1), the output θp of Algorithm 1 satisfies (ε, δ)-DP
if σ2 = 8mβ̃sγ2 log(2.5/δ)/(n2ε2λ2).
Remark 4.4. Theorem 4.3 suggests that in order to ensure
the privacy guarantee, the only condition on the private data
is the �∞-norm bound on the gradient of the loss function
on each training example. This is in contrast to the �2-norm
bound required by many previous work (Kifer, Smith, and
Thakurta 2012; Talwar, Thakurta, and Zhang 2015; Wang
and Gu 2019) for sparse learning problems. We remark that
�∞-norm bound is a milder condition than �2-norm bound,
and gives a better utility guarantee that only depends on the
�∞-norm of the input data vectors instead of their �2-norm.

Next, we provide the linear convergence rate and the util-
ity guarantee of Algorithm 1.
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Theorem 4.5. Suppose that the loss function L̄S is β̄-
smooth and LS satisfies Condition 4.1 with parameter
ε(n, ζ). Under the same conditions of Theorem 4.3 on �i,
D̃, σ2, there exist constants {Ci}8i=1 such that if n =
m ≥ C1α̃s log d, s ≥ C2κ

2s∗ with κ = β̄/λ, the
stepsize η1 = C3λ/β̄

2, η2 = C4/β̃, then θp converges
to θ∗ at a linear rate. In addition, if we choose λ2 =
C5γ

√
s∗ log d log(1/δ)/(nε), for large enough T1, T2, with

probability at least 1−ζ−C6/d, the output θp of Algorithm
1 satisfies

‖θp − θ∗‖22 ≤ C7
s∗

β̄2
ε(n, ζ)2

+ C8

(
1/β̄2 + α̃2/β̃

)γ√s∗3 log d log(1/δ)
nε

.

Remark 4.6. The utility bound of our method consists of
two terms: the first term denotes the statistical error of
generic sparse models, while the second one corresponds
to the error introduced by the Gaussian mechanism, and is
the dominating term. Therefore, the utility bound is of order
O
(
γ
√
s∗3 log d log(1/δ)/(nε)

)
, which depends on the true

sparsity s∗ rather than the dimension of the problem d, and
therefore is desirable for sparse learning.

The following corollary shows that if LS further satisfies
Condition 4.2, our method can achieve an improved utility
guarantee.

Corollary 4.7. Suppose that LS satisfies Condition 4.2 with
parameters μ, β. Under the same conditions of Theorem 4.5
on LS , �i, D̃, the output θp of Algorithm 1 satisfies (ε, δ)-DP
if we set λ = 0 and σ2 = 8mβ̃sγ2 log(2.5/δ)/(n2ε2μ2).
In addition, there exist constants {Ci}7i=1 such that if n =
m ≥ C1α̃s log d, s ≥ C2κ

2s∗ with κ = β/μ, step size
η1 = C3μ/β

2, η2 = C4/β̃, for large enough T1, T2, with
probability at least 1−ζ−C5/d, the output θp of Algorithm
1 satisfies

‖θp − θ∗‖22 ≤ C6
s∗

β2
ε(n, ζ)2 + C7α̃

2 γ
2s∗2 log d log(1/δ)

β̃μ2n2ε2
.

Remark 4.8. Corollary 4.7 shows that if the training loss
on the private data satisfies the sparse eigenvalue condi-
tion, Algorithm 1 can achieve Õ

(
γ2s∗2/(nε)2

)
utility guar-

antee by setting λ = 0 and the variance σ2 accord-
ingly. It improves the utility without the sparse eigenvalue
condition Õ

(
γs∗3/2/(nε)

)
in Theorem 4.5 by a factor of

Õ
(
nε/γ

√
s∗
)
. Note that sparse eigenvalue condition has

been verified for many sparse models (Negahban et al. 2009)
including sparse linear regression and sparse logistic regres-
sion.

4.2 Results for Specific Models

In this subsection, we demonstrate the results of our frame-
work for specific models. Note that the privacy guarantee
has been established in Theorem 4.3, and we only present
the utility guarantees.

Sparse linear regression We consider the following lin-
ear regression problem in the high-dimensional regime (Tib-
shirani 1996): y = Xθ∗ + ξ, where y ∈ R

n is the response
vector, X ∈ R

n×d denotes the design matrix, ξ ∈ R
n

is a noise vector, and θ∗ ∈ R
d with ‖θ∗‖0 ≤ s∗ is the

underlying sparse coefficient vector that we want to re-
cover. In order to estimate the sparse vector θ∗, we con-
sider the following sparsity constrained estimation problem,
which has been studied in many previous work (Zhang 2011;
Foucart and Rauhut 2013; Yuan, Li, and Zhang 2014;
Jain, Tewari, and Kar 2014; Chen and Gu 2016)

min
θ∈Rd

(2n)−1‖Xθ − y‖22 + λ‖θ‖22/2 subject to ‖θ‖0 ≤ s.

(4.1)

The utility guarantee of Algorithm 1 for solving (4.1) can
be implied by Theorem 4.5. Here we only need to verify
Condition 4.2 for the sparse linear regression model. In spe-
cific, we can show that ∇LS(θ

∗) = X�ξ/n, and we can
prove that ‖∇LS(θ

∗)‖∞ ≤ C1ν
√
log d/n holds with prob-

ability at least 1 − exp(−C2n), where C1, C2 are abso-
lute constants. Therefore, we have ζ = 1 − exp(−C2n),
ε(n, ζ) = C1ν

√
log d/n. By substituting these quantities

into Theorem 4.5, we can obtain the following corollary.

Corollary 4.9. Suppose that each row of the design ma-
trix satisfies maxi∈[n] ‖xi‖∞ ≤ K, and the noise vector
ξ ∼ N(0, ν2In). Under the same conditions of Theorem 4.5
on D̃, σ2, η1, η2, s, there exist constants {Ci}5i=1 such that if
m = n ≥ C1s log d, λ2 = C2K

2s∗
√

log d log(1/δ)/(nε),
with probability at least 1 − C3/d, the output θp of Algo-
rithm 1 satisfies

‖θp − θ∗‖22 ≤ C4ν
2K2 s

∗ log d
n

+ C5α̃
2K2

s∗2
√

log d log 1
δ

β̃nε
.

Remark 4.10. Corollary 4.9 suggests that O
(
s∗ log d/n +

K2s∗2
√
log d log(1/δ)/(nε)

)
utility guarantee can be

achieved by our algorithm. The term O(s∗ log d/n) de-
notes the statistical error for sparse vector estimation, which
matches the minimax lower bound (Raskutti, Wainwright,
and Yu 2011). While the term Õ(K2s∗2/(nε)) corresponds
to the error introduced by the privacy-preserving mecha-
nism, and is the dominating term. Compared with the best-
known result (Kifer, Smith, and Thakurta 2012; Wang and
Gu 2019) Õ(K̃2s∗2/(n2ε2)), where ‖xi‖2 ≤ K̃ for all i ∈
[n], our utility guarantee does not require the sparse eigen-
value condition and is better than their results by a factor of
Õ
(
K̃2/(K2nε)

)
. Since we have K̃ ≤ √

dK in the worst
case, the improvement factor can be as large as Õ

(
d/(nε)

)
.

Compared with the utility guarantee Õ
(
1/(nε)2/3

)
obtained

by (Talwar, Thakurta, and Zhang 2015), our method im-
proves their result by a factor of Õ

(
(nε)1/3/(Ks∗)2

)
, which

demonstrates the advantage of our framework.

Remark 4.11. According to Corollary 4.7, if LS satisfies
Condition 4.2 with parameters μ, β, we can set λ = 0 and
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σ2 = 8sγ2 log(2.5/δ)/(nε2μ2) in Algorithm 1. As a result,
the output of Algorithm 1 will satisfy (ε, δ)-DP with the util-
ity guarantee Õ

(
K2s∗3/(n2ε2)

)
, which improves the result

in Corollary 4.9 by a factor of Õ
(
nε/s∗

)
. Due to the space

limit, we defer the detailed result to the supplemental mate-
rial.

Sparse logistic regression For high-dimensional logistic
regression, we assume the label of each example follows an
i.i.d. Bernoulli distribution conditioned on the input vector
P(y = 1|x,θ∗) = exp

(
θ∗�x − log

(
1 + exp(θ∗�x)

))
,

where x ∈ R
d is the input vector, θ∗ ∈ R

d with ‖θ∗‖0 ≤ s∗
is the sparse parameter vector we would like to estimate.
Given observations {(xi, yi)}ni=1, we consider the follow-
ing maximum likelihood estimation problem with sparsity
constraints (Yuan, Li, and Zhang 2014; Chen and Gu 2016)

min
θ∈Rd

−n−1∑n
i=1

[
yiθ

�xi − log
(
1 + exp(θ�xi)

)]
(4.2)

+ λ‖θ‖22/2 subject to ‖θ‖0 ≤ s. (4.3)

The utility guarantee of Algorithm 1 for solving (4.2) is
shown in the following corollary.

Corollary 4.12. Under the same conditions of Corol-
lary 4.9 on xi, D̃, σ2, η1, η2, s, there exist constants
{Ci}5i=1 such that if m = n ≥ C1s log d, λ2 =

C2K
√
s∗ log d log(1/δ)/(nε), with probability at least 1−

C3/d, the output θp of Algorithm 1 satisfies

‖θp − θ∗‖22 ≤ C4K
2 s

∗ log d
n

+ C5α̃
2K

√
s∗3 log d log(1/δ)

β̃nε
.

Remark 4.13. Corollary 4.12 suggests that O
(
s∗ log d/n+

K
√
s∗3 log d log(1/δ)/(nε)

)
utility guarantee can be ob-

tained by our algorithm for sparse logistic regression. The
term Õ

(
Ks∗3/2/(nε)) caused by the Gaussian mechanism

is the dominating term and does not depend on the sparse
eigenvalue condition, and is better than the best-known re-
sult (Wang and Gu 2019) Õ

(
K̃2s∗2/(n2ε2)

)
by a factor

of Õ
(
K̃2s∗1/2/(Knε)

)
. The improvement factor can be as

large as Õ
(
dK/(nε)

)
since K̃ ≤ √

dK.

5 Numerical Experiments

In this section, we present experimental results of our pro-
posed algorithm on both synthetic and real datasets. For
sparse linear regression, we compare our framework with
Two stage (Kifer, Smith, and Thakurta 2012), Frank-Wolfe
(Talwar, Thakurta, and Zhang 2015), and DP-IGHT (Wang
and Gu 2019) algorithms. For sparse logistic regression,
we compare our framework with DP-IGHT (Wang and Gu
2019) algorithm. For all of our experiments, we choose the
parameters of different methods according to the require-
ments of their theoretical guarantees. More specifically, on
the synthetic data experiments, we assume s∗ is known for
all the methods. On the real data experiments, s∗ is un-
known, neither our method or the competing methods has
the knowledge of s∗. So we simply choose a sufficiently

large s as a surrogate of s∗. Given s, for the parameter
λ in our method, according to Theorem 4.5, we choose λ

from a sequence of values c1
√
s log d log(1/δ)/(nε), where

c1 ∈ {10−6, 10−5, . . . , 101}, by cross-validation. For com-
peting methods, given s, we choose the iteration num-
ber of Frank-Wolfe from a sequence of values c2s, where
c2 ∈ {0.5, 0.6, . . . , 1.5}, and the regularization parameter
in the objective function of Two Stage from a sequence
of values c3s/ε, where c3 ∈ {10−3, 10−2, . . . , 102}, by
cross-validation. For DP-IGHT, we choose its stepsize from
the grid {1/20, 1/21, . . . , 1/26} by cross-validation. For the
non-private baseline, we use the non-private IGHT (Yuan,
Li, and Zhang 2014).

5.1 Numerical Simulations

In this subsection, we investigate our framework on syn-
thetic datasets for sparse linear and logistic regression. In
both problems, we generate the design matrix X ∈ R

n×d

such that each entry is drawn i.i.d. from a uniform distri-
bution U(−1, 1), and the underlying sparse vector θ∗ has
s nonzero entries that are randomly generated. In addition,
we consider the following two settings: (i) n = 800, d =
1000, s∗ = 10; (ii) n = 4000, d = 5000, s∗ = 50. We
choose D̃ to be a uniform distribution U(−1, 1), which im-
plies β̃ = 1/3.
Sparse linear regression For sparse linear regression, the
observations are generated according to the linear regres-
sion model y = X�θ∗ + ξ, where the noise vector ξ ∼
N(0, ν2I) with ν2 = 0.1. In our experiments, we set δ =
0.01 and vary the privacy budget ε from 0.8 to 5. Note
that due to the hardness of the problem itself, we choose
relatively large privacy budgets compared with the low-
dimensional problem to ensure meaningful results. Figure
2(a) and 2(b) illustrate the estimation error ‖θ̂−θ∗‖2/‖θ∗‖2
of different methods averaged over 10 trails. The results
show that the estimation error of our method is close to the
non-private baseline, and is significantly better than other
private baselines. Even when we have a small privacy budget
(i.e., ε = 0.8), our method can still recover the underlying
sparse vector with reasonably small estimation error, while
others fail.
Sparse logistic regression For sparse logistic regression,
each label is generated from the logistic distribution P(y =
1) = 1/

(
1 + exp(x�

i θ
∗)
)
. In this problem, we vary the pri-

vacy budget ε from 2 to 10, and set δ = 0.01. We present the
estimation error versus privacy budget ε of different methods
in Figure 2(c) and 2(d). The results show that our method
can output accurate estimators when we have relative large
privacy budget, and it consistently outperforms the private
baseline.

5.2 Real Data Experiments

For real data experiments, we use E2006-TFIDF dataset
(Kogan et al. 2009) and RCV1 dataset (Lewis et al. 2004),
for the evaluation of sparse linear regression and sparse lo-
gistic regression, respectively.
E2006-TFIDF data For sparse linear regression problem,
we use E2006-TFIDF dataset, which consists of financial
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Figure 2: Numerical results for sparse linear and logistic regression. (a), (b) Reconstruction error versus privacy budget for
sparse linear regression; (c), (d) Reconstruction error versus privacy budget for sparse linear regression.

Table 2: Comparison of different algorithms for various privacy budgets ε with δ = 10−5 in terms of MSE (mean ± std) and its
corresponding standard deviation on E2006-TFIDF.

Method ε = 0.8 ε = 1.5 ε = 2.5 ε = 3.5 ε = 4.5

IGHT 0.8541 0.8541 0.8541 0.8541 0.8541
Frank-Wolfe 4.471 (0.239) 2.004 (0.155) 1.535 (0.140) 1.206 (0.095) 1.099 (0.082)
Two stage 4.022 (0.159) 1.803 (0.141) 1.326 (0.093) 1.107 (0.103) 1.053 (0.069)
DP-IGHT 3.731 (0.207) 1.687 (0.126) 1.304 (0.035) 1.067 (0.051) 0.968 (0.062)
DPSL-KT 1.227 (0.110) 1.178 (0.056) 1.065 (0.054) 0.971 (0.031) 0.952 (0.010)

Table 3: Comparison of different algorithms for various privacy budgets ε with δ = 10−5 in terms of test error (mean ± std)
and its corresponding standard deviation on RCV1 data.

Method ε = 2 ε = 4 ε = 6 ε = 8

IGHT 0.0645 0.0645 0.0645 0.0645
Frank-Wolfe 0.1381 (0.0045) 0.1134 (0.0041) 0.0978 (0.0032) 0.0882 (0.0033)
Two stage 0.1272 (0.0044) 0.1061(0.0038) 0.0949 (0.0035) 0.0866 (0.0031)
DP-IGHT 0.1179 (0.0035) 0.1026 (0.0036) 0.0922 (0.0032) 0.0824 (0.0029)
DPSL-KT 0.1105 (0.0038) 0.0974 (0.0035) 0.0885 (0.0029) 0.0787(0.0031)

risk data from thousands of U.S. companies. In detail, it con-
tains 16087 training examples, 3308 testing examples, and
we randomly sample 25000 features for this experiment. In
order to validate our proposed framework, we randomly di-
vide the original dataset into two datasets: private dataset
and public dataset. For the private dataset, it contains 8044
training examples, and we assume that this dataset contains
the sensitive information that we want to protect. For the
public dataset, it contains 8043 training examples. We set
s = 2000, δ = 10−5, ε ∈ [0.8, 5]. We estimate β̃ by the
sample covariance matrix, and the detailed estimation pro-
cedure can be found in the longer version of this paper. Ta-
ble 2 reports the mean square error (MSE) on the test data of
different methods for various privacy budgets over 10 trails.
The results show that the performance of our algorithm is
close to the non-private baseline even when we have small
private budgets, and is much better than existing methods.
RCV1 data For sparse logistic regression, we use a Reuters
Corpus Volume I (RCV1) data set for text categorization
research. RCV1 is released by Reuters, Ltd. for research
purposes, and consists of over 800000 manually catego-
rized newswire stories. It contains 20242 training examples,
677399 testing examples and 47236 features. As before, we

randomly divide the original dataset into two datasets with
equal size serving as the private and publice datasets. In ad-
dition, we randomly choose 10000 test examples and 20000
features, and set s = 500, δ = 10−5, ε ∈ [2, 8]. We es-
timate β̃ using the same method as before. We compare all
algorithms in terms of their classification error on the test set
over 10 replications, which is summarized in Table 3. Evi-
dently our algorithm achieves the lowest test error among
all private algorithms on RCV1 dataset, which demonstrates
the superiority of our algorithm.

6 Conclusions and Future Work

In this paper, we developed a differentially private frame-
work for sparse learning using the idea of knowledge trans-
fer. We establish the linear convergence rate and the util-
ity guarantee of our method. Experiments on both synthetic
and real-world data demonstrate the superiority of our algo-
rithm. For the future work, it is very interesting to general-
ize our framework to other structural constrained learning
problems such as the low-rank estimation problem. It is also
very interesting to study the theoretical lower-bound of the
differentially private sparse learning problem to access the
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optimality of our proposed method.
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