
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Differential Equation Units:
Learning Functional Forms of Activation Functions from Data

MohamadAli Torkamani,1 Shiv Shankar,2

Amirmohammad Rooshenas,2 Phillip Wallis3

1Amazon.com∗
2University of Massachusetts Amherst

3Microsoft Dynamics 365 AI
1alitor@amazon.com

2{sshankar, pedram}@cs.umass.edu
3phwallis@microsoft.com

Abstract

Most deep neural networks use simple, fixed activation func-
tions, such as sigmoids or rectified linear units, regardless of
domain or network structure. We introduce differential equa-
tion units (DEUs), an improvement to modern neural networks,
which enables each neuron to learn a particular nonlinear ac-
tivation function from a family of solutions to an ordinary
differential equation. Specifically, each neuron may change its
functional form during training based on the behavior of the
other parts of the network. We show that using neurons with
DEU activation functions results in a more compact network
capable of achieving comparable, if not superior, performance
when compared to much larger networks.

Introduction

Driven in large part by advancements in storage, processing,
and parallel computing, deep neural networks (DNNs) have
become capable of outperforming other methods across a
wide range of highly complex tasks.

The advent of new activation functions such as rectified
linear units (ReLU) (Nair and Hinton 2010), exponential lin-
ear units (ELU) (Clevert, Unterthiner, and Hochreiter 2015),
and scaled exponential linear units (SELU) (Klambauer et
al. 2017) address a network’s ability to effectively learn com-
plicated functions, thereby allowing them to perform better
on complicated tasks. The choice of an activation function is
typically determined empirically by tuning, or due to neces-
sity. For example, in modern deep networks, ReLU activation
functions are often favored over sigmoid functions, which
used to be a popular choice in the earlier days of neural net-
works. A reason for this preference is that the ReLU function
is non-saturating and does not have the vanishing gradient
problem when used in deep structures (Hochreiter 1998).

In all of the aforementioned activation functions, the func-
tional form of the activation function is fixed. However, de-
pending on data, different forms of activation functions may

∗The work was done when the author was affiliated with the
University of Oregon
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

be more suitable to describe data. In this paper, we intro-
duce differential equation units (DEUs), where the activation
function of each neuron is the nonlinear, possibly periodic
solution of a parameterized second order, linear, ordinary
differential equation. By learning the parameters of the dif-
ferential equations using gradient descent on the loss func-
tion, the solutions to the differential equations change their
functional form, thus adapting their forms to extract more
complex features from data.

From an applicability perspective, our approach is simi-
lar to Maxout networks (Goodfellow et al. 2013) and adap-
tive piece-wise linear units (PLUs) (Agostinelli et al. 2014;
Ramachandran, Zoph, and Le 2017).

Figure 1 shows nested noisy circles for which we trained
neural networks with Maxout, ReLU, and our proposed DEU
activation functions. For using ReLU, we needed at least
two layers of four hidden units to separate the circles, while
one layer of either two Maxout or two DEUs is enough to
learn an appropriate decision boundary. While, the number
of parameters learned by Maxout and PLU is proportional to
the number of input weights to a neuron, and the number of
linear units in that neuron, for each DEU, we learn only five
additional parameters that give us highly flexible activation
functions in return; altogether, resulting in more compact
representations. Moreover, DEUs can represent a broad range
of functions including harmonic functions, while Maxout is
limited to piecewise approximation of convex functions (see
Figure 2).

DEUs can also transform their forms during training in
response to the behavior of other neurons in the network in
order to describe data with interaction to the other part of
the network, thus the neurons in a neural network may adopt
different forms as their activation functions. The variety of
activation function forms throughout a network enables it to
encode more information, thus requiring fewer neurons to
achieve the same performance compared to networks with
fixed activation functions.

The main contribution of this paper is to explore the bene-
fits of learning the form of activation functions through the
introduction of differential equation units (DEUs). We also
propose a learning algorithm to train the parameters of DEUs,

6030

Figure 1: Learned decision boundaries by neural networks
with ReLU, Maxout, and DEU activation functions for classi-
fying noisy circles.

and empirically show that neural networks with DEUs can
achieve high performance with compact representations and
are effective for solving real-world problems.

Differential Equation Units

Inspired by functional analysis and calculus of variations,
instead of using a fixed activation function for each layer in a
network, we propose a novel solution for learning an activa-
tion function for each neuron. Experimentally, we show that
by allowing each neuron to learn its own activation function,
the network as a whole can perform on par with (or even
outperform) much larger baseline networks.

The main idea behind DEUs is to find the parameters of
an ordinary differential equation (ODE) for each neuron in
the network, whose solution would be used as the activa-
tion function of the corresponding neuron. As a result, each
neuron learns a personalized activation function. We select
(learn) the parameters of the differential equation from a low
dimensional space (viz. five dimensions). By minimizing
the networks loss function, our learning algorithm smoothly
updates the parameters of the ODE, which results in an un-
countably1 extensive range of possible activation functions.

We parameterize the activation function of each neuron
using a linear, second order ordinary differential equation
ay′′(t) + by′(t) + cy(t) = g(t), parameterized by five coef-
ficients (a, b, c, c1, c2), where a, b, and c are scalars used to
parameterize the ODE, c1 and c2 represent the initial condi-
tions of the ODE’s solution, and g(t) is a regulatory function
that we call the core activation function. The coefficients are
the only additional parameters that we learn for each neuron
and are trained through the backpropagation algorithm. To
simplify the math and because it is a standard practice in
control theory, we have set g(t) = u(t), where u(t) is the
Heaviside (unit) step function. Therefore, the ODE that we
have chosen has the following form:

ay′′(t) + by′(t) + cy(t) = u(t),

where u(t) =

{
0 x ≤ 0

1 x > 0
(1)

This model is often used to denote the exchange of en-
ergy between mass and stiffness elements in a mechanical
system, or between capacitors and inductors in an electrical
system (Ogata and Yang 2002). Interestingly, by using the so-
lutions of this formulation as activation functions we can gain
a few key properties: approximation or reduction to some of

1Up to computational precision limitations.

the standard activation functions such as sigmoid or ReLU;
the ability to capture oscillatory forms; and, exponential de-
cay or growth.

The learning algorithm

For fixed a, b and c, the solution of the differential equation
is:

y(t) = f(t; a, b, c) + c1f1(t; a, b, c) + c2f2(t; a, b, c), (2)

for some functions f , f1, f2. Here, y(t) lies on an affine
space parameterized by scalars c1 and c2 that represent the
initial conditions of the solution (for desired values of y0 and
y′0 at some t = t0 such that y(t0) = y0 and ∂y(t)

∂t |t=t0 = y′0).

Closed-form solutions First, we solve the differential
equations parametrically and take derivatives of the closed-
form solutions: ∂y

∂t with respect to its input t, and ∂y
∂a , ∂y

∂b ,
and ∂y

∂c with respect to parameter a, b, and c. Moreover,
the derivatives with respect to c1 and c2 are f1 and f2,
respectively. This is done once. We have solved the equations
and taken their derivatives using the software package
Maple (2018). Maple also generates optimized code for the
solutions, by breaking down equations in order to reuse
computations.2 Although we used Maple here, this task
could have been done by pen and paper.

Training the parameters The parameters of the activation
function (the ODE parameters and the appropriate initial
conditions of its solution) are jointly trained with the neural
networks’ parameters using back-propagation.
We adopt regular backpropagation to update the values of
parameters a, b, c, c1 and c2 for each neuron, along with
using ∂y

∂t for updating network parameters w (input weights
to the neuron), and to backpropagate the error to the lower
layers.

We initialize network parameters using current best prac-
tices with respect to the layer type (e.g. linear layer, con-
volutional layer, etc.). We initialize parameters a, b, c for
all neurons with a random positive number less than one,
and strictly greater than zero. We initialize c1 = c2 = 0.0.
To learn the parameters θ = [a, b, c, c1, c2]

T along with the
weights w on input values to each neuron, we deploy a gradi-
ent descent algorithm. Both the weights w, as well as θ are
learned using the conventional backpropagation algorithm
with Adam updates (Kingma and Ba 2014). During training,
we treat a, b, c, c1 and c2 like biases to the neuron (i.e., with
input weight of 1.0) and update their values based on the
direction of the corresponding gradients in each mini-batch.

Singularity of solutions If one or two of the coefficients
a, b or c become zero, then the solution of the differential
equation falls into a singularity subspace that is different
than the affine function space of neighboring positive or
negative values for those coefficients. For example, for b = 0
and a ∗ c > 0 , the solution will be y(t) = sin(

√
c
a t)c2 +

cos(
√

c
a t)c1 − u(t)

c

(
cos(

√
c
a t)− 1

)
, but for b = c = 0

2The code is available at https://github.com/rooshenas/deu

6031

Figure 2: The problem of fitting a challenging function (y = (sin(t)− cos(2t)2)/2 + 4 ∗ (1 + arccos(sin(t/2)))/3). A neural
network with 30 DEUs in one hidden layer fits the function much more accurately than neural networks of 250 neurons with
ReLU and Maxout activation function.

Table 1: Subspaces and Singularities

Subspace Solution

a = 0, b = 0, c �= 0 σ(t)/c (i.e., sigmoid when c = 1)
a = 0, b �= 0, c = 0 xu(x)/b+ c1 (i.e., ReLU when b = 1 and c1 = 0)
a = 0, b �= 0, c �= 0 c1e

−(cx)/b − u(x)e−(cx)/b/c+ u(x)/c

a �= 0, b = 0, c = 0 x2u(x)
2a + c2x+ c1

a < 0, b = 0, c < 0 or
c2 sin(

√
c
ax) + c1 cos(

√
c
ax)− u(x)

c

(
cos(

√
c
ax)− 1

)
a > 0, b = 0, c > 0
a < 0, b = 0, c > 0 or

c1e
√

− c
ax + c2e

−
√

− c
ax + u(x)e

−
√

− c
a

x

2c + u(x)e

√
− c

a
x

2c − u(x)
ca > 0, b = 0, c < 0

a �= 0, b �= 0, c = 0 u(x)a
b2 e−

bx
a − u(x)a

b2 − c1
a
b e

− bx
a + u(x)x

b + c2
a �= 0, b �= 0, c �= 0 Four forms based on the sign of Δ = b2 − 4ac, a and c

and a �= 0, the solution has the form of y(t) = 1
2
u(t)t2

a +
c1t + c2. In this example, we observe that moving from
c > 0 to c = 0 changes the resulting activation function
from a pure oscillatory form to a parametric (leaky) rectified
quadratic activation function. More formally, for a parametric
variable quantity p ∈ {a, b, c, b2 − 4ac}, if p = 0, then the
solution of the differential equation may be different than
the solution of the neighboring differential equations with
p �= 0 (see Table 1 for the complete set of singular subspaces).
Moreover, with p→ 0, then we may have y(t; p)→∞ for
certain values of t. In particular, when exponential forms
are involved in the solution, this phenomenon can cause an
extreme increase in the magnitude of the output value of
the DEU. Therefore, we introduce a hyperparameter ε which
is used as a threshold to clamp small values to zero. This
simple trick avoids numerical computation errors as well as
exponentiating large positive numbers when the denominator
of the exponentiated fraction is very small.

Our learning algorithm allows the activation functions to
jump over singular subspaces. However, if the absolute value
of a,b, orc falls below ε, then the derivative with respect to
that parameter becomes zero. The value of the parameter re-
mains zero during the training if we use the regular derivative.
In order to allow an activation function to “escape” a singular
subspace, we introduce the concept of “outward gravitation”
in the next subsection.

We do not allow a = b = c = 0, and in this rare case, we
set b to ε. During the learning process at most two of a, b, and
c can be zero. The sign of a, b, c, and b2 − 4ac might also
change the solution of the ODE, which create “subspaces”
that are individually solved in closed-form.

When b2 − 4ac is close to zero and ac > 0, the generic
solution may become exponentially large. Therefore if
−ε < b2 − 4ac < ε and sign(a) == sign(c), we explicitly
assume a = b

2 sign(a) c =
b
2 sign(c) in our implementation

to stabilize the solution and to avoid large function values
(i.e., we force b2 − 4ac = 0 in the solution of the ODE.).

Approximation of Dirac’s delta function The derivatives
of the activation function with respect to t include Dirac’s
delta function δ(t), which is the derivative of the Heaviside
function. In the parametric derivatives, we substitute the delta
function with its approximation s e−s∗t

(1+e−s∗t)2 , which is the
derivative of σ(s ∗ t) = 1

(1+e−s∗t) . This approximation is
a commonly used in practice for the delta function (Zahedi
and Tornberg 2010). The larger values of s result in more
accurate approximation of the delta function. In all of our
experiments, we set ε = .01, and s = 100 although further
tuning might improve the results.

6032

Figure 3: A sample set of DEU activation functions and their derivatives. The bold blue line is the activation function, and the
orange solid line is its derivative with respect to t. The dashed lines are its derivatives with respect to a, b and c. First and second
on the top row from left are ReLU and ReQU. The bump in the derivative of ReLU is an artifact of approximating Dirac’s delta.

Outward gravitation We need to allow a DEU to jump out
of a singular subspace when it benefits the network. This way
the activation function can recover from accidentally falling
into singularity points, regardless of the initialization or how
the order of training samples has changed the geodesic path
that an activation function follows to achieve the appropriate
functional form. To allow this, for a singular solution, we
introduce a hypothetical non-singular differential equation
that has the same initial conditions as the corresponding
solution function at a reference point t∗.

If f(t) and f ′(t) are the current activation function and
its derivative w.r.t to the input, then the idea of outward
gravitation is to find the nearest activation function h(t) out-
side the singular subspace, such that h(t∗) = f(t∗) and
h′(t∗) = f ′(t∗) at the reference point t∗.

To solve this problem, for example, if |b| < ε, to allow
the activation function to jump to a subspace with |b| ≥ ε,
we want the derivative of the current activation function with
respect to b, as if b was present in the equation. To decide on
this derivative direction, we use the solution function of the
closest non-singular subspace.

For example, assuming b = 0.005 and ε = 0.01, we con-
sider b̃ = 0.01, and then use this b̃ along with the existing
a and c to compute the derivative of the activation function
with respect to b. We choose initial conditions c̃1, c̃2 so that
the value and derivative of the activation function w.r.t. in-
put remains the same. So the whole network won’t feel the
change, but the value of b can change if it helps the network.

Implementation Due to the individual activation functions
associated parameters per neuron, each neuron can have a
different activation. For example, one neuron could have a
sinusoidal activation function while another has a quadratic

form of ReLU. The direct way to implement our method
would involve iterating over all neurons and computing the
corresponding activation values individually, and would re-
sult in significantly higher latency than common activation
functions such as ReLU. However, considering the ODE’s
closed form solutions, such computations are parallelizable
on modern computing units like GPUs. We first compute
a mask to assign each neuron to the subspace in which its
current activation function resides. Next, we iterate over all
possible functional subspaces, and compute in parallel the
output of each neuron assuming that its activation function
lies in the current subspace while ignoring the validity of the
solutions or parameters. Finally, we use the subspace masks
computed earlier to select the correct output of the neuron.
Similar technique can be applied during the backward pass
to compute the gradients in parallel using the masks com-
puted during the forward pass. The pseudo-code is detailed
in Algorithm 1.

Algorithm 1 Parallelized DEU

1: procedure DEU(input)
2: output← 0
3: for each singularity space S do
4: mask = 1[n∈S] ∀n ∈ neurons
5: if mask > 0 then
6: output← output + mask ∗ fS(input)
7: end if
8: end for
9: Return output

10: end procedure

6033

Neural networks with DEUs are universal
approximators

Feedforward neural networks with monotonically-increasing
activation functions are universal approximators (Hornik,
Stinchcombe, and White 1989; Barron 1993). Similarly net-
works with radial basis activation functions are also shown
to be universal approximators (Park and Sandberg 1991). A
Fourier approximation based argument shows that a neural
network with DEU is also a universal approximator.

A geometric interpretation The solution set of a differen-
tial equation forms a functional manifold that is affine with
respect to c1 and c2, but is nonlinear in a, b, and c. Clearly,
this manifold has a trivially low dimensional representation
in R

5 (i.e., {a, b, c, c1, c2}). Gradient descent modifies the
functionals in this low dimensional space, and the correspond-
ing functional on the solution manifold is used as the learned
activation function. Figure 4 attempts to visually explain
how, for example, a ReLU activation function transforms to
a cosine activation function.

Figure 4: Left: the solutions of ay′′ + by′ + cy = u(t) lie on
a manifold of functions. Right: every point on this manifold
can be equivalently represented as a point on a 5-dimensional
space of {a, b, c, c1, c2} (three shown here). The red arrow
shows a path that an initialized function takes to gradually
transform itself to a different one.

For synthetic datasets, we empirically show that only one
DEU neuron that is initialized with ReLU (a = c = c1 =
c2 = 0, b = 1) can transform itself to a sine function. In
this scenario, the learned differential equation coefficients
{a, b, c} and initial condition coefficients {c1, c2} perfectly
represented a sine function after training. In contrast, the
learned model by ordinary fixed activation FFNNs were much
less accurate with significantly larger networks.

Reduction to common activation functions Two com-
mon activation functions are the sigmoid σ(t) = 1

1+e−t ,
and the rectified linear unit ReLU(t) = max(0, t). The sig-
moid function is a smooth approximation of the Heavyside
step function, and ReLU can be approximated by integrat-
ing sigmoid of s ∗ t for a large enough s: max(0, t) ≈∫ t

−∞
1

1+e−sz dz = log(1 + est)/s. Equivalently, y(t) =

log(1 + et) + c1 ≈ ReLU(t) + c1 will be a solution of
the following first order linear differential equation: y′(t) =

1
1+e−st ≈ u(t)

We can set the core activation function g(t) to σ(t) =
1

1+e−st , or to the step function u(t). For g(t) = σ(t) when

a �= 0, the solutions of the differential equation will involve
the Gauss hypergeometric and Li2 functions, which are ex-
pensive to evaluate. Fortunately, if we set the right hand
side of the ODE to u(t), then the particular solutions will
only involve common functions such as linear, exponential,
quadratic, trigonometric, and hyperbolic functions.

In practice, if the learning algorithm decides that a and
b should be zero, we use g(t) = 1

1+e−st (i.e. y(t) =
1

c∗(1+e−st)). Otherwise, we use the step function to avoid
complex-valued solutions that involve special mathematical
functions. With these conditions in place, if a = 0, b = 0,
and c = 1, we recover the sigmoid function; if a = 0, b = 1,
and c = 0, we recover the ReLU function; if a = 1, b = 0,
and c = 0, we obtain a parametric rectified quadratic form
y = ReLU(t)2 + c1t + c2 (similar to parametric ReLU
(He et al. 2015; Xu et al. 2015)), which is the solution of
y′′(t) = u(t). When b2− 4ac < 0, we observe an oscillatory
behaviour. Depending on the sign of b, this can be decaying
or exploding, but when b = 0, we observe a purely oscillating
activation function.

The above-mentioned cases are only a few examples of
solutions that could be chosen. The point to emphasize here
is that an extensive range of functions can be generated by
simply varying these few parameters (Figure 3 illustrates
several examples).

Related Work

Recently, Chen et al. (2018) propose using ODE solvers in
neural networks. However, the nature of our work is very
different from Neural ODE. While that work maps iterative
parts of the network to an ODE and uses external solver to
find the solution and estimating the gradient, here we use the
flexible functions that are the solutions of ODE as activation
function. At the training time there is no ODE solver involved,
but only functional forms of the solutions.

Oscillatory neurons are generally believed to be impor-
tant for information processing in animal brains. Efforts
have been made to explore the usefulness of periodic os-
cillations in neural networks since the 1990s, especially for
medical applications (Minami, Nakajima, and Toyoshima
1999). However overall their applicability has not yet been
appreciated (Sopena, Romero, and Alquezar 1999). In re-
cent times, however, researchers have begun re-exploring the
potential of periodic functions as activations (Parascandolo,
Huttunen, and Virtanen 2016), and demonstrated their po-
tentials for probabilistic time-series forecasting (Hatalis and
Kishore 2017) and lane departure prediction (Tan, Chen, and
Wang 2017). Furthermore recent work has demonstrated how
pattern recognition can be achieved on physical oscillatory
circuits (Velichko, Belyaev, and Boriskov 2019).

For vision, speech and other applications applications
on mobile, or other resource-constrained devices, research
has been ongoing to make compact networks. Projection-
Net (Ravi 2017) and MobileNet (Howard et al. 2017) are
both examples of methods that use compact DNN representa-
tions with the goal of on-device applications. In Projection-
Net, a compact projection network is trained in parallel to
the primary network, and is used for the on-device network

6034

Table 2: Test accuracy of different models on the MNIST
and Fashion-MNIST image classification task.

Model Size MNIST Fashion-MNIST
MLP-ReLU 1411k 98.1 89.0
CNN-ReLU 30k 99.2 90.2

MLP-SELU 1293k 95.5 87.5
CNN-SELU 21k 98.8 89.6

MLP-PReLU 1293k 97.4 88.7
CNN-PRelu 21k 98.9 89.6

MLP-DEU 1292k 98.3 89.8
CNN-DEU 21k 99.2 91.5

MLP-Maxout 2043k 98.5 89.4
CNN-Maxout 26k 99.4 91.3

tasks. MobileNet, on the other hand, proposes a streamlined
architecture in order to achieve network compactness. In
these approaches, the network compactness is achieved at
the expense of performance. We propose a different method
for learning compact, powerful, stand-alone networks: we
allow each neuron to learn its individual activation function
enabling a compact neural network to achieve higher perfor-
mance.

Results and Discussion

We have conducted several experiments to evaluate the per-
formance and compactness of DEU networks.

Classification

We evaluate DEU on different models considering the clas-
sification performance and model size. We first use MNIST
and Fashion-MNIST as our datasets to assess the behavior of
DEUs with respect to the commonly used ReLU activation
function, as well as Maxout and SELU. The neural network
is a 2-layer MLP with 1024 and 512 dimensional hidden
layers. While the CNN used is a 2-layer model made by
stacking 32 and 16 dimensional convolutional filters atop one
another followed by average pooling. DEUs are competitive
or better than normal networks for these tasks while having
substantially smaller number of parameters (see Table 2).

Next we perform a more direct comparison of the ef-
fect of DEU on classification performance against ReLU,
PReLU (He et al. 2015), Maxout (Goodfellow et al. 2013),
and Swish (Ramachandran, Zoph, and Le 2017) activation
functions on the CIFAR-10 dataset. PReLU is similar to
ReLU with a parametric leakage and Swish has the form of
f(x) = x ∗ sigmoid(βx) with a learnable parameter β.

For these experiments, we keep the network architecture
fixed to ResNet-18 (He et al. 2016a) and use the hyperpa-
rameter settings as in He et al. (2016a). We further show
that this improvement persists across other model designs.
First we use a preactivation ResNet (He et al. 2016b), which
is a ResNet-like architecture with a slightly smaller size.
Second, to assess suitability for reducing the model size, we
experiment with a stunted ResNet-18. The stunted model is

created by removing all 256 and 512 dimensional filters from
the standard ResNet-18 model. The result of this comparison
(presented in Table 3) indicates that DEUs constantly work
better than ReLU, PReLU, SELU, and Swish. Although
Maxout is slightly better than DEU, it is using much more
parameters (13272k vs 11174k for Resnet, 13267k vs 11174k
for Preact-ResNet, and 801k vs 678k for ResNet-Stunted),
which makes the comparison biased toward Maxout.

Convergence comparison on MNIST Figure 5 shows the
classification error on MNIST across different activations
as the training progresses. It is clear that DEUs are better at
almost all steps. Also as one might expect, they are better
in the initial epochs due to the greater expressiveness of the
activation function.

Figure 5: Convergence comparison of different activation
function on MNIST.

Computational cost Prima-facie our method seems ex-
tremely compute-intensive. However as described earlier,
with judicious design one can parallelize the overall model to
be quite fast. In the worst case, our method will be |S| times
slower than the same architecture with standard activation
like ReLU, where |S| is the number of singular subspace so-
lution of the ODE. Nevertheless, in practice all subspaces are
unlikely to occur together. In most of our experiments on real
data, we observed that three to five different solutions appear.
Furthermore, we evaluate computation time of Resnet-18
models with DEUs and ReLUs on CIFAR-10 using a batch
size of 128 on a Tesla K40c GPU. The model with DEUs

Figure 6: Convergence comparison of Diabetes.

6035

Table 3: Test accuracy using different ResNet architectures and activation functions on the CIFAR-10 image classification task.

Architecture Size ReLU PReLU SELU Swish Maxout DEU
ResNet-18 11174k 91.25 92.1 92.2 91.9 92.5 92.5
Preact-ResNet 11170k 92.1 92.2 92.3 92.0 92.4 92.3
ResNet-Stunted 678k 89.3 89.4 90.5 90.1 91.1 90.7

takes 640ms total for combined forward and backward pass
per batch, while the one with ReLUs requires 180ms per step.
During prediction on test data, the time taken per batch is
111ms for the DEU-based model and 65ms for ReLU-based
model.

To further explore the effect of additional parameters for
training activation functions, we train a 2-layer fully con-
nected network for MNIST. We kept the size of the first layer
fixed and changed the size of the second layer from 16 to
1024. We train each configuration with different activation
functions of DEU, Maxout with three affine maps, PReLU,
and ReLU. Table 4 reports the training time for one batch in
millisecond averaged over the entire epoch. The batch size is
256, and the training is done using Geforce GTX TITAN. As
we can see training Maxout gets more expensive than DEU
for larger fan-in.

Table 4: Average single-batch training time (in milliseconds)
of a 2-layer fully connected network for MNIST varying the
size of the second layers as well as its the activation functions.

Size DEU Maxout PReLU ReLU

16 47 40 37 37
32 47 40 38 37
64 49 43 38 37
128 53 47 40 39
256 55 54 43 44
512 68 89 50 47
1024 186 209 50 47

Regression

We compare the performance of neural networks with one
hidden-layer of one, two, four, eight, and 16 neurons with
DEU, ReLU, LeakyReLU (LReLU), SELU, Swish and Max-
out activation functions applied to a standard diabetes regres-
sion dataset.3 We use 3-fold cross validation and report the
average performance.

Figure 6 shows that the neural networks with DEUs
achieve specifically better performance with more compact
networks. We see that other activation functions do not sur-
pass the single DEU neuron performance until they are eight
or more neurons.

We further test our model on multiple regression tasks
involving timeseries forecasting. For these tasks, we use the
LSTNet model (Lai et al. 2018) and evaluate the functions
based on the root relative squared error (RSE, lower is better)

3(https://www4.stat.ncsu.edu/ boos/var.select/diabetes.html)

Table 5: Evaluation summary (in RSE and CORR) of dif-
ferent activations on different datasets: Traffic. A collection
of 48 months (2015-2016) hourly data from the California
Department of Transportation (6 and 12 hours look ahead
prediction); Solar-Energy. Solar power production records
in the year of 2006 sampled every 10 minutes from 137 PV
plants in Alabama State (6 and 12 hours look ahead pre-
diction); Electricity. The electricity consumption in kWh
recorded every 15 minutes from 2012 to 2014 (12 hours look
ahead prediction)

Func. Traffic Solar output Elect.

6 12 6 12 12

DEU RSE 0.487 0.500 0.269 0.327 0.100
CORR 0.870 0.863 0.965 0.947 0.912

ReLU RSE 0.499 0.520 0.270 0.433 0.104
CORR 0.869 0.851 0.965 0.906 0.900

Swish RSE 0.483 0.505 0.270 0.329 0.104
CORR 0.872 0.862 0.965 0.944 0.908

Maxout RSE 0.493 0.501 0.265 0.328 0.107
CORR 0.863 0.868 0.967 0.945 0.911

and correlation (CORR, higher is better) metrics. The results
are presented in Table 5. DEU gives improvement in all cases
and substantial improvements in some datasets.

Conclusion

In this paper we introduce differential equation units (DEUs),
as novel activation functions based on the solutions of second-
order ordinary differential equations (ODEs). DEUs can
adapt their function form based on the features of data during
training by learning the parameters of ODEs using gradient
descent. We have showcased the ability of neural networks
with DEUs to learn complicated concepts with a compact
network representation. We have demonstrated DEUs’ poten-
tial to outperform conventional activation function across a
number of tasks, and with a reduced network size. Modern
DNNs achieve performance gains in large by increasing the
size of the network, which is not a sustainable trend. In re-
sponse, we believe that this line of research can open future
directions to explore more complex activation functions such
as using the solutions of partial differential equations in order
to compactly represent complex functions.

References

Agostinelli, F.; Hoffman, M.; Sadowski, P.; and Baldi, P.
2014. Learning activation functions to improve deep neural
networks. arXiv preprint arXiv:1412.6830.

6036

Barron, A. R. 1993. Universal approximation bounds for
superpositions of a sigmoidal function. IEEE Transactions
on Information theory 39(3):930–945.
Chen, T. Q.; Rubanova, Y.; Bettencourt, J.; and Duvenaud,
D. K. 2018. Neural ordinary differential equations. In
Advances in neural information processing systems, 6571–
6583.
Clevert, D.-A.; Unterthiner, T.; and Hochreiter, S. 2015. Fast
and accurate deep network learning by exponential linear
units (elus). arXiv preprint arXiv:1511.07289.
Goodfellow, I. J.; Warde-Farley, D.; Mirza, M.; Courville,
A.; and Bengio, Y. 2013. Maxout networks. In Proceedings
of the 30th International Conference on Machine Learning
1319–1327.
Hatalis, K., and Kishore, S. 2017. A composite quantile
fourier neural network for multi-horizon probabilistic fore-
casting. CoRR 1–13.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Delving deep
into rectifiers: Surpassing human-level performance on ima-
genet classification. In Proceedings of the IEEE international
conference on computer vision, 1026–1034.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016a. Deep residual
learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 770–
778.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016b. Identity
mappings in deep residual networks. CoRR abs/1603.05027.
Hochreiter, S. 1998. The vanishing gradient problem during
learning recurrent neural nets and problem solutions. Inter-
national Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 6(02):107–116.
Hornik, K.; Stinchcombe, M.; and White, H. 1989. Multilayer
feedforward networks are universal approximators. Neural
networks 2(5):359–366.
Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang,
W.; Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mo-
bilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861.
Kingma, D. P., and Ba, J. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980.
Klambauer, G.; Unterthiner, T.; Mayr, A.; and Hochreiter,
S. 2017. Self-normalizing neural networks. arXiv preprint
arXiv:1706.02515.
Lai, G.; Chang, W.-C.; Yang, Y.; and Liu, H. 2018. Model-
ing long- and short-term temporal patterns with deep neural
networks. SIGIR 2018.
Maple. 2018. Maplesoft, a division of waterloo maple inc.
Minami, K.; Nakajima, H.; and Toyoshima, T. 1999. Real-
time discrimination of ventricular tachyarrhythmia with
fourier-transform neural network. In IEEE transactions on
bio-medical engineering, volume 46, 179–85.
Nair, V., and Hinton, G. E. 2010. Rectified linear units im-
prove restricted boltzmann machines. In Proceedings of the
27th international conference on machine learning (ICML-
10), 807–814.

Ogata, K., and Yang, Y. 2002. Modern control engineering,
volume 4. Prentice hall India.
Parascandolo, G.; Huttunen, H.; and Virtanen, T. 2016. Tam-
ing the waves: sine as activation function in deep neural
networks.
Park, J., and Sandberg, I. W. 1991. Universal approximation
using radial-basis-function networks. Neural computation
3(2):246–257.
Ramachandran, P.; Zoph, B.; and Le, Q. 2017. Searching for
activation functions. arXiv preprint arXiv:1710.05941.
Ravi, S. 2017. Projectionnet: Learning efficient on-device
deep networks using neural projections. arXiv preprint
arXiv:1708.00630.
Sopena, J. M.; Romero, E.; and Alquezar, R. 1999. Neural
networks with periodic and monotonic activation functions:
a comparative study in classification problems.
Tan, D.; Chen, W.; and Wang, H. 2017. On the use of
monte-carlo simulation and deep fourier neural network in
lane departure warning. In IEEE Intelligent Transportation
Systems Magazine, volume 9, 76–90.
Velichko, A.; Belyaev, M.; and Boriskov, P. 2019. A model
of an oscillatory neural network with multilevel neurons for
pattern recognition and computing. In Electronics, volume 8,
75.
Xu, B.; Wang, N.; Chen, T.; and Li, M. 2015. Empirical
evaluation of rectified activations in convolutional network.
arXiv preprint arXiv:1505.00853.
Zahedi, S., and Tornberg, A.-K. 2010. Delta function approx-
imations in level set methods by distance function extension.
Journal of Computational Physics 229(6):2199–2219.

6037

