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Abstract

Saliency maps are a popular approach to creating post-hoc
explanations of image classi“er outputs. These methods pro-
duce estimates of the relevance of each pixel to the classi-
“cation output score, which can be displayed as a saliency
map that highlights important pixels. Despite a proliferation
of such methods, little effort has been made to quantify how
good these saliency maps are at capturing the true relevance
of the pixels to the classi“er output (i.e. their •“delityŽ). We
therefore investigate existing metrics for evaluating the “-
delity of saliency methods (i.e. saliency metrics). We “nd that
there is little consistency in the literature in how such metrics
are calculated, and show that such inconsistencies can have a
signi“cant effect on the measured “delity. Further, we apply
measures of reliability developed in the psychometric testing
literature to assess the consistency of saliency metrics when
applied to individual saliency maps. Our results show that
saliency metrics can be statistically unreliable and inconsis-
tent, indicating that comparative rankings between saliency
methods generated using such metrics can be untrustworthy.

Introduction
Despite their popularity, deep neural networks (DNNs) are
widely acknowledged to lack interpretability: their complex
internals, with thousands or millions of parameters and non-
linear elements, make it dif“cult to explain how and why a
DNN maps inputs to outputs. This has led to many groups
of researchers developing a variety of methods to help im-
prove DNN interpretability. Saliency maps represent a pop-
ular class of explanation methods aimed at achieving this
goal for DNNs operating on image data. They are designed
to provide a measure of the relevance of each pixel to the
DNN•s output (Montavon, Samek, and Müller 2018). Many
methods have been proposed in the recent past for generat-
ing saliency map type explanations (Simonyan, Vedaldi, and
Zisserman 2013; Zeiler and Fergus 2014; Bach et al. 2015;
Montavon et al. 2017; Ribeiro, Singh, and Guestrin 2016;
Lundberg and Lee 2017). However, most of this prior work
focuses on developing new methods to generate the saliency
maps, without much work evaluating the quality of these
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methods. Different saliency methods provide different maps
for the same image and corresponding DNN output, so hu-
man analysts need some way to decide which method pro-
vides the best estimates of the true pixel relevance values in
order to choose between them.

Several authors have proposed axioms that explanation
methods should adhere to in order to be produce appropri-
ate explanations (Sundararajan, Taly, and Yan 2017; Kin-
dermans et al. 2017). These can be assessed by inspecting
the mathematics behind the explanation methods, and work-
ing out if the method is consistent with the axioms. How-
ever, it is quite possible for useless explanation methods to
be consistent with currently proposed axioms. For example,
assigning uniform relevance scores to every pixel produces
an explanation that is conservative, continuous, and imple-
mentation invariant (Montavon 2019). To ensure that an ex-
planation method actually assigns suitable relevance scores,
we must assess whether the method truly discriminates ap-
propriately between more and less relevant features in the
input. This property has been referred to as the selectiv-
ity (Bach et al. 2015) or “delity (Alvarez-Melis and Jaakkola
2018) of an explanation: how well it agrees with the way the
model actually works. Put another way, a method with high
“delity will assign high relevance to features that, when re-
moved, greatly reduce the DNN•s output con“dence in the
class assignment, while assigning low relevance to features
that do not greatly affect the con“dence when removed. Fi-
delity cannot be established axiomatically, and so must be
estimated using implementations of the explanation method
with the DNN model and dataset under investigation.

In this paper, we investigate the properties of different ap-
proaches for measuring explanation method “delity, focus-
ing on saliency map explanations for image classi“ers. We
make the distinction between estimating the“delity of an
explanation method, and estimating the“delity of an indi-
vidual explanation. While currently proposed metrics assess
the former, it is the latter that we are often interested in „
especially if we intend to use individual model outputs for
decision making. Inspired by (Adebayo et al. 2018), who
introduced a set of •sanity checksŽ (NB:not metrics) for
testing saliency methods, we propose a corresponding set of
sanity checks for saliencymetricsbased on measures of reli-
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perturbs the most relevant pixels, then retrains a new model
with the same structure and initialization as the original
model using the perturbed training data. If the saliency
method identi“ed the correct important pixels, the new clas-
si“er should exhibit a large reduction in accuracy compared
to the original. Unlike the other proposed methods, ROAR
does not allow for the measurement of individual saliency
map “delity „ only global saliency method “delity. It thus
cannot be used to assess the “delity of individual saliency
maps. Additionally, it requires extensive computational re-
sources to retrain models from scratch after successive per-
turbation steps. We therefore did not consider ROAR further
in our investigations.

Evaluating saliency metrics
A metric should have goodstatistical validity: it should mea-
sure the property that it is intended to measure. A true test
of saliency metric validity would require knowledge of the
ground-truth saliency maps „ which we do not have access
to, and are what the saliency methods are trying to estimate.1

However, we can investigate a saliency metric•sreliability
i.e. how well it provides consistent results. While a reliable
metric is not necessarily valid, a valid metricmustbe reliable
(Davidshofer and Murphy 2005).

To determine reliability, we consider metrics as applied to
individual saliency maps, and make use of statistics usually
used in the psychometric testing literature. We can think of
a set of saliency methods as a battery of psychometric tests
administered to an agent (the NN). The tests are scored by a
saliency metric. Each input image corresponds to a different
rater, who administers the battery of tests. Psychometric test
reliability is usually estimated in four separate ways (Peter
1979):

€ Inter-rater reliability: degree to which different raters
agree in their assessments. We use inter-rater reliability
to refer to the agreement in the saliency metric scores
between input images (raters) across different saliency
methods, using the same metric.

€ Inter-method reliability: degree to which different tests
agree in their assessments. We use inter-method reliability
to refer to the agreement between different saliency meth-
ods (tests) across different input images, using the same
metric.

€ Internal consistency reliability: degree to which different
methods that are intended to measure the same concept
produce similar scores. We use internal consistency relia-
bility to refer to the agreement between different saliency
metrics measuring the same saliency method.

1In early experiments, we attempted to generate ground truth
saliency maps by employing rules to generate images usually used
in tests of human visual reasoning. However, we were still con-
strained to using very simple models to obtain these ground truth
maps. Ultimately the results of these experiments were of limited
use as they were not indicative of the results we obtained using
the saliency methods and metrics with more complex models and
datasets.

€ Test-retest reliability: degree to which scores change be-
tween test administrations. Test-retest reliability is not rel-
evant for saliency metrics because we are applying deter-
ministic saliency methods to deterministic, “xed models.

Though this analogy is imperfect, it assists in the selection
of appropriate statistics to test saliency metric reliability (our
sanity checks), as described in the following subsections.

Inter-rater reliability
Using the above analogy, this class of reliability assesses
how consistent a saliency metric is in its scores between dif-
ferent images. An initial assessment can be made by measur-
ing the variance of the metric for a single saliency method
over all data set images. However, a high variance may be
acceptable as the variety of images in the test set may present
a broad variety of dif“culties for the saliency method. In-
stead, we can consider how consistent the metric is at rank-
ing the “delity of different saliency maps, when considered
image by image. In other words, does the metric consistently
rank some saliency methods higher than others over all the
images?

The statistic commonly tested to answer this question is
Krippendorf•s� , which is de“ned as

� = 1 Š
Do

De
,

whereDo is the observed disagreement in saliency method
ranking between images, andDe is the disagreement ex-
pected by chance, taking into account the number of im-
ages and number of methods being ranked (Krippendorff
2004). Full details of how to calculateDo andDe are given
in (Krippendorff 2004). If � = 1 , the saliency method
ranking between images is totally consistent (i.e. the met-
ric produces the same ranking over methods for every im-
age), while� = 0 implies the ranking between images is
random (negative values indicate systematic disagreement).
If the saliency metrics have a low value of� , it implies that
their ranking of saliency map “delity for future test images
is largely unpredictable.

Inter-method reliability
Inter-method reliability assesses whether a saliency metric
agrees across different saliency methods. This can be mea-
sured by taking the pairwise correlations between the scores
of the different saliency methods on the data set images. If
the scores of each saliency method ”uctuate similarly be-
tween images, these correlations will be high, indicating
high inter-method reliability. We use Spearman•s� to mea-
sure these pair-wise correlations.

Internal consistency reliability
Internal consistency reliability indicates whether different
saliency metrics are capturing the same underlying concept
(saliency map “delity). This can be measured by taking the
correlation between the scores produced by different metrics
over saliency maps produced by the same saliency method.
Again, we use Spearman•s� to measure this.
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Experiments
Our experiments were designed to measure the reliability of
saliency metrics for saliency maps, as outlined in the previ-
ous section. We investigated bothAOPCM and faithfulness
F.

Methods
Our goal in this paper is to better understand saliency met-
rics, so instead of testing many saliency methods on many
different models and tasks, we focused on a single model
and a few saliency methods. This allowed us to explore the
properties of the saliency metrics in depth, rather than being
distracted by effects of different models and datasets on the
metrics.

Model and task We performed all our experiments on a
CNN model trained on the CIFAR-10 dataset and classi-
“cation task (Krizhevsky 2009). We chose CIFAR-10 be-
cause it is a well-known image classi“cation set of suitable
complexity (10 non-linearly separable classes) whose size
(50,000 32× 32 RGB training images, 10,000 test images) is
not prohibitive to running many experiments in a reasonable
amount of time. We trained a standard CNN containing three
sequential blocks, with each block consisting of two 2D con-
volution layers with batch normalization, followed by a max
pooling layer. The output of the third block is ”attened be-
fore connecting to the “nal classi“cation layer. ReLUs were
used for all activations except the classi“cation layer, which
used the standard SoftMax activation. The model had all
bias terms set to zero, as the inclusion of bias terms can
pose dif“culties for relevance backpropagation approaches
to pixel saliency estimation (Wang, Zhou, and Bilmes 2019;
Montavon, Samek, and M̈uller 2018). The model was trained
on 45,000 training samples, with 5,000 held out as a valida-
tion set. During training the model was regularized usingl2
weight decay and dropout, and early stopping was used to
prevent over-“tting. The resulting model achieved a test set
accuracy of86%.

Saliency methods We chose to compare four different
saliency methods and a baseline method (edge detection).
Our aim here was not to be exhaustive, but to choose well-
known methods from the literature with differing prop-
erties and assumptions. The methods chosen were sensi-
tivity analysis (Simonyan, Vedaldi, and Zisserman 2013),
gradient� input,2 deep Taylor decomposition (Montavon et
al. 2017), and SHAP (Lundberg and Lee 2017) „ specif-
ically DeepSHAP, which builds on a connection between
SHAP and DeepLIFT (Shrikumar, Greenside, and Kundaje
2017). Each of these produces a saliency map that assigns
a relevance value to each pixel in the image, relative to the
model•s output classi“cation score. Example saliency maps
are shown in Figure 1.

2It was noted by (Kindermans et al. 2016; Shrikumar, Green-
side, and Kundaje 2017) that gradient� input was functionally
equivalent to a version of the Layerwise Relevance Propagation
method,� -LRP, (Bach et al. 2015; Kindermans et al. 2016) under
certain conditions. We use gradient� input here as it is computa-
tionally simpler, and equivalent to� -LRP for our network.

Figure 1: Example saliency maps using the four saliency
methods plus edge detection, shown for “ve of the ten
CIFAR-10 image classes (top to bottom: dog, frog, horse,
ship, truck). Positive relevance shown in red, negative in
blue. These images were all correctly classi“ed by our NN
with con“dence� 0.99. Saliency maps were normalized by
their maximum absolute value for visualization.

Some methods only estimate positive relevance i.e. all
pixels are considered to have made a positive (or zero) con-
tribution to the output classi“cation, while other methods es-
timate positiveand negative relevance. Of the methods we
looked at, sensitivity analysis and deep Taylor decomposi-
tion estimate positive relevance only, while gradient� input
and SHAP estimate positive and negative relevance. We use
the implementations of gradient (which we convert to sen-
sitivity by taking the channel-wise maximum of the magni-
tude of the gradient), gradient� input, and deep Taylor de-
composition provided by the iNNvestigate toolbox (Alber
et al. 2019), and the implementation of DeepSHAP avail-
able at https://github.com/slundberg/shap/ . Finally, we also
compare these methods with saliency maps produced by So-
bel edge detection, which acts as a baseline. Edge detection
creates maps that are visually similar to those produced sev-
eral saliency methods, but that do not depend on the NN
internals (Adebayo et al. 2018).

Saliency metrics We investigated AOPC with both MoRF
and LeRF pixel perturbation order, and faithfulnessF. These
metrics require pixels to be •perturbedŽ but for colour im-
ages, the correct perturbation function is not obvious. Sev-
eral different approaches have been proposed in the liter-
ature, largely without explicitly stating why that particular
function was chosen. We use two different perturbations:
replacing the selected pixel with the dataset mean, and re-
placing the selected pixel with uniformly distributed random
RGB values. The former approach effectively sets the pixels
to 0 as we standardize inputs to the network, while the latter
attempts to destroy the information contained in the pixel,
as well as its correlation with surrounding pixels. Some pre-
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vious studies have chosen to perturb square pixel-regions
rather than individual pixels (Samek et al. 2017); we chose
to perturb single pixels as perturbing pixel regions requires
assumptions about the spatial scale of the features in the im-
ages and the information contained in the saliency maps. We
also note that perturbing a single pixel in a CIFAR10 image
is similar to perturbing a9× 9 region in an ImageNet (Deng
et al. 2009) image as done by e.g. (Samek et al. 2017) (1
pixel is 0.1% of a CIFAR10 image•s area; a9 × 9 region
is 0.16% of an ImageNet image•s area assuming standard
resizing to224× 224).

For the faithfulness results, we did not perturb every pixel
in every image as this would have been computationally pro-
hibitive. Instead we randomly selected 100 pixel IDs and
perturbed this same pixel set for every image to obtain an
estimate of the faithfulness. For the AOPC results, we also
scored a set of random perturbation orderings to obtain a
random baseline in addition to the edge detection baseline.
We generated 100 random pixel orderings, using this set to
obtain a set of 100 AOPC scores for every image. We use the
mean of these 100 scores as the random baseline score, with
a 95% con“dence interval calculated on the empirical distri-
bution of mean scores. Other con“dence intervals were esti-
mated using the bootstrap method with 10,000 re-samplings.
We performed our experiments on the whole of the CIFAR-
10 test set of 10,000 images (1000 per class).

Results
Global saliency metric reliability
Figure 2 shows the two metrics as measured for each
saliency method, obtained using both mean perturbation
(setting perturbed pixels to the data set mean value) and
random RGB perturbation (setting perturbed pixels to uni-
formly random RGB values). Figure 2a shows AOPC val-
ues plotted against number of deletion steps; the top row
shows results for MoRF perturbation and the bottom row for
LeRF. These plots reveal several details about the reliabil-
ity of AOPC measures. Considering “rst MoRF perturbation
order (where higher AOPC values indicate better “delity),
gradient� input and SHAP are the top-ranked methods for
mean and random RGB perturbation, respectively. Deep
Taylor decomposition and sensitivity are indistinguishable
using mean perturbation, but sensitivity is ranked better than
deep Taylor decomposition with random RGB perturbation.
This inconsistency indicates thatAOPCMoRF is sensitive to
the details of the perturbation function for our CNN. Turning
to LeRF perturbation order (where lower AOPC values indi-
cate better “delity), the saliency methods are ranked consis-
tently between mean and random RGB perturbation. How-
ever, the LeRF rankings are opposite to those measured by
MoRF: edge detection and deep Taylor decomposition ob-
tain the best scores, with SHAP third and gradient� input
last. This indicates thatAOPCMoRF and AOPCLeRF are
not measuring the same thing (low internal consistency re-
liability). A “nal thing to note regarding the plots in Figure
2a is the hidden variance of the AOPC measures: the 95%
con“dence intervals for the means are very tight due to the
large sample size, but the variance in AOPC scores over in-

put images is large.
Figure 2b shows Faithfulness,F, for each saliency

method. In these plots we show the full distribution ofF
scores measured on each image, as well as the means indi-
cating the global scores for the different methods. The mean
values for every method are close to zero, indicating that
they all have low faithfulness, with edge detection consis-
tently the lowest. Again, the perturbation method affects the
metric, changing, the distribution shapes, mean values, and
method rankings.

Local saliency metric reliability
Table 1 lists the Krippendorf� statistics for the saliency
metrics (with varying numbers of deleted pixelsL for
AOPC). These are calculated on the image-wise rankings of
saliency maps, and test •inter-rater reliabilityŽ as described
above. Low � values indicate that the saliency method
rankings on different images are inconsistent. The left two
columns of table 1 show� values when the baseline edge
detection method is included in the ranking. This baseline
is ranked more consistently (low rankings forAOPCMoRF
andF, high rankings forAOPCLeRF ) than the true saliency
methods over all data set images, producing higher� values
than when it is excluded from the rankings (the right-hand
two columns).

Perturbing with random RGB values reduces� for Fi-
delity andAOPCMoRF compared with mean perturbation,
which may be due to the increased stochasticity in the per-
turbations from the random colour choices. However, it is
dif“cult to understand whyAOPCLeRF at smaller num-
bers of perturbation steps (L = 20 and L = 40) pro-
duce greater� values with random RGB perturbation that
with mean perturbation. A •lowŽ� value is not strictly de-
“ned, but � < 0.65 are often considered to indicate unre-
liability inter-rater reliability. The largest value in the table,
0.48 forAOPCMoRF at L = 100 using mean perturbation
and including edge detection in the ranking, is substantially
less than 0.65, indicating low inter-rater reliability whatever
the speci“cs of the metric. We can conclude from this that
the metrics will not produce consistent rankings of saliency
maps when applied to new test images.

We made a similar set of measurements looking at the
inter-method correlation of metric scores over data set im-
ages, taking the mean of the pair-wise Spearman•s� corre-
lation between saliency methods. As with the previous re-
sults, the presence of the baseline edge detector „ which
should not correlate well with other methods given that it
does not assess the model „ reduces the mean pairwise cor-
relation. The lowest mean pairwise correlation was 0.13 (for
Faithfulness, random RGB perturbation, edge detection ex-
cluded) and the highest 0.67 (forAOPCMoRF , L = 100,
mean perturbation, edge detection excluded). Correlations
for AOPCMoRF were consistently highest, ranging between
0.47 and 0.67, while Faithfulness showed the lowest cor-
relation values of 0.13 to 0.18 (both excluding edge detec-
tion). Changes in perturbation method appear to affect inter-
method reliability much less than inter-rater reliability.

Finally, we assess internal consistency reliability by mea-
suring the correlation between different metrics over the data
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