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Abstract

In this work, we show that discretizing action space for contin-
uous control is a simple yet powerful technique for on-policy
optimization. The explosion in the number of discrete actions
can be efficiently addressed by a policy with factorized dis-
tribution across action dimensions. We show that the discrete
policy achieves significant performance gains with state-of-the-
art on-policy optimization algorithms (PPO, TRPO, ACKTR)
especially on high-dimensional tasks with complex dynam-
ics. Additionally, we show that an ordinal parameterization
of the discrete distribution can introduce the inductive bias
that encodes the natural ordering between discrete actions.
This ordinal architecture further significantly improves the
performance of PPO/TRPO.

Introduction

In reinforcement learning (RL), the action space of conven-
tional control tasks are usually dichotomized into either dis-
crete or continuous (Brockman et al., 2016). While discrete
action space is conducive to theoretical analysis, in the con-
text of deep reinforcement learning, their application is lim-
ited to video game playing or board game (Mnih et al., 2013;
Silver et al., 2016). On the other hand, in simulated or real
life robotics control (Levine et al., 2016; Schulman et al.,
2015a), the action space is by design continuous. Continu-
ous control typically requires more subtle treatments, since
a continuous range of control contains an infinite number of
feasible actions and one must resort to parametric functions
for a compact representation of distributions over actions.

Can we retain the simplicity of discrete actions when solv-
ing continuous control tasks? A straightforward solution is to
discretize the continuous action space, i.e. we discretize the
continuous range of action into a finite set of atomic actions
and reduce the original task into a new task with a discrete
action space. A common argument against this approach is
that for an action space with M dimensions, discretizing K
atomic actions per dimension leads to MK combinations
of joint atomic actions, which quickly becomes intractable
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when M increases. However, a simple fix is to represent the
joint distribution over discrete actions as factorized across
dimensions, so that the joint policy is still tractable. As prior
works have applied such discretization method in practice
(OpenAI, 2018; Jaśkowski et al., 2018), we aim to carry out a
systemic study of such straightforward discretization method
in simulated environments, and show how they improve upon
on-policy optimization baselines.

The paper proceeds as follows. In Section 2, we introduce
backgrounds on on-policy optimization baselines (e.g. TRPO
and PPO) and related work. In Section 3, we introduce the
straightforward method of discretizing action space for con-
tinuous control, and analyze the properties of the resulting
policies as the number atomic actions K changes. In Sec-
tion 4, we introduce stick-breaking parameterization (Khan
et al., 2012), an architecture that parameterizes the discrete
distributions while encoding the natural ordering between
discrete actions. In Section 5, through extensive experiments
we show how the discrete/ordinal policy improves upon cur-
rent on-policy optimization baselines and related prior works,
especially on high-dimensional tasks with complex dynam-
ics.

Background

In the standard formulation of Reinforcement Learning (RL),
at time step t ≥ 0, an agent is in state st ∈ S, takes an
action at ∈ A, receives an instant reward rt = r(st, at) ∈ R

and transitions to a next state st+1 ∼ p(·|st, at) ∈ S . Let π :
S �→ P (A) be a policy, where P (A) is the set of distributions
over the action space A. The discounted cumulative reward
under policy π is J(π) = Eπ

[∑∞
t=0 γ

trt
]
, where γ ∈ [0, 1)

is a discount factor. The objective of RL is to search for a
policy π that achieves the maximum cumulative reward π∗ =
argmaxπ J(π). For convenience, under policy π we define
action value function Qπ(s, a) = Eπ

[
J(π)|s0 = s, a0 =

a
]

and value function V π(s) = Eπ

[
J(π)|s0 = s, a0 ∼

π(·|s0)
]
. We also define the advantage function Aπ(s, a) =

Qπ(s, a)− V π(s). One common way to approximately find
π∗ is through direct policy search within a given policy class
πθ, θ ∈ Θ. The algorithm proceeds by iteratively updating
the policy parameter to search for higher performing policy.
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Trust Region Policy Optimization

Trust Region Policy Optimization (TRPO) formulates the
policy search problem as a trust region optimization problem
(Schulman et al., 2015a). In particular, consider the following
trust region formulation

max
θnew

Eπθ

[πθnew(at|st)
πθ(at|st) Aπθ (st, at)

]
,

Es

[
KL[πθ(·|s)||πθnew(·|s)]

] ≤ ε, (1)

where Es[·] is w.r.t. the state visitation distribution induced
by πθ. The trust region enforced by the KL-divergence en-
tails that the update according to (1) optimizes a lower bound
of J(πθ), so as to avoid accidentally taking large steps that
irreversibly degrade the policy performance during training.
More recently, ACKTR Wu et al. (2017) propose to replace
the CG descent of TRPO by Kronecker-factored approxima-
tion (Martens and Grosse, 2015) when computing the matrix
inversion. This approximation is more stable than CG descent
and yields performance gain over conventional TRPO.

Proximal Policy Optimization (PPO) For a practical al-
gorithm, TRPO requires approximately inverting the Fisher
matrices by conjugate gradient iterations. Proximal Policy
Optimization (PPO) Schulman et al. (2017a) propose to ap-
proximate a trust-region method by clipping the likelihood
ratios ρt =

πθnew (at|st)
πθ(at|st) as ρ̄t = clip(ρt, 1− η, 1 + η) where

clip(x, a, b) clips the argument x between a and b. Consider
the following objective

max
θnew

Eπθ

[
min{ρtAπθ (st, at), ρ̄tA

πθ (st, at)}
]
,

||θnew − θ||2 ≤ ε. (2)

The intuition behind the objective (2) is when Aπθ (st, at) >
0, the clipping removes the incentives for the ratio ρt to
go above 1 + η, with similar effects for the case when
Aπθ (st, at) < 0. PPO achieves more stable empirical perfor-
mance than TRPO and involves only relatively cheap first-
order optimization.

Related Work

Policy Classes. Orthogonal to the algorithmic procedures
for policy updates, one is free to choose any policy classes. In
discrete action space, the only choice is a categorical distri-
bution (or a discrete distribution). In continuous action space,
the default baseline is factorized Gaussian (Schulman et al.,
2015a, 2017a). Gaussian mixtures, implicit generative mod-
els or even Normalizing flows (Rezende and Mohamed, 2015)
can be used for more expressive and flexible policy classes
(Tang and Agrawal, 2018; Haarnoja et al., 2017, 2018b,a),
which achieve performance gains primarily for off-policy
learning. One issue with aformentioned prior works is that
they do not disentangle algorithms from distributions, it is
therefore unclear whether the benefits result from a better
algorithm or an expressive policy. To make the contributions
clear, we make no changes to the on-policy algorithms and
show the net effect of how the policy classes improve the
performance. Motivated by the fact that unbounded distribu-
tions can generate infeasible actions, Chou, Maturana, and

Scherer (2017) propose to use Beta distribution and also show
improvement on TRPO. Early prior work Shariff and Dick
also propose truncated Gaussian distribution but such idea
is not tested on deep RL tasks. Complement to prior works,
we propose discrete/ordinal policy as simple yet powerful
alternates to baseline policy classes.

Discrete and Continuous Action Space. Prior works have
exploited the connection between discrete and continuous
action space. For example, to solve discrete control tasks,
Van Hasselt and Wiering (2009); Dulac-Arnold et al. (2015)
leverage the continuity in the underlying continuous action
space for generalization across discrete actions. Prior works
have also converted continuous control problems into dis-
crete ones, e.g. Pazis and Lagoudakis (2009) convert low-
dimensional control problems into discrete problems with
binary actions. Surprisingly, few prior works have considered
a discrete policy and apply off-the-shelf policy optimization
algorithms directly. Recently, OpenAI (2018); Jaśkowski et
al. (2018) apply discrete policies to challenging hand ma-
nipulation and humanoid walking respectively. As a more
comprehensive study, we carry out a full evaluation of dis-
crete/ordinal policy on continuous control benchmarks and
validate their performance gains.

To overcome the explosion of action space, Metz et al.
(2018) overcome the explosion by sequence prediction, but
so far their strategy is only shown effective on relatively low-
dimensional problems (e.g. HalfCheetah). Tavakoli, Pardo,
and Kormushev (2018) propose to avoid taking argmax
across all actions in Q-learning, by applying argmax in-
dependently across dimensions. Their method is also only
tested on a very limited number of tasks. As an alternative,
we consider distributions that factorize across dimensions
and we show that this simple technique yields consistent
performance gains.

Ordinal Architecture. When discrete variables have an
internal ordering, it is beneficial to account for such order-
ing when modeling the categorical distributions. In statistics,
such problems are tackled as ordinal regression or classifica-
tion (Winship and Mare, 1984; Chu and Ghahramani, 2005;
Chu and Keerthi, 2007). Few prior works aim to combine
ideas of ordinal regression with neural networks. Though
Cheng, Wang, and Pollastri (2008) propose to introduce or-
dering as part of the loss function, they do not introduce a
proper probabilistic model and need additional techniques
during inference. More recently, Khan et al. (2012) motivate
the stick-breaking parameterization, a proper probabilistic
model which does not introduce additional parameters com-
pared to the original categorical distribution. In our original
derivation, we motivate the architecture of (Khan et al., 2012)
by transforming the loss function of (Cheng, Wang, and Pol-
lastri, 2008). We also show that such additional inductive
bias greatly boosts the performance for PPO/TRPO.
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Discretizing Action Space for Continuous

Control

Without loss of generality, we assume the action space
A = [−1, 1]m. We discretize each dimension of the action
space into K equally spaced atomic actions. The set of atomic
action for any dimension i is Ai = { 2j

K−1 − 1}K−1
j=0 . To over-

come the curse of dimensionality, we represent the distribu-
tion as factorized across dimensions. In particular, in state s,
we specify a categorical distribution πθj (aj |s) over actions
aj ∈ Aj for each dimension j, with θj as parameters for this
marginal distribution. Then we define the joint discrete pol-
icy π(a|s) := Πm

j=1πθj (aj |s) where a = [a0, a1, ...aK−1]
T .

The factorization allows us to maintain a tractable distribu-
tion over joint actions, making it easy to do both sampling
and training.

Network Architecture

The discrete policy is parameterized as follows. As in prior
works (Schulman et al., 2015b, 2017b), the policy πθ is a
neural network that takes state s as input, through multiple
layers of transformation it will encode the state into a hidden
vector h(s) = fθ(s). For the jth action in the ith dimension
of the action space, we output a logit Lij = wT

ijh(s) + bij ∈
R with parameters wij , bij . For any dimension i, the K logits
Lij , 1 ≤ j ≤ K are combined by soft-max to compute the
probability of choosing action j, pij = softmax(Lij)(:=
exp(Lij)
∑K−1

j=0 Lij
). By construction, the network has a fixed-size

low-level parameter θ, while the output layer has parameters
wij , bij whose size scales linearly with K.

Understanding Discrete Policy for Continuous
Control

Here we briefly analyze the empirical properties of the dis-
crete policy.

Discrete Policy is more expressive than Gaussian.
Though discrete policy is limited on taking atomic actions,
in practice it can represent much more flexible distributions
than Gaussian when there are sufficient number of atomic
actions (e.g. K ≥ 11). Intuitively, discrete policy can rep-
resent multi-modal action distribution while Gaussian is by
design unimodal. We illustrate this practical difference by
a bandit example in Figure 1. Consider a one-step bandit
problem with A = [−1, 1]. The reward function for action
a is r(a) illustrated as the Figure 1 (a) blue curve. We train
a discrete policy with K = 11 and a Gaussian policy on
the environment for 105 steps and show their training curves
in (b), with five different random seeds per policy. We see
that 4 out 5 five Gaussian policies are stuck at a suboptimal
policy while all discrete policies achieve the optimal rewards.
Figure 1 (a) illustrates the density of a trained discrete policy
(red) and a suboptimal Gaussian policy (green). The trained
discrete policy is bi-modal and automatically captures the
bi-modality of the reward function (notice that we did not
add entropy regularization to encourage high entropy). The
only Gaussian policy that achieves optimal rewards in (b)
captures only one mode of the reward function.

(a) Bandit: Density (b) Bandit: curves

Figure 1: Analyzing discrete policy: (a) Bandit example: com-
parison of normalized reward (blue), trained discrete policy
density (red) and trained Gaussian policy density (green).
(b) Bandit example: learning curves of discrete policy vs.
Gaussian policy, we show five random seeds. Most seeds for
Gaussian policy get stuck at a suboptimal policy displayed in
(a) and all discrete policies reach a bi-modal optimal policy
as in (a).

For general high-dimensional problems, the reward land-
scape becomes much more complex. However, this simple
example illustrates that the discrete policy can potentially
capture the multi-modality of the landscape and achieve bet-
ter exploration (Haarnoja et al., 2017) to bypass suboptimal
policies.

Effects of the Number of Atomic Actions K. Choosing a
proper number of atomic actions per dimension K is critical
for learning. The trade-off comes in many aspects: (a) Control
capacity. When K is small the discretization is too coarse
and the policy does not have enough capacity to achieve good
performance. (b) Training difficulty. When K increases, the
variance of policy gradients also increases. We detail the
analysis of policy gradient variance in Appendix B. We also
present the combined effects of (a) and (b) in Appendix B,
where we find that the best performance is obtained when
7 ≤ K ≤ 15, and setting K either too large or too small
will degrade the performance. (c) Model parameters and
computational Costs. Both the number of model parameters
increases linearly and computational costs grow linearly in
K. We present detailed computational results in Appendix B.

Discrete Policy with Ordinal Architecture

Motivation

When the continuous action space is discretized, we treat
continuous variables as discrete and discard important infor-
mation about the underlying continuous space. It is therefore
desirable to incorporate the notion of continuity when param-
terizing distributions over discrete actions.

Ordinal Distribution Network Architecture

For simplicity, we discuss the discrete distribution over only
one action dimension. Recall previously that a typical feed-
forward architecture that produces discrete distribution over
K classes produces K logits Li at the last layer and derives
the probability via a softmax pi = softmax(Li), 1 ≤ i ≤ K.
In the ordinal architecture, we retain these logits Li and first
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transform them via a sigmoid function si = σ(Li). Then we
compute the final logits as

L′
i =

∑

j≤i

log si +
∑

j>i

log(1− si), ∀1 ≤ i ≤ K, (3)

and derive the final output probability via a softmax p′i =
softmax(L′

i). The actions are sampled according to this dis-
crete distribution aj ∼ p′j .

This architecture is very similar to the stick-breaking pa-
rameterization introduced in Khan et al. (2012), where they
argue that such parameterization is beneficial when the sam-
ples drawn from class k can be easily separated from samples
drawn from all the classes j > k. In our original derivation,
we motivate the ordinal architecture from the loss function
of (Cheng, Wang, and Pollastri, 2008) and we show that the
intuition behind (3) is more clear from this perspective. We
show the intuition below with a K-way classification prob-
lem, where the classes are internally ordered as {1, 2, ...K}.

Intuition behind (3). For clarity, let x,y ∈ R
K such

that 0 ≤ xi, yi ≤ 1 and define the stable cross entropy
CE(x,y) := −∑K

i=1 xi logmax{yi, ε}) with a very small
ε > 0 to avoid numerical singularity. For a sample from class
k, the K−way classification loss based on (3) is −L′

k =
CE(tk, s), where the predicted vector s = [s1, s2...sK ] and
a target vector tk = [1, 1...0] with first k entries to be 1s
and others 0s. The intuition becomes clear when we interpret
tk as a continuous encoding of the class k (instead of the
one-hot vector) and s as a intermediate vector from which we
draw the final prediction. We see that the continuity between
classes is introduced through the loss function, for example
CE(tk, tk+1) < CE(tk, tk+2), i.e. the discrepancy between
class k and k + 1 is strictly smaller than that between k and
k+1. On the contrary, such information cannot be introduced
by one-hot encoding: let ek be the one-hot vector for class k,
we always have e.g. CE(ek, ek+1) = CE(ek, ek+2), i.e. we
introduce no discrepancy relationship between classes. While
Cheng, Wang, and Pollastri (2008) introduce such continuous
encoding techniques, they do not propose proper probabilistic
models and require additional techniques at inference time to
make predictions. Here, the ordinal architecture (3) defines
a proper probabilistic model that implicitly introduces inter-
nal ordering between classes through the parameterization,
while maintaining all the probabilistic properties of discrete
distributions.

In summary, the oridinal architecture (3) introduces ad-
ditional dependencies between logits Li which implicitly
inject the information about the class ordering. In practice,
we find that this generally brings significant performance
gains during policy optimization.

Experiments

Our experiments aim to address the following questions: (a)
Does discrete policy improve the performance of baseline
algorithms on benchmark continuous control tasks? (b) Does
the ordinal architecture further improve upon discrete policy?
(c) How sensitive is the performance to hyper-parameters,
particularly to the number of bins per action dimension?

For clarity, we henceforth refer to discrete policy as with
the discrete distribution, and ordinal policy as with the ordi-
nal architecture. To address (a), we carry out comparisons in
two parts: (1) We compare discrete policy (with varying K)
with Gaussian policy over baseline algorithms (PPO, TRPO
and ACKTR), evaluated on benchmark tasks in gym Mu-
JoCo (Brockman et al., 2016; Todorov, 2008), rllab (Duan et
al., 2016), roboschool (Schulman et al., 2015a) and Box2D.
Here we pay special attention to Gaussian policy because
it is the default policy class implemented in popular code
bases (Dhariwal et al., 2017); (2) We compare with other ar-
chitectural alternatives, either straihghtforward architectural
variants or those suggested in prior works (Chou, Maturana,
and Scherer, 2017). We evaluate their performance on high-
dimensional tasks with complex dynamics (e.g. Walker, Ant
and Humanoid). All the above results are reported in Sec-
tion 5.1. To address (b), we compare discrete policy with
ordinal policy with PPO in Section 5.2 (results for TRPO
are also in Section 5.1). To address (c), we randomly sample
hyper-parameters for Gaussian policy and discrete policy and
compare their quantiles plots in Section 5.3 and Appendix C.

Implementation Details. As we aim to study the net effect
of the discrete/ordinal policy with on-policy optimization
algorithms, we make minimal modification to the original
PPO/TRPO/and ACKTR algorithms originally implemented
in OpenAI baselines (Dhariwal et al., 2017). We leave all
hyper-parameter settings in Appendix A.

Benchmark performance

All benchmark comparison results are presented in plots (Fig-
ure 2,3) or tables (Table 1,2). For plots, we show the learning
curves of different policy classes trained for a fixed number of
time steps. The x-axis shows the time steps while the y-axis
shows the cumulative rewards. Each curve shows the average
performance with standard deviation shown in shaded areas.
Results in Figure 2,4 are averaged over 5 random seeds and
Figure 3 over 2 random seeds. In Table 1,2 we train all poli-
cies for a fixed number of time steps and we show the average
± standard deviation of the cumulative rewards obtained in
the last 10 training iterations.

PPO/TRPO - Comparison with Gaussian Baselines. We
evaluate PPO/TRPO with Gaussian against PPO/TRPO with
discrete policy on the full suite of MuJoCo control tasks and
display all results in Figure 2. For PPO, on tasks with rela-
tively simple dynamics, discrete policy does not necessarily
enjoy significant advantages over Gaussian policy. For ex-
ample, the rate of learning of discrete policy is comparable
to Gaussian for HalfCheetah (Figure 2(a)) and even slightly
lower on Ant 2(b)). However, on high-dimensional tasks with
very complex dynamics (e.g. Humanoid, Figure 2(d)-(f)), dis-
crete policy significantly outperforms Gaussian policy. For
TRPO, the performance gains by discrete policy are also very
consistent and significant.

We also evaluate the algorithms on Roboschool Humanoid
tasks as shown in Figure 3. We see that discrete policy
achieves better results than Gaussian across all tasks and
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(a) HalfCheetah + PPO (b) Ant + PPO (c) Walker + PPO (d) Humanoid (R) + PPO

(e) Sim. Human. (R) + PPO (f) Humanoid + PPO (g) HalfCheetah + TRPO (h) Ant + TRPO

(i) Walker + TRPO (j) Sim. Human. (R) + TRPO (k) Humanoid (R) + TRPO (l) Humanoid + TRPO

Figure 2: MuJoCo Benchmarks: learning curves of PPO on OpenAI gym MuJoCo locomotion tasks. Each curve is averaged
over 5 random seeds and shows mean ± std performance. Each curve corresponds to a different policy architecture (Gaussian or
discrete actions with varying number of bins K = 7, 11, 15). Vertical axis is the cumulative rewards and horizontal axis is the
number of time steps. Discrete actions significantly outperform Gaussian on Humanoid tasks. Tasks with (R) are from rllab.

both algorithms. The performance gains are most significant
with TRPO (Figure 3(b)(d)), where we see Gaussian policy
barely makes progress during training while discrete policy
has very stable learning curves. We provide additional Ro-
boschool Humanoid results in the Appendix C due to space
limit. For completeness, we also evaluate PPO/TRPO with
discrete policy vs. Gaussian policy on Box2D tasks and see
that the performance gains are significant. Due to space limit,
We present Box2D results in Appendix C.

By construction, when discrete policy and Gaussian policy
have the same encoding architecture fθ(s) shown in Section
3, discrete policy has many more parameters than Gaussian
policy. A critical question is whether we can achieve perfor-
mance gains by simply increasing the number of parameters?
We show that when we train a Gaussian policy with many
more parameters (e.g. 128 hidden units per layer), the policy
does not perform as well. This validates our speculation that
the performance gains result from a more carefully designed
distribution class rather than larger networks.

PPO - Comparison with Off-Policy Baselines. To further
illustrate the strength of PPO with discrete policy on high-
dimensional tasks with very complex dynamics, we compare

PPO with discrete policy against state-of-the-art off-policy
algorithms on Humanoid tasks (Humanoid-v1 and Humanoid
rllab) 1. Such algorithms include DDPG (Lillicrap et al.,
2015), SQL (Haarnoja et al., 2017), SAC (Haarnoja et al.,
2018b) and TD3 (Fujimoto, van Hoof, and Meger, 2018),
among which SAC and TD3 are known to achieve signifi-
cantly better performance on MuJoCo benchmark tasks over
other algorithms. Off-policy algorithms reuse samples and
can potentially achieve orders of magnitude better sample
efficiency than on-policy algorithms. For example, it has been
commonly observed in prior works (Haarnoja et al., 2018b,a;
Fujimoto, van Hoof, and Meger, 2018) that SAC/TD3 can
achieve state-of-the-art performance on most benchmark con-
trol tasks for only 106 steps of training, on condition that
off-policy samples are heavily replayed. In general, on-policy
algorithms cannot match such level of fast convergence be-
cause samples are quickly discarded. However, for highly
complex tasks such as Humanoid even off-policy algorithms
take many more samples to learn, potentially because off-
policy learning becomes more unstable and off-policy sam-

1Humanoid-v1 has |S| = 376, |A| = 17 and Humanoid rllab
has |S| = 142, |A| = 21. Both tasks have very high-dimensional
observation space and action space.
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ples are less informative. In Table 1, we record the final
performance of off-policy algorithms directly from the fig-
ures in (Haarnoja et al., 2018b) following the practice of
(Mania, Guy, and Recht, 2018). The final performance of
PPO algorithms are computed as the average ± std of the
returns in the last 10 training iterations across 5 random seeds.
All algorithms are trained for 107 steps. We observe in Table
1 that PPO + discrete (ordinal) actions achieve comparable or
even better results than off-policy baselines. This shows that
for general complex applications, PPO + discrete/ordinal is
still as competitive as the state-of-the-art off-policy methods.

PPO/TRPO - Comparison with Alternative Architec-
tures. We also compare with straightforward architectural
alternatives: Gaussian with tanh non-linearity as the output
layer, and Beta distribution (Chou, Maturana, and Scherer,
2017). The primary motivation for these architectures is that
they naturally bound the sampled actions to the feasible range
([−1, 1] for gym tasks). By construction, our proposed dis-
crete/ordinal policy also bound the sampled actions within the
feasible range. In Table 2, we show results for PPO/TRPO
where we select the best result from K ∈ {7, 11, 15} for
discrete/ordinal policy. We make several observations from
results in Table 2: (1) Bounding actions (or action means) to
feasible range does not consistently bring performance gains,
because we observe that Gaussian + tanh and Beta distribu-
tion do not consistently outperform Gaussian. This is poten-
tially because the parameterizations that bound the actions
(or action means) also introduce challenges for optimiza-
tion. For example, Gaussian + tanh bounds the action means
μθ(s) ∈ [−1, 1], this implies that in order for μθ(s) ≈ ±1

(a) Humanoid + PPO (b) Humanoid + TRPO

(c) Flagrun + PPO (d) Flagrun + TRPO

Figure 3: Roboschool Humanoid Benchmarks: learning
curves of PPO/TRPO on Roboschool Humanoid locomotion
tasks. Each curve corresponds to a different policy architec-
ture (Gaussian or discrete actions with varying number of
bins K = 5, 7, 11). Discrete policies outperform Gaussian
policy on all Humanoid tasks and the performance gains are
more significant with TRPO.

(a) Walker (b) Ant

(c) Humanoid (R) (d) Sim. Humanoid (R)

(e) Humanoid (f) Humanoid Standup

Figure 4: MuJoCo Benchmarks: learning curves of PPO +
discrete policy vs. PPO + ordinal policy on OpenAI gym
MuJoCo locomotion tasks. All policies have K = 11. We
see that for each task, ordinal policy outperforms discrete
policy.

the parameter θ must reach extreme values, which is hard
to achieve using SGD based methods. (2) Discrete/Ordinal
policy achieve significantly better results consistently across
most tasks. Combining (1) and (2), we argue that the perfor-
mance gains of discrete/ordinal policies are due to reasons
beyond a bounded action distribution.

Here we discuss the results for Beta distribution. In our im-
plementation we find training with Beta distribution tends to
generate numerical errors when the update is more aggressive
(e.g. PPO learning rate 3 · 10−5 or TRPO trust region size is
0.01). More conservative updates (e.g. e.g. PPO learning rate
3 ·10−6 or TRPO trust region size is 0.001) reduce numerical
errors but also greatly degrade the learning performance. We
suspect that this is because the Beta distribution parameteriza-
tion (Appendix A and (Chou, Maturana, and Scherer, 2017))
is numerically unstable and we discuss the potential reason
in Appendix A. In Table 2, the results for Beta distribution is
recorded as the performance of the last 10 iterations before
the training terminates (potentially prematurely due to numer-
ical errors). The potential advantages of Beta distribution are
largely offset by the unstable training. We show more results
in Appendix C.
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Table 1: A comparison of PPO with discrete/ordinal policy with state-of-the-art baseline algorithms on Humanoid benchmark
tasks from OpenAI gym and rllab. For each task, we show the average rewards achieved after training the agent for a fixed
number of time steps. The results for PPO + discrete/ordinal/Gaussian policy are mean performance averaged over 5 random
seeds (see Figure 2. The results for DDPG, SQL, SAC and TD3 are approximated based on the figures in (Haarnoja et al., 2018b).
The results for PPO is consistent with results in (Haarnoja et al., 2018b). Even compared to off-policy algorithms, PPO + ordinal
policy achieves state of the art performance across both tasks.

Tasks DDPG SQL SAC TD3 PPO + Gaussian PPO + discrete PPO + ordinal

HUMAOID-V1 ≈ 500 ≈ 5500 ≈ 6000 ≈ 6000 ≈ 4000 5119± 151 6018± 239
HUMANOID(RLLAB) < 500 ≈ 2000 ≈ 5500 < 500 ≈ 2500 4084± 1312 4884± 1562

Table 2: Comparison across a range of policy alternatives (Gaussian, Gaussian +tanh, and Beta distribution (Chou, Maturana,
and Scherer, 2017)). All policies are optimized with PPO/TRPO. All tasks are training for 10M steps. Results are the average ±
std performance for the last 10 training iterations. Top two results (with highest average) are highlighted in bold font. Tasks with
(R) are from rllab.

PPO Gaussian Gaussian+tanh Beta Discrete Ordinal

WALKER2D 3500± 360 3274± 251 274± 6 3390± 190 4249± 239
ANT 4445± 194 4622± 171 3112± 173 3256± 778 3690± 557
HALFCHEETAH 1598± 23 1566± 26 1193± 24 4824± 199 3477± 1497
HUMANOID 3905± 502 4007± 698 2680± 2493 5119± 151 6018± 403
HUMANOIDSTANDUP 166446± 18348 160983± 3842 155362± 8657 161618± 10224 170275± 19316
HUMANOID (R) 2522± 1684 5863± 1288 2680± 2493 4084± 1312 4884± 1562
SIM. HUMANOID (R) 5.1± 0.4 4.3± 0.5 4.4± 0.6 214± 136 801± 569

TRPO

ANT −76± 14 −89± 13 2362± 305 2687± 556 2977± 266
HALFCHEETAH 1576± 782 386± 78 1643± 819 3081± 766 3352± 1196
HUMANOID 1156± 163 6350± 486 3812± 1973 3908± 117 3577± 272
HUMANOID STANDUP 137955± 9238 133558± 9238 111497± 15031 142640± 2343 143418± 8638
HUMANOID (R) 65± 8 38± 2 38± 3 84± 24 161± 26
SIM. HUMANOID (R) 6.5± 0.2 4.4± 0.1 4.2± 0.2 42± 6 93± 28

ACKTR - Comparison with Gaussian Baselines. We
show results for ACKTR in Appendix C. We observe that for
tasks with complex dynamics, discrete policy still achieves
performance gains over its Gaussian policy counterpart.

Discrete Policy vs. Ordinal Policy

In Figure 4, we evaluate PPO + discrete policy and PPO + or-
dinal policy on high-dimensional tasks. Across all presented
tasks, ordinal policy achieves significantly better performance
than discrete policy both in terms of asymptotic performance
and speed of convergence. Similar results are also presented
in table 2 where we show that PPO + ordinal policy achieves
comparable performance as efficient off-policy algorithms
on Humanoid tasks. We also compare these two architectures
when trained with TRPO. The comparison of the trained
policies can be found in table 1. For most tasks, we find
that ordinal policy still significantly improves upon discrete
policy.

Summarizing the results for PPO/TRPO, we conclude that
the ordinal architecture introduces useful inductive bias that
improves policy optimization. We note that sticky-breaking
parameterization (3) is not the only parameterization that
leverages natural orderings between discrete classes. We
leave as promising future work how to better exploit task

specific ordering between classes.

Sensitivity to Hyper-parameters

Here we evaluate the policy classes’ sensitivity to more gen-
eral hyper-parameters, such as learning rate α, number of bins
per dimension K and random seeds. We present the results of
PPO in Appendix C. For PPO with Gaussian, we uniformly
sample log10 α ∈ [−6.0,−3.0] and one of 5 random seeds.
For PPO with discrete actions, we further uniformly sam-
ple K ∈ {7, 11, 15}. For each benchmark task, we sample
30 hyper-parameters and show the quantile plot of the final
performance. As seen in Appendix C, PPO with discrete ac-
tions is generally more robust to such hyper-parameters than
Gaussian.

Conclusion

We have carried out a systemic evaluation of action discretiza-
tion for continuous control across baseline on-policy algo-
rithms and baseline tasks. Though the idea is straightforward,
we find that it greatly improves the performance of baseline
algorithms, especially on high-dimensional tasks with com-
plex dynamics. We also show that the ordinal architecture
which encodes the natural ordering of the discretized actions
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into the discrete distribution, can further boost the perfor-
mance of baseline algorithms. We believe that these effective
techniques can serve as convenient and practical plug-ins for
many applications of interest.
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