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Abstract

Learning to classify unseen class samples at test time is pop-
ularly referred to as zero-shot learning (ZSL). If test samples
can be from training (seen) as well as unseen classes, it is
a more challenging problem due to the existence of strong
bias towards seen classes. This problem is generally known as
generalized zero-shot learning (GZSL). Thanks to the recent
advances in generative models such as VAEs and GANs, sam-
ple synthesis based approaches have gained considerable at-
tention for solving this problem. These approaches are able to
handle the problem of class bias by synthesizing unseen class
samples. However, these ZSL/GZSL models suffer due to the
following key limitations: (i) Their training stage learns a
class-conditioned generator using only seen class data and
the training stage does not explicitly learn to generate the un-
seen class samples; (ii) They do not learn a generic optimal
parameter which can easily generalize for both seen and un-
seen class generation; and (iii) If we only have access to a
very few samples per seen class, these models tend to per-
form poorly. In this paper, we propose a meta-learning based
generative model that naturally handles these limitations. The
proposed model is based on integrating model-agnostic meta
learning with a Wasserstein GAN (WGAN) to handle (i) and
(iii), and uses a novel task distribution to handle (ii). Our
proposed model yields significant improvements on standard
ZSL as well as more challenging GZSL setting. In ZSL set-
ting, our model yields 4.5%, 6.0%, 9.8%, and 27.9% rela-
tive improvements over the current state-of-the-art on CUB,
AWA1, AWA2, and aPY datasets, respectively.

Introduction

With the ever-growing quantities, diversity, and complex-
ity of real-world data, machine learning algorithms are in-
creasingly faced with challenges that are not adequately ad-
dressed by traditional learning paradigms. For classification
problems, one such challenging setting is where test-time re-
quires correctly labeling objects that could be from classes
that were not present at training time. This setting is popu-
larly known as Zero-Shot Learning (ZSL), and has drawn a
considerable interest recently (Socher et al. 2013; Norouzi
et al. 2013; Verma and Rai 2017; Changpinyo et al. 2016;
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Romera and Torr 2015a; Xian et al. 2018b; Verma et al.
2018; Liu et al. 2018; Romera and Torr 2015b; Chen et al.
2018). ZSL algorithms typically rely on class-descriptions
(e.g., human-provided class attribute vectors, textual de-
scription, or word2vec embedding of class name). These
class-description/class-attributes are leveraged to transfer
the knowledge from seen classes (i.e., classes that were
present at training-time) to unseen classes (i.e., classes only
encountered in test data).

Driven by the recent advances in generative modeling
(Arjovsky, Chintala, and Bottou 2017; Kingma and Welling
2014), there is a growing interest in generative models for
ZSL. Broadly, these models learn to generate/synthesize “ar-
tificial” examples from unseen classes (Felix et al. 2018;
Verma et al. 2018; Xian et al. 2018b), conditioning on their
class attributes, and learn a classifier using these synthesized
examples. Despite the recent progress on such approaches,
these still have some key limitations. Firstly, while the goal
of these approaches is to generate unseen/novel class exam-
ples given the respective class attributes, these models are
trained using data (inputs and the respective class attributes)
from the seen classes (Verma et al. 2018; Xian et al. 2018b;
Felix et al. 2018) and do not explicitly learn to generate the
unseen class samples during training. Consequently, these
generative ZSL models show a large quality gap between the
synthesized unseen class inputs and actual unseen class in-
put. To mimic the ZSL setting explicitly, we propose a novel
variant of the standard meta-learning based approach (Finn,
Abbeel, and Levine 2017). Notably, in our variant, the meta-
train and meta-validation classes are disjoint.

The second limitation of existing ZSL/GZSL models is
that they do not learn an optimal parameter which can
easily generalize to the seen/unseen class generation. Our
meta-learning framework learns such an optimal parame-
ter that can quickly adapt to the novel classes (meta-test)
with few gradient steps. (Snell, Swersky, and Zemel 2017;
Vinyals et al. 2016) show that even with the zero-gradient
step (without fine-tuning), meta-learning learns to general-
ize novel class samples/task. We build on this idea to train a
class-conditioned WGAN for sample generation.

The third key limitation is that all the existing ZSL meth-
ods rely on the availability of a significant number of labeled
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samples from each of the seen classes. This itself is a severe
requirement and may not be met in practice (e.g., we may
only have a handful, say 5, or 10 examples from each seen
class). Note that this setting is somewhat similar to few-shot
learning or meta-learning (Finn, Abbeel, and Levine 2017)
where the goal is to learn a classifier using very few exam-
ples per class, but all the test/unseen class are assumed to
have few samples in test time. In contrast, in ZSL, we do
not have any labeled training data from unseen classes. Our
meta-learning based formulation is naturally suited to this
setting where only a few samples per class are available.

Our approach is primarily based on learning a
generative model that can synthesize inputs from
any class (seen/unseen), given the respective class-
attributes/description. However, unlike recent works on syn-
thesis based ZSL models (Zhu et al. 2018; Verma et al. 2018;
Xian et al. 2018b; Felix et al. 2018), we endow the generator
the capability to meta-learn using very few examples per
seen class. To this end, we develop a meta-learning based
conditional Wasserstein GAN (Arjovsky, Chintala, and Bot-
tou 2017) (conditioning on the class-attributes) which has
a generator and a discriminator modules augmented with a
classifier. Each module is associated with a meta-learning
agent, to facilitate learning with a very small number of
seen class inputs. Also, the novel task distribution helps to
mimic the ZSL behavior, i.e., the generative model not only
learns to generate the seen class samples but the unseen
class samples as well. We would also like to highlight that,
although we develop this model with the focus being ZSL
and generalized ZSL, our ideas can be used for the task
of supervised few-shot generation (Clouâtre and Demers
2019), which is the problem of learning to generate data
given very few examples to learn the data distribution. Our
main contributions are summarized below:

• We develop a novel meta-learning framework for ZSL and
generalized ZSL by learning to synthesize examples from
unseen classes, given the respective class-attributes. No-
tably, our framework is based on model-agnostic meta-
learning (Finn, Abbeel, and Levine 2017), which enables
the synthesis of high-quality examples. This helps to over-
come the above mentioned second and third limitation.

• We propose a novel episodic training for the meta-
learning based ZSL where, in each episode, the training-
set and validation-set classes are disjoint. This helps
learning to generate the novel class examples in train-
ing itself. This contributes in overcoming the above men-
tioned first limitation.

Notation, Preliminaries, Problem Setup

A typical ZSL setting is as follows: We have S seen classes
with labelled training data and U unseen classes with no la-
belled data present during the training time. The test data
can be either exclusively from unseen classes (standard ZSL
setting), or can be from both unseen and seen classes (gener-
alized ZSL setting). We further assume that we are provided
class-attribute vectors for the seen as well as unseen classes
A = {ac}S+U

c=1 , where ac ∈ R
d is the class-attribute vec-

tor of class c. These class-attribute vectors are leveraged by

the ZSL algorithms to transfer the knowledge from seen to
unseen classes.

Existing ZSL algorithms 1assume that we have access
to a significant number of examples from each of the seen
classes. This may however not be the case; in practice, we
may have very few examples from each of the seen classes.
We train our model in N -way K-shot setting such that it
can handle the ZSL problem when only very few samples
are available per seen class. We choose the model-agnostic
meta learning (MAML) (Finn, Abbeel, and Levine 2017) as
our meta-learner due to its generic nature; it only requires a
differentiable model and can work with any loss function.

Model-Agnostic Meta-Learning (MAML)

MAML (Finn, Abbeel, and Levine 2017) is an optimization
based meta-learning framework designed for few-shot learn-
ing. The model is designed in such a way that it can quickly
adapt to a new task with the help of only few training ex-
amples. MAML assumes that model fθ is parameterized by
learnable parameters θ and the loss function is smooth in θ
that can be used for the gradient-descent based updates.

Let p(T ) be the distribution of tasks over the meta-train
set. MAML defines the notion of a “task” such that a task
Ti ∼ p(T ) represents a set of labeled examples and MAML
splits this set further into a training set Ttr and a valida-
tion set Tval, i.e., Ti = {Ttr, Tval}. The split is done such
that Ttr has very few examples per class. We follow the
general notion of N -way K-shot problem (Vinyals et al.
2016) , i.e., Ttr contains N classes with K examples from
each class. The model is trained using an episodic formu-
lation where each round samples a batch of tasks and uses
gradient-descent based updates (inner loop) for the parame-
ters θi specific to each task Ti. The meta-update step (outer
loop) then aggregates the information from all these “local”
updates to update the overall model parameters θ, using gra-
dient descent update.

For task Ti, its local parameters θi are updated by start-
ing with the global model parameters θ, and using a few
gradient based updates computed on Ttr from task Ti. As-
suming a single step of update, this can be written as: θ′i =
θ − α∇θLTtr

(fθ).Here, α is the hyper-parameter and L de-
notes the loss function being used. The overall global/meta
objective defined over the multiple tasks sampled from task
distribution p(T ) can be defined as:

∑

Ti∼p(T )

LTtr (fθ′i) =
∑

Ti∼p(T )

LTtr (fθ−αLTtr
(fθ)) (1)

Assuming a gradient descent based optimization of the
global objective in Eq. 1, a single-step gradient descent
update for the global parameter can be written as: θ ←
θ − β∇θ

∑
Ti∼p(T ) LTval

(fθ′
i
).

Zero-Shot Meta-Learning (ZSML)

The meta-learning framework can quickly adapt to a new
task with the help of only a few gradient steps. The quick
adaption is only possible for the model if it learns the opti-
mal parameter θ in the parameter space that is unbiased to-
wards the meta-train data. The learned parameters are close
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Figure 1: Left: Task episode for zero-shot meta-learning. For each task Ti = {Ttr, Tval}, training set Ttr and validation set Tval
classes are disjoint. In the ZSL setup, we have zero training examples from the meta-test set. Right: The proposed architecture
model. X: ResNet-101 feature vector.

to the optimal parameters for both meta-train and meta-test
data respectively. It is already demonstrated in (Vinyals et al.
2016; Snell, Swersky, and Zemel 2017) where without fine-
tuning (using zero gradient steps, i.e., not making any up-
date) on the meta-test, the meta-learning model shows bet-
ter/similar performance. Our ZSML approach is primarily
motivated by high-quality generalization ability of the meta-
learning towards the seen/unseen class samples. We use the
meta-learning framework to train a generative adversarial
network conditioned on class attributes, that can generate the
novel class samples. A key difference with MAML, to mimic
the ZSL behaviour, is that for each task Ti = {Ttr, Tval}, the
classes of Ttr and Tval are disjoint, whereas, in MAML, both
set of classes are the same. Therefore, the training is done in
such a way that Ttr acts as seen classes and Tval acts as un-
seen classes. The inner loop of the meta-learning optimizes
the parameters using Ttr, and final parameters are updated
over the loss of the Tval (containing disjoint set of classes).
Therefore, the model learns to generate the novel class dur-
ing the training itself. In the next section, we describe our
complete model (shown in Figure 1 (right)).

Meta-Learning based Adversarial Generation

The core of our ZSL model (Figure 1 right) is a genera-
tive adversarial network (Goodfellow et al. 2014), coupled
with (1) an additional classifier module trained to correctly
classify the examples generated by the generator module;
and (2) meta-learners in each of the three modules (Genera-
tor (G), Discriminator (D), and Classifier (C)). We use the
Wasserstein GAN (Arjovsky, Chintala, and Bottou 2017) ar-
chitecture due to its nice stability properties. We assume θd,
θg and θc to be the parameters of the Discriminator, Gener-
ator and Classifier, respectively.

Our model follows the episode-wise training akin to
MAML (however, Ttr and Tval classes are disjoint in our
ZSL setting). There are three meta-learners in the model,
one for each D, G and C, but G and C are optimized jointly.

From now on, we will denote the parameters for G and C as
a joint set of parameters θgc = [θg, θc].

For each task Ti = {Ttr, Tval}, sampled from the task dis-
tribution p(T ), Ttr is used by the meta-learners (in the inner
loop) of D and G. Tval is used to calculate the loss over the
most recent parameters of the meta-learners. For our model,
the generator network G : Z × A → X̂ takes input as,
a random noise z ∼ N (0, I) (z ∈ Z), concatenated with
the class-attribute vector ac of a class. G produces a sample
x̂ ∈ X̂ that is similar to a real sample from that class. The
discriminator network D : X × A → [0, 1] tries to distin-
guish such generated samples (concatenated with attributes)
from the actual sample X (real data distribution). In addi-
tion, the goal of the classifier network C : X̂ → Y is to
take the generated sample x̂ from G and classify it into the
original class c ∈ Y where Y is the set of both seen and
unseen classes. Presence of the classifier module C ensures
that the generated sample has the same characteristics as that
of samples from that class.

We now describe the objective function of our model. Let
LD
Ti

denote the meta-learner objective of the discriminator
D and LGC

Ti
denote the meta-learner objective of the gener-

ator G and the classifier C, on the task Ti. The meta-learner
objective LD

Ti
for discriminator D can be defined as:

LD
Ti
(θd) = ETiD(x,ac|θd)− Eac,x̂∼Pθg

D(x̂,ac|θd) (2)

Here, ac ∈ A is attribute vector of samples belonging to
Ti. The objective in Eq. 2 (to be maximized) essentially says
that the discriminator should have D(.) large for real ex-
amples and small for generated examples. The meta-learner
objective LGC

Ti
for generator G and classifier C is given as:

LGC
Ti

(θgc)=− Eac,z∼N (0,I)D(G(ac, z|θg),ac|θd) + C(y|x̂, θc)
(3)

This objective (to be minimized) says that the generator’s
output G(ac, z|θg) should be such that D(.) is large, as well
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as the classifier’s loss C should be small (i.e., the classifier
should predict the correct class for generated example x̂).
Having defined the individual objectives, the overall objec-
tive for the meta-learner (inner loop) update for task Ti:

lDTi
= max

θd
LD
Ti
(θd) and lGC

Ti
= min

θgc
LGC
Ti

(θgc) (4)

The meta-learner gradient ascent update for the discrimina-
tor over a task Ti will be:

θ′d = θd + η1∇θd l
D
Ttr∈Ti

(θd) (5)
Similarly the meta-learner gradient descent update for the
generator and classifier over Ti will be:

θ′gc = θgc − η2∇θgc l
GC
Ttr∈Ti

(θgc) (6)
The model parameters are learned by optimizing Eq 2 and
Eq 3 over a batch of sampled tasks from the task distribution
p(T ). The overall meta-objective for the discriminator and
generator is:

θ′d = θd + η1∇θd

∑

Ttr∈Ti∼p(T )

lDTtr
(θd) (7)

θ′gc = θgc − η2∇θgc

∑

Ttr∈Ti∼p(T )

lGC
Ttr

(θgc) (8)

Unlike to standard MAML in the inner loop (i.e. Eq:7 and
8) are optimize on the set of task instead of per task. We ob-
serve that this increase the stability of the WGAN training.
Having meta-learned the discriminator parameters from the
meta-training phase (performed using the seen class exam-
ples), the discriminator’s objective function w.r.t. the unseen
class examples in the validation meta-set is given by:

max
θd

∑

Tval∈Ti∼p(T )

lDTval
(θ′d)

=max
θd

∑

Tval∈Ti∼p(T )

lDTval
(θd + η1∇θl

D
Ttr

(θd))
(9)

Therefore, the final update of the discriminator D for the
batch is:

θd ← θd + β1∇θd

∑

Tval∈Ti∼p(T )

lDTval
(θ′d) (10)

Here, β1 is the learning rate for the meta-step and θ′d is
the optimal parameter provided by the inner loop of meta-
learner for the discriminator. Likewise, the generator’s and
classifier’s objective function w.r.t. the unseen class exam-
ples in Tval is given by:

min
θgc

∑

Tval∈Ti∼p(T )

lGC
Tval

(θ′gc)

Update
====⇒ θgc ← θgc − β2∇θgc

∑

Tval∈Ti∼p(T )

lGC
Tval

(θ′gc)
(11)

Eq. 11 performs the meta-optimization across the batch of
task for the generator and classifier. Again, note that, each
task Ti = {Ttr, Tval} is partitioned into training set Ttr and
validation set Tval, such that the classes are disjoint. In con-
trast, traditional meta-learning (Finn, Abbeel, and Levine
2017) designed for few-shot learning assumes that the set of
classes in Tval is same as the set of classes in Ttr. This dis-
joint setup for Ttr and Tval is designed for zero-shot learning
in order to mimic the problem setting which requires predict-
ing the labels for examples from unseen classes not present
at training time.

Example Generation and Zero-Shot Classification

After training the model, we can generate the unseen class
examples given the respective class-attribute vectors. The
generation of the novel class examples is done as:

x̂ = Gθg (z,ac) : ac ∈ R
d, c ∈ {S + 1, . . . S + U} (12)

Here, z ∼ N (0, I) and z ∈ R
k. Once we have generated

samples from the unseen classes, we can train any classi-
fier (e.g., SVM or softmax classifier) with these samples as
labeled training data. In generalized ZSL setting, we syn-
thesize samples from both seen and unseen class. We use
the unseen class generated samples and actual/generated ex-
amples from seen classes to train a classifier with the la-
bel space being the union of seen and unseen classes. In
practice, we found that using generated samples from seen
classes (as opposed to actual samples) tends to perform bet-
ter in the generalized ZSL setting. A justification for this is
that the generated sample quality is uniform across seen and
unseen class examples.

Related Work

Some of the earliest works on ZSL were based on directly or
indirectly mapping the inputs to the class-attributes (Lam-
pert, Nickisch, and Harmeling 2014; Norouzi et al. 2013;
Socher et al. 2013). The learned mapping is used at infer-
ence time, this mapping first projects the unseen data to
class-attribute space and then uses nearest neighbour search
to predict the class. In a similar vein, other approaches
(Romera and Torr 2015a; Changpinyo et al. 2016) also con-
sider the relationship between seen and unseen classes. They
represent the parameters of each unseen class as a similar-
ity weighted combination of the parameters of seen classes.
All of these models require plenty of data from the seen
classes, and also do not work well in GZSL setting (Xian
et al. 2018a).

Another prominent approach for ZSL focuses on learn-
ing the bilinear compatibility between the visual space and
the semantic space of classes. (Akata et al. 2013; Frome
et al. 2013; Akata et al. 2015; Romera and Torr 2015a;
Kodirov, Xiang, and Gong 2017) are based on computing a
linear/bilinear compatibility function. (Zhang and Saligrama
2015) embeds the inputs based on the semantic similarity.
Some of the ZSL methods assume that all the unseen class
inputs are also present at the time of training without the
class labels. These transductive methods have extra informa-
tion about all the unlabelled data of the unseen class, which
leads to improved predictions as compared to the inductive
setting (Song et al. 2018; Xu, Hospedales, and Gong 2017).
Note that the transductive assumption is not very realistic
since often test data is not available at the time of training.

The generalized ZSL (GZSL) (Verma et al. 2018; Chao
et al. 2016; Xian et al. 2018a; 2018b) problem is arguably
a very realistic and challenging problem wherein, unlike
the ZSL problem, the training (seen) and the test (unseen)
classes are not disjoint. Most of the previous models that per-
form well on standard ZSL fail to handle the biases towards
predicting seen classes. Recently, generative models (Chen
et al. 2018; Xian et al. 2018b; Verma and Rai 2017; Guo et
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Method SUN CUB AWA1 AWA2 aPY

LATEM (Xian et al. 2016) 55.3 49.3 55.1 55.8 35.2
ESZSL (Romera and Torr 2015a) 54.5 53.9 58.2 58.6 38.3
SYNC(Changpinyo et al. 2016) 56.3 55.6 54.0 46.6 23.9
DEM (Zhang, Xiang, and Gong 2017) 61.9 51.7 68.4 67.1 35.0
DCN (Liu et al. 2018) 61.8 56.2 – 65.2 43.6
ZSKL (Zhang and Koniusz 2018) 61.7 51.7 70.1 70.5 45.3
GFZSL(Verma and Rai 2017) 62.6 49.2 69.4 67.0 38.4
SP-AEN (Chen et al. 2018) – 55.4 – 58.5 24.1
CVAE-ZSL(Mishra et al. 2017) 61.7 52.1 71.4 65.8 –
cycle-UWGAN (Felix et al. 2018) 59.9 58.6 – 66.8 –
f-CLSWGAN (Xian et al. 2018b) 60.8 57.3 – 68.2 –
SE-ZSL (Verma et al. 2018) 63.4 59.6 69.5 69.2 –
VSE-S (Zhu et al. 2019) – 66.7 – 69.1 50.1
LisGAN (Li et al. 2019) 61.7 58.8 – 70.6 43.1
ZSML Softmax (Ours) 60.2 69.6 73.5 76.1 64.1
ZSML SVM (Ours) 60.1 69.7 74.3 77.5 64.0

Table 1: ZSL result using the per-class mean metric (Xian et al. 2018a). The non-generative models are mentioned at the top
and the generative models are mentioned at the bottom. All compared methods use CNN-RNN feature for CUB dataset.

al. 2017; Wang et al. 2018) have shown promising results
for both ZSL and GZSL setups. (Verma and Rai 2017) used
a simple generative model based on the exponential fam-
ily framework while (Guo et al. 2017) synthesized the clas-
sifier weights using class attributes. Recent generative ap-
proaches for ZSL are mostly based on VAE (Kingma and
Welling 2014) and GAN (Goodfellow et al. 2014). Among
these, (Verma et al. 2018; Bucher, Herbin, and Jurie 2017;
Xian et al. 2019) are based on the VAE architectures while
(Xian et al. 2018b; Chen et al. 2018; Li et al. 2019;
Felix et al. 2018) use adversarial sample generation based on
the class conditioned attribute. The recent approaches based
on VAE and GAN show very competitive results. A particu-
lar advantage of the generative approaches is that, by using
synthesized samples, we can convert the ZSL problem to the
conventional supervised learning problem that can handle
the biases towards the seen classes. The meta-learning ap-
proach are already tried for the ZSL (Hu, Xiong, and Socher
2018) to correct the learned network. To the best of our
knowledge MAML (Finn, Abbeel, and Levine 2017) based
approach over GAN has not been investigated yet. The meta-
learning based adversarial generation model shows signifi-
cant performance improvement, whereas the recent genera-
tive ZSL models have saturated.

Experiments and Results

We perform a comprehensive evaluation of our approach
ZSML (Zero-Shot Meta-Learning) by applying it on both
standard ZSL and generalized ZSL problems and compare
it with several state-of-the-art methods. We also perform
several ablation studies to demonstrate/disentangle the ben-
efits of the various aspects of our proposed approach. We
evaluate our approach on the following benchmark ZSL
datasets: SUN (Xiao et al. 2010) and CUB (Welinder et al.
2010) which are fine-grained and considered very challeng-
ing; AWA1 (Lampert, Nickisch, and Harmeling 2009) and
AWA2 (Xian et al. 2018a); aPY (Farhadi et al. 2009) with
diverse classes that makes this dataset very challenging. For
CUB dataset, we use CNN-RNN textual features (Reed et

al. 2016) as class attributes, similar to the approaches men-
tioned in Table 1 and 2. Due to the lack of space, the com-
plete Algorithm and details about the datasets are provided
in the Supplementary Material. The generator and discrim-
inator are 2-hidden layer networks with hidden layer size
2048 and 512, respectively.

Zero-Shot Learning

For the ZSL setting, we first train our model on seen class
examples DS and then synthesize samples from the unseen
classes. These synthesized samples are further used to train
either a multi-class linear SVM or a softmax classifier. The
trained model over the synthesized examples is used to pre-
dict the classes for the test examples DU . We report results
with both softmax classifier and linear SVM but we can, in
principle, use any supervised classifier to train the model
once we have generated the data. The average per-class ac-
curacy is used as the standard evaluation metric (Xian et al.
2018a), shown in Table 1, as it overcomes the biases towards
some particular class that has more data. In the ZSL set-
ting, our model yields 4.5%, 6.0%, 9.8%, and 27.9% rela-
tive improvements over the current state-of-the-art on CUB,
AWA1, AWA2, and aPY datasets, respectively. While, on
the SUN dataset, it is very competitive as compared to the
previous state-of-the-art methods. The SUN dataset contains
717 fine-grain classes; therefore, using the GAN based gen-
eration is highly prone to mode collapse. We believe that
mode collapse is the possible reason for lower performance
on SUN dataset. We are using the same network architecture
and hyper-parameter for all the dataset. Since SUN dataset is
fairly different compare to the other datasets, we believe that
better hyper-parameter tuning for SUN dataset may improve
the result.

Generalized Zero-Shot Learning

Standard ZSL assumes that all test inputs are from the un-
seen classes. The more challenging generalized Zero-Shot
Learning (GZSL) relaxes this assumption and requires per-
forming classification where the test set can potentially con-
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Method
AWA1 CUB aPY AWA2

U S H U S H U S H U S H

ESZSL (Romera and Torr 2015a) 6.6 75.6 12.1 12.6 63.8 21.0 2.4 70.1 4.6 5.9 77.8 11.0
SYNC(Changpinyo et al. 2016) 8.9 87.3 16.2 11.5 70.9 19.8 7.4 66.3 13.3 10.0 90.5 18.0
LATEM (Xian et al. 2016) 7.3 71.7 13.3 15.2 57.3 24.0 0.1 73.0 0.2 11.5 77.3 20.0
DEVISE (Frome et al. 2013) 13.4 68.7 22.4 23.8 53.0 32.8 4.9 76.9 9.2 17.1 74.7 27.8
DEM (Zhang, Xiang, and Gong 2017) 32.8 84.7 47.3 19.6 57.9 29.2 11.1 75.1 19.4 30.5 86.4 45.1
ZSKL (Zhang and Koniusz 2018) 18.3 79.3 29.8 21.6 52.8 30.6 10.5 76.2 18.5 18.9 82.7 30.8
DCN (Liu et al. 2018) – – – 28.4 60.7 38.7 14.2 75.0 23.9 25.5 84.2 39.1
f-CLSWGAN (Xian et al. 2018b) 61.4 57.9 59.6 43.7 57.7 49.7 – – – 57.9 61.4 59.6
SP-AEN (Chen et al. 2018) – – – 34.7 70.6 46.6 13.7 63.4 22.6 23.3 90.9 37.1
cycle-UWGAN (Felix et al. 2018) – – – 47.9 59.3 53.0 – – – 59.6 63.4 59.8
SE-GZSL (Verma et al. 2018) 56.3 67.8 61.5 41.5 53.3 46.7 – – – 58.3 68.1 62.8
F-VAEGAND2 (Xian et al. 2019) – – – 48.4 60.1 53.6 – – – 57.6 70.6 63.5
VSE-S (Zhu et al. 2019) – – – 33.4 87.5 48.4 24.5 72.0 36.6 41.6 91.3 57.2
ZSML Softmax (Ours) 57.4 71.1 63.5 60.0 52.1 55.7 36.3 46.6 40.9 58.9 74.6 65.8

Table 2: Accuracy for GZSL, on novel proposed split (PS). U and S represent top-1 accuracy on unseen and seen class with all
the S + U classes. H stands for the harmonic mean. All compared methods use CNN-RNN feature for CUB dataset.

Method N
AwA2 CUB

U S H U S H

cycle-UWGAN 5 40.4 43.3 41.8 22.6 40.5 29.0
10 45.5 50.9 48.0 25.5 42.1 32.5

f-CLSWGAN 5 37.8 44.2 40.7 30.4 28.5 29.4
10 40.5 55.9 46.9 34.7 38.9 36.6

SE-GZSL 5 38.2 44.3 41.0 29.4 33.0 31.0
10 41.4 45.1 43.1 35.6 43.5 39.1

Ours (ZSML)
5 44.5 54.8 49.1 31.4 38.1 34.5
10 44.1 59.5 50.7 42.3 46.1 44.1

Table 3: GZSL results using only five and ten example per
seen classes to train the model. The reported result is mean
of 10 random split.

tain classes from the seen classes along with the unseen
classes. We used the harmonic (HM) mean of the seen and
unseen, average per class accuracy as the evaluation metric
to report the results. It is found that HM (Xian et al. 2018a)
is a better evaluation metric for GZSL since it overcomes the
biases of predictions towards the seen class.

For GZSL task, we evaluate our model on the popular
benchmark datasets CUB, aPY, AWA1 and AWA2. The re-
sults for GZSL is shown in Table 2. Our results demonstrate
that ZSML achieves significant improvements in the har-
monic mean. In terms of HM based accuracies, our ZSML
yields 3.9%, 11.8%, 3.3% and 3.6% relative improvement
over the current state-of-the-art on CUB, aPY, AWA1 and
AWA2 datasets, respectively. Thus, ZSML not only works
well in the standard ZSL setting but also in the GZSL set-
ting. From Table 1 and 2, it is clear that all the models that
show good results on the ZSL setup fail badly on the GZSL
setup, whereas our model ZSML has consistently strong per-
formance in both settings.

Ablation Study

In this section, we perform various ablation studies to assess
the different aspects of our ZSML model on CUB, aPY and
AWA2 datasets. We find that the proposed zero-shot meta-
learning protocol (i.e., how we split the data from each task

into meta-train and meta-validations sets) and meta-learning
based adversarial generation are the key contributors for im-
proving the model performance. We also conduct experi-
ments when only few examples (say 5 or 10) are available
from the seen class.
Meta-learner vs Plain-learner: We found that meta-
learning based training is the key component to boost the
model performance. Meta-learned model in the adversar-
ial setting generates high-quality samples that are close to
the real samples. In Figure 3, we are comparing the results
with a recent approach (Chen et al. 2018; Felix et al. 2018;
Xian et al. 2018b) that uses Improved-WGAN (Gulrajani et
al. 2017) for the same problem.

To show the effectiveness of the proposed model, we are
not using any advanced GAN architecture. We simply rely
on the WGAN architecture. In the proposed model, the plain
WGAN is associated with meta-learning agents. We have
found that meta-learning framework is the key component
to improve the performance. The proposed meta-learning
framework improved the results in the ZSL setup, from
59.1% to 69.7% and 68.2% to 77.5% on CUB and AWA2
dataset respectively, compared to the current state-of-the-art
as shown in Figure 3 (Top). Also in the same setting, our
approach without meta-learning shows the ZSL results of
68.1% and 59.1% on AWA2 and CUB dataset respectively.
Few-Shot ZSL and Few-Shot GZSL: The meta-learning

Figure 2: Our ZSL result for AWA2 and CUB datasets with
the proposed zero-shot task distribution.
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Figure 3: Top: Comparison of ZSL results on AWA2 and
CUB dataset with recently proposed models based on GAN
and our meta-learned GAN. Bottom: Our ZSL result using
only few samples (say 5 and 10) per seen class, compared to
all other methods that use all the samples.

framework is specially designed for few-shot learning. So
it is natural to ask how ZSL/GZSL will perform when only
few-shot are present from the seen classes. This is the most
extreme case for any classification algorithm (i.e. only a few
examples are present from the seen class and at test time
we have unseen/novel data). We perform the experiment for
AWA2, CUB and aPY datasets assuming that only 5 or 10
examples per seen class are available. In the 5 examples
per class experiment, we create a new dataset (by sampling
from the original dataset) that contains 5 examples per seen
classes (i.e. for 40 unseen classes in AWA2 dataset, our new
dataset contains only 5 × 40 = 200 samples). The model
learns to generate unseen samples when it sees only 5 exam-
ples per seen class. Once the model is trained, we perform
the classification following the procedure mentioned in Sub-
section . We follow the same process for 10 examples per
seen class. As shown in Figure 3 (Bottom), with as few as
only 10 examples per-class our approach outperforms other
state-of-the-art methods on CUB, aPY and AWA2 datasets
in ZSL setting, also using only 5 examples per class our re-
sult are very competitive (while competitor model uses all
examples in training). Also as shown in Table 3, in the most
challenging GZSL setting, using only 5 or 10 samples our
result out performs the recent approach by a significant mar-
gin.
Zero-Shot MAML Split vs Traditional MAML Split: We
propose a novel task distribution for ZSML where each task
Ti is partitioned into two sets Ttr and Tval and the classes in
Ttr and Tval are disjoint. While in the MAML setup these
classes are the same. The ablation over the MAML and
ZSML task distribution is shown in Figure 2. The proposed
training set and validation set split (per episode) performs
significantly better than traditional MAML split. Using the
novel ZSML split, the ZSL results improves 1.7% and 2.4%

on the AWA2 and CUB dataset, respectively.
Which Aspects Benefit More from Meta-Adversarial
Learning? In adversarial learning, the sample quality de-
pends on how powerful the discriminator and generator are.
The optimal discriminator minimizes the JS-Divergence be-
tween the generated and the original samples (Goodfellow
et al. 2014). The meta-learner associated with discrimina-
tor or generator provides a powerful discriminator and gen-
erator by enhancing their learning capability. The optimal
discriminator provides strong feedback to the generator and
the generator continuously increases its generation capabil-
ity. We observe that if we remove the meta-learner from
the discriminator, we have 5.8% and 8.6% accuracy drop as
compared to our model with a meta-learning component on
CUB and AWA2 dataset, respectively. The significant accu-
racy drop occurs since the discriminator is not optimal and
provides poor feedback to the generator. Similarly, if we re-
move the meta-learner from the generator, we again observe
a significant accuracy drop (2.2% and 7.9% on CUB and
AWA2 dataset, respectively). Since the generator has a re-
duced capability without meta-learner, even though discrim-
inator provides strong feedback to the generator, the gen-
erator is not powerful enough to counter the discriminator.
Also, if we remove the meta-learning agent from generator
and discriminator, it becomes a plain adversarial network.
The ablation results are shown in Figure 3.

Conclusion
In this work, we identify and address three key limitations
of current ZSL approaches, that limit the performance of
the recent generative models for ZSL/GZSL. We observe
that a meta-learning based approach can naturally overcome
these limitations in a principled manner. We have proposed
a novel framework for ZSL and GZSL which is based on
the meta-learning framework over a conditional generative
model (WGAN). We also propose a novel zero-shot task dis-
tribution for the meta-learning model to mimic the ZSL be-
haviour. We have conducted extensive experiments bench-
mark ZSL datasets. In the few-shot, as well as standard
GZSL setting, the proposed model outperforms the state-of-
the-art methods by a significant margin. Our ablation study
shows that the proposed meta-learning framework and zero-
shot task distribution are the key components for perfor-
mance improvement. Finally, although our focus here has
been on ZSL and generalized ZSL, our meta-learning based
adversarial generation model can be useful for the problem
of distribution learning and generation tasks as well (Hewitt
et al. 2018). For GZSL, we achieve the state-of-the-art re-
sults over all the standard datasets, whereas for ZSL, we sur-
pass the state-of-art results by a significant margin on aPY,
CUB, AWA1 and AWA2 datasets.
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