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Abstract

Recent studies have shown that reinforcement learning (RL)
models are vulnerable in various noisy scenarios. For instance,
the observed reward channel is often subject to noise in prac-
tice (e.g., when rewards are collected through sensors), and
is therefore not credible. In addition, for applications such as
robotics, a deep reinforcement learning (DRL) algorithm can
be manipulated to produce arbitrary errors by receiving cor-
rupted rewards. In this paper, we consider noisy RL problems
with perturbed rewards, which can be approximated with a
confusion matrix. We develop a robust RL framework that
enables agents to learn in noisy environments where only per-
turbed rewards are observed. Our solution framework builds
on existing RL/DRL algorithms and firstly addresses the bi-
ased noisy reward setting without any assumptions on the true
distribution (e.g., zero-mean Gaussian noise as made in previ-
ous works). The core ideas of our solution include estimating
a reward confusion matrix and defining a set of unbiased
surrogate rewards. We prove the convergence and sample com-
plexity of our approach. Extensive experiments on different
DRL platforms show that trained policies based on our esti-
mated surrogate reward can achieve higher expected rewards,
and converge faster than existing baselines. For instance, the
state-of-the-art PPO algorithm is able to obtain 84.6% and
80.8% improvements on average score for five Atari games,
with error rates as 10% and 30% respectively.

Introduction

Designing a suitable reward function plays a critical role in
building reinforcement learning models for real-world appli-
cations. Ideally, one would want to customize reward func-
tions to achieve application-specific goals (Hadfield-Menell
et al. 2017). In practice, however, it is difficult to design a re-
ward function that produces credible rewards in the presence
of noise. This is because the output from any reward function
is subject to multiple kinds of randomness:

• Inherent Noise. For instance, sensors on a robot will be
affected by physical conditions such as temperature and
lighting, and therefore will report back noisy observed
rewards.
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• Application-Specific Noise. In machine teaching
tasks (Loftin et al. 2014), when an RL agent receives
feedback/instructions, different human instructors might
provide drastically different feedback that leads to biased
rewards for machine.

• Adversarial Noise. Huang et al. have shown that by adding
adversarial perturbation to each frame of the game, they
can mislead pre-trained RL policies arbitrarily.

Assuming an arbitrary noise model makes solving this
noisy RL problem extremely challenging. Instead, we focus
on a specific noisy reward model which we call perturbed
rewards, where the observed rewards by RL agents are learn-
able. The perturbed rewards are generated via a confusion
matrix that flips the true reward to another one according
to a certain distribution. This is not a very restrictive set-
ting (Everitt et al. 2017) to start with, even considering that
the noise could be adversarial: For instance, adversaries can
manipulate sensors via reversing the reward value.

In this paper, we develop an unbiased reward estimator
aided robust framework that enables an RL agent to learn in
a noisy environment with observing only perturbed rewards.
The main challenge is that the observed rewards are likely to
be biased, and in RL or DRL the accumulated errors could
amplify the reward estimation error over time. To the best of
our knowledge, this is the first work addressing robust RL
in the biased rewards setting (existing work need to assume
the unbiased noise distribution). We do not require any as-
sumption on the knowledge of true reward distribution or
adversarial strategies, other than the fact that the generation
of noises follows a reward confusion matrix. We address the
issue of estimating the reward confusion matrices by propos-
ing an efficient and flexible estimation module for settings
with deterministic rewards.

Everitt et al. provided preliminary studies for this noisy
reward problem and gave some general negative results. The
authors proved a No Free Lunch theorem, which is, with-
out any assumption about what the reward corruption is, all
agents can be misled. Our results do not contradict with the
results therein, as we consider a stochastic noise generation
model (that leads to a set of perturbed rewards).

We analyze the convergence and sample complexity for
the policy trained using our proposed method based on sur-
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rogate rewards, using Q-Learning as an example. We then
conduct extensive experiments on OpenAI Gym (Brockman
et al. 2016) and show that the proposed reward robust RL
method achieves comparable performance with the policy
trained using the true rewards. In some cases, our method
even achieves higher cumulative reward - this is surprising to
us at first, but we conjecture that the inserted noise together
with our noise-removal unbiased estimator add another layer
of exploration, which proves to be beneficial in some settings.

Our contributions are summarized as follows: (1) We for-
mulate and generalize the idea of defining a simple but effec-
tive unbiased estimator for true rewards under reinforcement
learning setting. The proposed estimator helps guarantee the
convergence to the optimal policy even when the RL agents
only have noisy observations of the rewards. (2) We ana-
lyze the convergence to the optimal policy and the finite
sample complexity of our reward-robust RL methods, using
Q-Learning as the example. (3) Extensive experiments on
OpenAI Gym show that our proposed algorithms perform
robustly even at high noise rates.

Related Work

Robust Reinforcement Learning It is known that RL
algorithms are vulnerable in noisy environments (Irpan
2018). Recent studies (Huang et al. 2017; Kos and Song
2017; Lin et al. 2017) show that learned RL policies
can be easily misled with small perturbations in obser-
vations. The presence of noise is very common in real-
world environments, especially in robotics-relevant appli-
cations (Deisenroth, Rasmussen, and Fox 2011; Loftin et
al. 2014). Consequently, robust RL algorithms have been
widely studied, aiming to train a robust policy that is capa-
ble of withstanding perturbed observations (Teh et al. 2017;
Pinto et al. 2017; Gu, Jia, and Choset 2018) or trans-
ferring to unseen environments (Rajeswaran et al. 2016;
Fu, Luo, and Levine 2017). However, these algorithms
mainly focus on noisy vision observations, instead of ob-
served rewards. Some early works (Moreno et al. 2006;
Strens 2000; Romoff et al. 2018) on noisy reward RL rely
on the knowledge of unbiased noise distribution, which lim-
its their applicability to more general biased rewards set-
tings. A couple of recent works (Lim, Xu, and Mannor 2016;
Roy, Xu, and Pokutta 2017) have looked into a parallel ques-
tion of training robust RL algorithms with uncertainty in
models.

Learning with Noisy Data Learning appropriately with
biased data has received quite a bit of attention in recent ma-
chine learning studies (Natarajan et al. 2013; Scott et al. 2013;
Scott 2015; Sukhbaatar and Fergus 2014; van Rooyen and
Williamson 2015; Menon et al. 2015). The idea of this line of
works is to define unbiased surrogate loss functions to recover
the true loss using the knowledge of the noise. Our work is
the first to formally establish this extension both theoretically
and empirically. Our quantitative understandings will provide
practical insights when implementing reinforcement learning
algorithms in noisy environments.

Problem Formulation and Preliminaries

In this section, we define our problem of learning from per-
turbed rewards in reinforcement learning. Throughout this
paper, we will use perturbed reward and noisy reward inter-
changeably, considering that the noise could come from both
intentional perturbation and natural randomness. In what fol-
lows, we formulate our Markov Decision Process (MDP) and
reinforcement learning (RL) problem with perturbed rewards.

Reinforcement Learning: The Noise-Free Setting

Our RL agent interacts with an unknown environment and at-
tempts to maximize the total of its collected reward. The envi-
ronment is formalized as a Markov Decision Process (MDP),
denoting asM = 〈S,A,R,P, γ〉. At each time t, the agent
in state st ∈ S takes an action at ∈ A, which returns a reward
r(st, at, st+1) ∈ R (which we will also shorthand as rt) 1,
and leads to the next state st+1 ∈ S according to a transition
probability kernel P . P encodes the probability Pa(st, st+1),
and commonly is unknown to the agent. The agent’s goal is to
learn the optimal policy, a conditional distribution π(a|s) that
maximizes the state’s value function. The value function cal-
culates the cumulative reward the agent is expected to receive
given it would follow the current policy π after observing the
current state st: V π(s) = Eπ

[∑∞
k=0 γ

krt+k+1 | st = s
]
,

where 0 ≤ γ ≤ 1 is a discount factor (γ = 1 indicates
an undiscounted MDP setting (Schwartz 1993; Sobel 1994;
Kakade 2003)). Intuitively, the agent evaluates how prefer-
able each state is, given the current policy. From the Bellman
Equation, the optimal value function is given by V ∗(s) =
maxa∈A

∑
st+1∈S Pa(st, st+1) [rt + γV ∗(st+1)] . It is a

standard practice for RL algorithms to learn a state-action
value function, also called the Q-function. Q-function de-
notes the expected cumulative reward if agent chooses a
in the current state and follows π thereafter: Qπ(s, a) =
Eπ [r(st, at, st+1) + γV π(st+1) | st = s, at = a] .

Perturbed Reward in RL

In many practical settings, the RL agent does not ob-
serve the reward feedback perfectly. We consider the fol-
lowing MDP with perturbed reward, denoting as M̃ =
〈S,A,R, C,P, γ〉2: instead of observing rt ∈ R at each
time t directly (following his action), our RL agent only ob-
serves a perturbed version of rt, denoting as r̃t ∈ R̃. For
most of our presentations, we focus on the cases where R,
R̃ are finite sets; but our results generalize to the continuous
reward settings with discretization techinques.

The generation of r̃ follows a certain function C : S ×
R → R̃. To let our presentation stay focused, we consider
the following state-independent flipping error rates model: if
the rewards are binary (consider r+ and r−), r̃(st, at, st+1)

1We do not restrict the reward to deterministic in general, except
for when we need to estimate the noises in the perturbed reward
(Section 3.3).

2The MDP with perturbed reward can equivalently be defined as
a tuple M̃ = 〈S,A,R, R̃,P, γ〉, with the perturbation function C

implicitly defined as the difference between R and R̃.
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(r̃t) can be characterized by the following noise rate param-
eters e+, e−: e+ = P(r̃(st, at, st+1) = r−|r(st, at, st+1) =
r+), e− = P(r̃(st, at, st+1) = r+|r(st, at, st+1) = r−) .
When the signal levels are beyond binary, suppose there are
M outcomes in total, denoting as [R0, R1, · · · , RM−1]. r̃t
will be generated according to the following confusion matrix
CM×M where each entry cj,k indicates the flipping proba-
bility for generating a perturbed outcome: cj,k = P(r̃t =
Rk|rt = Rj). Again we’d like to note that we focus on
settings with finite reward levels for most of our paper, but
we provide discussions later on how to handle continuous
rewards.

In the paper, we also generalize our solution to the case
without knowing the noise rates (i.e., the reward confusion
matrices) for settings in which the rewards for each (state,
action) pair is deterministic, which is different from the as-
sumption of knowing them as adopted in many supervised
learning works (Natarajan et al. 2013). Instead we will esti-
mate the confusion matrices in our framework.

Learning with Perturbed Rewards

In this section, we first introduce an unbiased estimator for
binary rewards in our reinforcement learning setting when the
error rates are known. This idea is inspired by (Natarajan et al.
2013), but we will extend the method to the multi-outcome,
as well as the continuous reward settings.

Unbiased Estimator for True Reward

With the knowledge of noise rates (reward confusion ma-
trices), we are able to establish an unbiased approximation
of the true reward in a similar way as done in (Natarajan et
al. 2013). We will call such a constructed unbiased reward
as a surrogate reward. To give an intuition, we start with
replicating the results for binary reward R = {r−, r+} in
our RL setting:

Lemma 1. Let r be bounded. Then, if we define,

r̂(st, at, st+1) :=

⎧⎨
⎩

(1−e−)·r+−e+·r−
1−e+−e−

(r̃(st, at, st+1) = r+)
(1−e+)·r−−e−·r+

1−e+−e−
(r̃(st, at, st+1) = r−)

(1)

we have for any r(st, at, st+1), Er̃|r[r̂(st, at, st+1)] =
r(st, at, st+1).

In the standard supervised learning setting, the above prop-
erty guarantees convergence - as more training data are col-
lected, the empirical surrogate risk converges to its expec-
tation, which is the same as the expectation of the true risk
(due to unbiased estimators). This is also the intuition why
we would like to replace the reward terms with surrogate
rewards in our RL algorithms.

The above idea can be generalized to the multi-outcome
setting in a fairly straight-forward way. Define R̂ := [r̂(r̃ =
R0), r̂(r̃ = R1), ..., r̂(r̃ = RM−1)], where r̂(r̃ = Rk) de-
notes the value of the surrogate reward when the observed
reward is Rk. Let R = [R0;R1; · · · ;RM−1] be the bounded
reward matrix with M values. We have the following results:

Lemma 2. Suppose CM×M is invertible. With defining:

R̂ = C−1 ·R (2)

we have for any r(st, at, st+1), Er̃|r[r̂(st, at, st+1)] =
r(st, at, st+1).

Continuous reward When the reward signal is continuous,
we discretize it into M intervals, and view each interval as
a reward level, with its value approximated by its middle
point. With increasing M , this quantization error can be made
arbitrarily small. Our method is then the same as the solution
for the multi-outcome setting, except for replacing rewards
with discretized ones. Note that the finer-degree quantization
we take, the smaller the quantization error - but we would
suffer from learning a bigger reward confusion matrix. This
is a trade-off question that can be addressed empirically.

So far we have assumed knowing the confusion matrices
and haven’t restricted our solution to any specific setting,
but we will address this additional estimation issue focusing
on determinisitc reward settings, and present our complete
algorithm therein.

Convergence and Sample Complexity: Q-Learning

We now analyze the convergence and sample complexity of
our surrogate reward based RL algorithms (with assuming
knowing C), taking Q-Learning as an example.

Convergence guarantee First, the convergence guarantee
is stated in the following theorem:

Theorem 1. Given a finite MDP, denoting as M̂ =

〈S,A, R̂,P, γ〉, the Q-learning algorithm with surrogate
rewards, given by the update rule,

Qt+1(st, at) = (1− αt)Q(st, at) + αt

[
r̂t + γmax

b∈A
Q(st+1, b)

]
,

(3)

converges w.p.1 to the optimal Q-function as long as∑
t αt =∞ and

∑
t α

2
t <∞.

Note that the term on the right hand of Eqn. (3) includes
surrogate reward r̂ estimated using Eqn. (1) and Eqn. (2).
Theorem 1 states that that agents will converge to the opti-
mal policy w.p.1 when replacing the rewards with surrogate
rewards, despite of the noises in the observed rewards. This
result is not surprising - though the surrogate rewards intro-
duce larger variance, we are grateful of their unbiasedness,
which grants us the convergence. In other words, the addi-
tion of the perturbed reward does not affect the convergence
guarantees of Q-Learning with surrogate rewards.

Sample complexity To establish our sample complex-
ity results, we first introduce a generative model follow-
ing previous literature (Kearns and Singh 1998; 2000;
Kearns, Mansour, and Ng 1999). This is a practical MDP
setting to simplify the analysis.
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Definition 1. A generative model G(M) for an MDPM is
a sampling model which takes a state-action pair (st, at) as
input, and outputs the corresponding reward r(st, at) and the
next state st+1 randomly with the probability of Pa(st, st+1),
i.e., st+1 ∼ P(·|s, a).

Exact value iteration is impractical if the agents follow
the generative models above exactly (Kakade 2003). Conse-
quently, we introduce a phased Q-Learning which is similar
to the ones presented in (Kakade 2003; Kearns and Singh
1998) for the convenience of proving our sample complexity
results. We briefly outline phased Q-Learning as follows - the
complete description can be found in Appendix A (Algorithm
2).
Definition 2. Phased Q-Learning algorithm takes m sam-
ples per phase by calling generative model G(M). It uses the
collected m samples to estimate the transition probability P
and then update the estimated value function per phase. Call-
ing generative model G(M̂) means that surrogate rewards r̂
are returned and used to update the value function.

The sample complexity of Phased Q-Learning is given as
follows:
Theorem 2. (Upper Bound) Let r ∈ [0, Rmax] be bounded
reward, C be an invertible reward confusion matrix with
det(C) denoting its determinant. For an appropriate choice
of m, the Phased Q-Learning algorithm calls the genera-
tive model G(M̂) O

(
|S||A|T

ε2(1−γ)2det(C)2 log
|S||A|T

δ

)
times in

T epochs, and returns a policy such that for all state s ∈ S,
|Vπ(s)− V ∗(s)| ≤ ε, ε > 0, w.p. ≥ 1− δ, 0 < δ < 1.

Theorem 2 states that, to guarantee the convergence to the
optimal policy, the number of samples needed is no more
than O(1/det(C)2) times of the one needed when the RL
agent observes true rewards perfectly. This additional con-
stant is the price we pay for the noise presented in our learn-
ing environment. When the noise level is high, we expect
to see a much higher 1/det(C)2; otherwise when we are in
a low-noise regime , Q-Learning can be very efficient with
surrogate reward (Kearns and Singh 2000). Note that Theo-
rem 2 gives the upper bound in discounted MDP setting; for
undiscounted setting (γ = 1), the upper bound is at the order
of O

(
|S||A|T 3

ε2det(C)2 log
|S||A|T

δ

)
. This result is not surprising, as

the phased Q-Learning helps smooth out the noise in rewards
in consecutive steps. We will experimentally test how the
bias removal step performs without explicit phases.

While the surrogate reward guarantees the unbiasedness,
we sacrifice the variance at each of our learning steps, and
this in turn delays the convergence (as also evidenced in the
sample complexity bound). It can be verified that the variance
of surrogate reward is bounded when C is invertible, and it
is always higher than the variance of true reward. This is
summarized in the following theorem:
Theorem 3. Let r ∈ [0, Rmax] be bounded reward and con-
fusion matrix C is invertible. Then, the variance of surro-
gate reward r̂ is bounded as follows: Var(r) ≤ Var(r̂) ≤

M2

det(C)2 ·R2
max.

To give an intuition of the bound, when we have binary
reward, the variance for surrogate reward bounds as follows:

Var(r) ≤ Var(r̂) ≤ 4R2
max

(1−e+−e−)2 . As e− + e+ → 1, the
variance becomes unbounded and the proposed estimator is
no longer effective, nor will it be well-defined.

Variance reduction In practice, there is a trade-off ques-
tion between bias and variance by tuning a linear combination
of R and R̂, i.e., Rproxy = ηR+(1− η)R̂, via choosing an
appropriate η ∈ [0, 1]. Other variance reduction techniques in
RL with noisy environment, for instance (Romoff et al. 2018),
can be combined with our proposed bias removal technique
too. We test them in the experiment section.

Estimation of Confusion Matrices

In previous solutions, we have assumed the knowledge of
reward confusion matrices, in order to compute the sur-
rogate reward. This knowledge is often not available in
practice. Estimating these confusion matrices is challeng-
ing without knowing any ground truth reward information;
but we would like to remark that efficient algorithms have
been developed to estimate the confusion matrices in su-
pervised learning settings (Bekker and Goldberger 2016;
Liu and Liu 2017; Khetan, Lipton, and Anandkumar 2017;
Hendrycks et al. 2018). The idea in these algorithms is to dy-
namically refine the error rates based on aggregated rewards.
Note this approach is not different from the inference meth-
ods in aggregating crowdsourcing labels, as referred in the lit-
erature (Dawid and Skene 1979; Karger, Oh, and Shah 2011;
Liu, Peng, and Ihler 2012). We adapt this idea to our rein-
forcement learning setting, which is detailed as follows.

The estimation procedure is only for the case with deter-
ministic reward, but not for stochastic rewards. The reason is
that we will use repeated observations to refine an estimated
ground truth reward, which will be leveraged to estimate the
confusion matrix. With uncertainty in the true reward, it is
not possible to distinguish a clean case with true reward C ·R
from the perturbed reward case with true reward R and added
noise by confusion matrix C.

At each training step, the RL agent collects the noisy re-
ward and the current state-action pair. Then, for each pair in
S ×A, the agent predicts the true reward based on accumu-
lated historical observations of reward for the corresponding
state-action pair via, e.g., averaging (majority voting). Fi-
nally, with the predicted true reward and the accuracy (error
rate) for each state-action pair, the estimated reward confu-
sion matrices C̃ are given by

r̄(s, a) = argmax
Ri∈R

#[r̃(s, a) = Ri], (4)

c̃i,j =

∑
(s,a)∈S×A # [r̃(s, a) = Rj |r̄(s, a) = Ri]∑

(s,a)∈S×A #[r̄(s, a) = Ri]
, (5)

where in above # [·] denotes the number of state-action
pair that satisfies the condition [·] in the set of observed re-
wards R̃(s, a) (see Algorithm 1); r̄(s, a) and r̃(s, a) denote
predicted true rewards (using majority voting) and observed
rewards when the state-action pair is (s, a). We break po-
tential ties in Eqn. (4) equally likely. The above procedure
of updating c̃i,j continues indefinitely as more observation
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Algorithm 1 Reward Robust RL (sketch)

1: Input: M̃, R̃(s, a), η
2: Output: Q(s, a), π(s)
3: Initialize value function Q(s, a) arbitrarily.
4: while Q is not converged do

5: Initialize state s ∈ S , observed reward set R̃(s, a)

6: Set confusion matrix C̃ as identity matrix I
7: while s is not terminal do
8: Choose a from s using policy derived from Q
9: Take action a, observe s′ and noisy reward r̃

10: if collecting enough r̃ for all S ×A pairs then
11: Get predicted true reward r̄ using majority voting
12: Re-estimate C̃ based on r̃ and r̄ (using Eqn. 5)
13: end if
14: Obtain surrogate reward ṙ (R̂ = (1− η) ·R+ η ·

C̃−1R)
15: Update Q using surrogate reward
16: s← s′
17: end while
18: end while
19: return Q(s, a) and π(s)

arrives. Our final definition of surrogate reward replaces a
known reward confusion C in Eqn. (2) with our estimated
one C̃. We denote this estimated surrogate reward as ṙ.

We present (Reward Robust RL) in Algorithm 1Note that
the algorithm is rather generic, and we can plug in any ex-
isitng RL algorithm into our reward robust one, with only
changes in replacing the rewards with our estimated surrogate
rewards.

Experimental Results

In this section, we conduct extensive experiments to evaluate
the noisy reward robust RL mechanism with different games,
under various noise settings3.

Experimental Setup

Environments and RL Algorithms To fully test the per-
formance under different environments, we evaluate the pro-
posed robust reward RL method on two classic control games
(CartPole, Pendulum) and seven Atari 2600 games (AirRaid,
Alien, Carnival, MsPacman, Pong, Phoenix, Seaquest), which
encompass a large variety of environments, as well as rewards.
Specifically, the rewards could be unary (CartPole), binary
(most of Atari games), multivariate (Pong) and even continu-
ous (Pendulum). A set of state-of-the-art RL algorithms are
experimented with, while training under different amounts of
noise (see Appendix B for more details).

Reward Post-Processing For each game and RL algo-
rithm, we test the performance for learning with true re-
wards, noisy rewards and surrogate rewards. Both symmetric

3Due to the page limit, we leave all the proofs, detailed experi-
mental settings, supplementary results and more discussions in the
appendix. It is online available: https://arxiv.org/abs/1810.01032

Table 1: Average scores of various RL algorithms on CartPole
and Pendulum with noisy rewards (r̃) and surrogate rewards
under known (r̂) or estimated (ṙ) noise rates. Note that the
results for last two algorithms DDPG (rand-one) & NAF
(rand-all) are on Pendulum, but the others are on CartPole.

Noise Rate Reward Q-Learn CEM SARSA DQN DDQN DDPG NAF

ω = 0.1
r̃ 170.0 98.1 165.2 187.2 187.8 -1.03 -4.48
r̂ 165.8 108.9 173.6 200.0 181.4 -0.87 -0.89
ṙ 181.9 99.3 171.5 200.0 185.6 -0.90 -1.13

ω = 0.3
r̃ 134.9 28.8 144.4 173.4 168.6 -1.23 -4.52
r̂ 149.3 85.9 152.4 175.3 198.7 -1.03 -1.15
ṙ 161.1 82.2 159.6 186.7 200.0 -1.05 -1.36

ω = 0.7
r̃ 56.6 19.2 12.6 17.2 11.8 -8.76 -7.35
r̂ 177.6 87.1 151.4 185.8 195.2 -1.09 -2.26
ṙ 172.1 83.0 174.4 189.3 191.3 – –

Table 2: Average scores of PPO on five selected games with
noisy rewards (r̃) and surrogate rewards under known (r̂) or
estimated (ṙ) noise rates.

Noise Rate Reward Lift (↑) Alien Carnival Phoenix MsPacman Seaquest

ω = 0.1
r̃ – 1835.1 1239.3 4609.0 1709.1 849.2
r̂ 70.4%↑ 1737.0 3966.8 7586.4 2547.3 1610.6
ṙ 84.6%↑ 2844.1 5515.0 5668.8 2294.5 2333.9

ω = 0.3
r̃ – 538.2 919.9 2600.3 1109.6 408.7
r̂ 119.8%↑ 1668.6 4220.1 4171.6 1470.3 727.8
ṙ 80.8%↑ 1542.9 4094.3 2589.1 1591.2 262.4

ω = 0.7
r̃ – 495.2 380.3 126.5 491.6 0.0
r̂ 757.4%↑ 1805.9 4088.9 4970.4 1447.8 492.5
ṙ 648.9%↑ 1618.0 4529.2 2792.1 1916.7 328.5

and asymmetric noise settings with different noise levels are
tested. For symmetric noise, the confusion matrices are sym-
metric. As for asymmetric noise, two types of random noise
are tested: 1) rand-one, each reward level can only be per-
turbed into another reward; 2) rand-all, each reward could
be perturbed to any other reward, via adding a random noise
matrix. To measure the amount of noise w.r.t confusion ma-
trices, we define the weight of noise ω in Appendix B. The
larger ω is, the higher the noise rates are.

Robustness Evaluation

CartPole The goal in CartPole is to prevent the pole from
falling by controlling the cart’s direction and velocity. The
reward is +1 for every step taken, including the termination
step. When the cart or pole deviates too much or the episode
length is longer than 200, the episode terminates. Due to the
unary reward {+1} in CartPole, a corrupted reward −1 is
added as the unexpected error (e− = 0). As a result, the
reward space R is extended to {+1,−1}. Five algorithms
Q-Learning (Watkins and Dayan 1992), CEM (Szita and
Lörincz 2006), SARSA (Sutton and Barto 1998), DQN (van
Hasselt, Guez, and Silver 2016) and DDQN (Wang et al.
2016) are evaluated.

In Figure 1, we show that our estimator successfully pro-
duces meaningful surrogate rewards that adapt the underlying
RL algorithms to the noisy settings, without any assumption
of the true distribution of rewards. With the noise rate in-
creasing (from 0.1 to 0.9), the models with noisy rewards
converge slower due to larger biases. However, we observe
that the models always converge to the best score 200 with
the help of surrogate rewards.

In some circumstances (slight noise - see Figure 1b, 1c),
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ω
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(a) Q-Learning (b) CEM (c) SARSA (d) DQN (e) DDQN

Figure 1: Learning curves from five RL algorithms on CartPole game with true rewards (r) (blue), noisy rewards (r̃) (orange)
and estimated surrogate rewards (ṙ) (η = 1) (green). Note that C are unknown to the agents and each experiment is repeated 10
times with different random seeds. We plotted 10% to 90% percentile area with its mean highlighted. Full results are in Appendix
D (Figure 6).
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Figure 2: Learning curves from DDPG and NAF on Pendulum game with true rewards (r) (blue), noisy rewards (r̃) (orange)
and surrogate rewards (r̂) (η = 1) (green). Both symmetric and asymmetric noise are conduced in the experiments and each
experiment is repeated 3 times with different random seeds. Full results are in Appendix D (Figure 9).

the surrogate rewards even lead to faster convergence. This
points out an interesting observation: learning with surrogate
reward sometimes even outperforms the case with observing
the true reward. We conjecture that the way of adding noise
and then removing the bias (or moderate noise) introduces
implicit exploration. This may also imply why some algo-
rithms with estimated confusion matrices C̃ leads to better
results than with known C in some cases (Table 1).

Pendulum The goal in Pendulum is to keep a frictionless
pendulum standing up. Different from the CartPole setting,
the rewards in pendulum are continuous: r ∈ (−16.28, 0.0].
The closer the reward is to zero, the better performance the
model achieves. For simplicity, we firstly discretized (−17, 0]
into 17 intervals: (−17,−16], (−16,−15], · · · , (−1, 0], with
its value approximated using its maximum point. After the
quantization step, the surrogate rewards can be estimated

using multi-outcome extensions.
We experiment two popular algorithms, DDPG (Lillicrap

et al. 2015) and NAF (Gu et al. 2016) in this game. In Fig-
ure 2, both algorithms perform well with surrogate rewards
under different amounts of noise. In most cases, the biases
were corrected in the long-term, even when the amount of
noise is extensive (e.g., ω = 0.7). The quantitative scores
on CartPole and Pendulum are given in Table 1, where the
scores are averaged based on the last 30 episodes. Our reward
robust method is able to achieve good scores consistently.

Atari We validate our algorithm on seven Atari 2600 games
using the state-of-the-art algorithm PPO (Schulman et al.
2017). The games are chosen to cover a variety of envi-
ronments. The rewards in the Atari games are clipped into
{−1, 0, 1}. We leave the detailed settings to Appendix B.

Results for PPO on Pong-v4 in symmetric noise setting
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Figure 3: Learning curves from PPO on Pong-v4 game with true rewards (r) (blue), noisy rewards (r̃) (orange) and surrogate
rewards (η = 1) (r̂) (green). The noise rate ω increases from 0.6 to 0.9, with a step of 0.1.
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Figure 4: Learning curves from five reward robust RL algorithms on CartPole game with true rewards (r) (blue), noisy rewards
(r̃) (orange), sample-mean noisy rewards (red), estimated surrogate rewards (ṙ) (green) and sample-mean estimated surrogate
rewards (purple).

are presented in Figure 3. More results on other Atari games
and noise settings are given in Appendix D. Similar to pre-
vious results, our surrogate estimator performs consistently
well and helps PPO converge to the optimal policy. Table 2
shows the average scores of PPO on five selected Atari games
with different amounts of noise (symmetric & asymmetric).
In particular, when the noise rates e+ = e− > 0.3, agents
with surrogate rewards obtain significant amounts of improve-
ments in average scores. For the cases with unknown C (ṙ in
Table 2), due to the large state-space (image-input) in confu-
sion matrix estimation, we embed and consider the adjacent
frames within a batch as the same state and set the memory
size for states as 1,000.

Compatible with Variance Reduction Techniques

As illustrated in Theorem 3, our surrogate rewards introduce
larger variance while conducting unbiased estimation, which
are likely to decrease the stability of RL algorithms. Apart
from the linear combination idea (a linear trade-off), some
variance reduction techniques in statistics (e.g., correlated
sampling) can also be applied to our method. Specially, Ro-
moff et al. proposed to use a reward estimator to compensate
for stochastic corrupted-reward signals. It is worthy to notice
that their method is designed for variance reduction under
zero-mean noises, which is no longer efficacious in more
general perturbed-reward setting. However, it is potential to
integrate their method with our robust-reward RL framework
because surrogate rewards provide unbiasedness guarantee.

To verify this idea, we repeated the experiments of Cart-
pole but included variance reduction step for estimated sur-
rogate rewards. Following Romoff et al., we adopted sample
mean as a simple approximator during the training and set
sequence length as 100. As shown in Figure 4, the models

with only variance reduction technique (red lines) suffer from
huge regrets, and in general do not converge to the optimal
policies. Nevertheless, the variance reduction step helps sur-
rogate rewards (purple lines) to achieve faster convergence
or better performance in multiple cases. More quantitative
results are provided in Appendix D (Table 4) which show
that our surrogate reward benefits from variance reduction
techniques (“ours + VRT”), especially when the noise rate is
high.

Conclusions

Improving the robustness of RL in the settings with perturbed
and noisy rewards is important given the fact that such noises
are common when exploring a real-world scenario, such as
sensor errors. In addition, in adversarial environments, per-
turbed reward could be leveraged Different robust RL algo-
rithms have been proposed but they either only focus on the
noisy observations or need strong assumption on the unbi-
ased noise distribution for observed rewards. In this paper, we
propose the first simple yet effective RL framework for deal-
ing with biased noisy rewards. The convergence guarantee
and finite sample complexity of Q-Learning (or its variant)
with estimated surrogate rewards are provided. To validate
the effectiveness of our approach, extensive experiments are
conducted on OpenAI Gym, showing that surrogate rewards
successfully rescue models from misleading rewards even
at high noise rates. We believe this work will further shed
light on exploring robust RL approaches under different noisy
rewards observations in real-world environments.
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