
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Adversarial Transformations for Semi-Supervised Learning

Teppei Suzuki, Ikuro Sato
DENSO IT LABORATORY, INC.

2-15-1 Shibuya, Shibuya-ku Tokyo, Japan
{tsuzuki, isato}@d-itlab.co.jp

Abstract

We propose a Regularization framework based on
Adversarial Transformations (RAT) for semi-supervised
learning. RAT is designed to enhance robustness of the
output distribution of class prediction for a given data against
input perturbation. RAT is an extension of Virtual Adver-
sarial Training (VAT) in such a way that RAT adversraialy
transforms data along the underlying data distribution by a
rich set of data transformation functions that leave class label
invariant, whereas VAT simply produces adversarial additive
noises. In addition, we verified that a technique of gradually
increasing of perturbation region further improves the
robustness. In experiments, we show that RAT significantly
improves classification performance on CIFAR-10 and
SVHN compared to existing regularization methods under
standard semi-supervised image classification settings.

Introduction

Semi-supervised learning (SSL) (Chapelle, Scholkopf, and
Zien 2006) is an effective learning framework on datasets
that have large amounts of the data and few labels. In a prac-
tical situations, obtained datasets are often partially labeled,
because labeling is more costly than collecting data in many
cases. Thus, a powerful SSL framework that enhances the
model performance is needed.

Among the many SSL algorithms, virtual adversarial
training (VAT) (Miyato et al. 2016; 2018) is a successful
one. It regularizes local distributional smoothness, by which
we mean the robustness of the output distribution around
each input datapoint against local perturbation, by using vir-
tual adversarial perturbation. The perturbation is calculated
as the noise, which adversarially changes the output of the
model, and VAT imposes the consistency between the out-
puts of the model for the data and the perturbed data. It indi-
cates that VAT enforces the output distribution to be robust
with respect to perturbation within the ε-ball centered on the
data, where ε denotes the norm of the perturbation vector.
The specific advantage of VAT is to leverage the adversarial
perturbation.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) input data (b) VAT with ε = 0.3

(c) VAT with ε = 0.5 (d) RAT with rotation

Figure 1: Comparison between VAT and RAT with moons
dataset. Colored regions of (b), (c), and (d) correspond to
prediction confidence. Each moon has 10 labeled data (dark
color points in (a)) and 30 unlabeled data (light color points
in (a)), and each data is randomly generated from semicir-
cles in (a) with Gaussian noise. RAT uses noise injection and
rotation along the blue and red semicircles in (a) as transfor-
mation. The setting of (b) and (d) is the same except for
using rotation in (d).

Although VAT demonstrates remarkable accuracy in stan-
dard benchmarks, VAT allows the smoothing only within the
ε-ball. This means that there is no guarantee that two data-
points are classified into the same class even if they belong to
the same class, if the distance between them is greater than
2ε (see Figure 1 (b)). However, if ε is too large, the perturbed
data may penetrate the true class boundary; inconsistency
within ε-ball may occur (see Figure 1 (c)). To summarize,
the ε-ball, that is an isotropic hypersphere in the input space,
is too universal to take the underlying data distribution into

5916

account. Our basic idea is to use some adversarial transfor-
mations under which a datapoint transforms to another point
within the underlying distribution of the same class.

We propose a regularization framework, RAT
(Regularization based on Adversarial Transformations),
which regularizes the smoothness of the output distribution
by utilizing adversarial transformations. The aim of RAT
is to make the outputs with respect to the same class data
close.

We justify RAT as the regularization for smoothing the
distribution, and provide use of composite functions and
a technique, ε-rampup, that enlarge the area in which the
smoothing is effective. To demonstrate the effectiveness of
RAT, we compare it with baseline methods in the experi-
ments following the valid setting proposed by Oliver et al.
(2018), and RAT outperforms baseline methods.

We summarize our contributions as follows:

• We propose the regularization framework based on adver-
sarial transformations, which includes VAT as a special
case. Unlike VAT, RAT can impose distributional smooth-
ness along the underlying data distribution.

• We claim that use of composite transformations, each of
which leaves class label invariant, can further improve the
smoothing effect, because it enhances the degrees of free-
dom.

• Moreover, we provide a technique to enhance the smooth-
ing effect by ramping up ε. The technique is common to
VAT and RAT, and enlarge the area in which the smooth-
ing is effective.

• RAT outperforms baseline methods in semi-supervised
image classification tasks. In particular, RAT is robust
against reduction of labeled samples, compared to other
methods.

Virtual Adversarial Training: A Review

In this section, we review virtual adversarial training
(VAT) (Miyato et al. 2016; 2018). VAT is a similar method
of the adversarial training (Goodfellow, Shlens, and Szegedy
2014), but the aim of VAT is to regularize distributional
smoothness. Miyato et al. (2016; 2018) claimed importance
of the adversarial noise and proved this by comparing it with
random perturbation training. VAT has indeed shown state-
of-the-art results in valid benchmarks (Oliver et al. 2018).

Let x ∈ R
I be a data sample where I is the dimension of

the input, and pθ(y|x) be a model distribution parameterized
by θ. The objective function of VAT in SSL scenario is:

LVAT(xl, y, xu, θ) ≡ L(xl, y, θ)− λLDS(xu, θ), (1)

where L denotes a supervised loss term. xl, y and xu are
labeled data, its labels, and unlabeled data. λ is a scaling pa-
rameter for regularization. LDS, local distributional smooth-
ness, is defined as follows:

LDS(x, θ) ≡ −ΔKL(rv-adv, x, θ), (2)

where ΔKL and rv-adv are KL divergence between output
distributions with respect to an original data and a noise-

added data, and virtual adversarial perturbation, respec-
tively. They are defined as follows:

ΔKL(r, x, θ) ≡ KL [pθ(y|x)‖pθ(y|x+ r)] , (3)
rv-adv ≡ argmax

r
{ΔKL(r, x, θ); ‖r‖2 ≤ ε}, (4)

where KL[·‖·] denotes KL divergence and ‖ · ‖2 denotes the
L2 norm. ε is a hyperparameter to control the range of the
smoothing.
rv-adv emerges as the eigenvector of Hessian matrix

H(x, θ) ≡ ∇∇rΔKL(r, x, θ)|r=0 from the following
derivation. Since ΔKL(r, x, θ) takes a minimum value 0 at
r = 0,∇rΔKL(r, x, θ)|r=0 is 0. Therefore, the second-order
Taylor approximation of ΔKL(r, x, θ) around r = 0 is:

ΔKL(r, x, θ) ≈ 1

2
r�H(x, θ)r. (5)

We can describe (4) using (5) as follows:

rv-adv ≈ argmax
r
{r�H(x, θ)r; ‖r‖2 ≤ ε}. (6)

By this approximation, rv-adv is parallel to the eigenvector
corresponding to the largest eigenvalue of H(x, θ). Note that
VAT assumes that pθ(y|x) is differentiable with respect to
θ and x almost everywhere, and we also assume it in this
paper.

Regularization Based on Adversarial

Transformations

We propose the regularization framework, RAT, which im-
poses the consistency between output distributions with re-
spect to datapoints belonging to the same class. Leveraging
the power of adversariality, we introduce adversarial trans-
formations that replace additive adversarial noises rv-adv in
VAT.

To consider imposing the consistency, we assume that
each datapoint belonging to k-th class is in a class-specific
subspace Sk. We consider the generic transformation param-
eterized by φ: for any k, fφ : Sk → Sk such that ‖φ‖ ≤ ε,
where ‖ · ‖ denotes valid norm with respect to fφ such as
L1, L2, or operator norm. Our strategy is to regularize the
output distribution by utilizing fφ instead of rv-adv. Note
that we mainly consider the image classification tasks in this
work. Therefore, we deal with the transformation such as the
spatial transformation or the color distortion.

We define local distributional smoothness utilizing a
transformation as follows:

LDST (x, θ) ≡ −Δ̃KL(fφT-adv
, x, θ), (7)

where Δ̃KL and φT-adv are defined as follows:

Δ̃KL(fφ, x, θ) ≡ KL [pθ(y|x)‖pθ(y|fφ(x))] , (8)

φT-adv ≡ argmax
φ
{Δ̃KL(fφ, x, θ); ‖φ‖ ≤ ε}. (9)

We refer to fφT-adv
as an adversarial transformation in this

paper. There are some adversarial attacks utilizing functions
instead of additive noises (Alaifari, Alberti, and Gauksson

5917

2018; Tsuzuku and Sato 2019), and the relation between ad-
versarial transformation and these attacks is similar to the
relation between virtual adversarial perturbation and adver-
sarial perturbation (Goodfellow, Shlens, and Szegedy 2014).

We utilize LDST for imposing the consistency. Thus, the
objective function of RAT for SSL scenario is represented as
follows:

LRAT(xl, y, xu, θ) ≡ L(xl, y, θ)− λLDST (xu, θ). (10)

We can identify VAT as the special case of RAT; when
fφ(x) = x + φ and ‖ · ‖ is the L2 norm, RAT is equal to
VAT.

To compute LDST , we have to solve the maximization
problem (9). However, it is difficult to exactly solve it.
Therefore, we consider approximating it by using Taylor ap-
proximation.

To efficiently approximate and solve (9), fφ needs to sat-
isfy the following two conditions:

C1. fφ is differentiable with respect to φ almost everywhere.

C2. There is a parameter φid that makes fφ identity transfor-
mation, fφid

(x) = x.

If fφ satisfies these conditions, Δ̃KL(fφ, x, θ) takes a mini-
mum value at φ = φid and (8) is written in the same form as
(5) by the second-order Taylor approximation around φid as
Δ̃KL(fφ, x, θ) ≈ 1

2φ
�H(fφ, x, θ)φ, where H(fφ, x, θ) ≡

∇∇φΔ̃KL(fφ, x, θ)|φ=φid
. Thus, (9) is approximated as fol-

lows:

φT-adv ≈ argmax
φ
{φ�H(fφ, x, θ)φ; ‖φ‖ ≤ ε}. (11)

φT -adv is also parallel to the eigenvector corresponding to
the largest eigenvalue of H(fφ, x, θ).
fφ allows any transformations satisfying fφ : Sk → Sk,

and the conditions C1 and C2. In this paper, we use hand
crafted transformations depending on input data domain
such as image coordinate shift, image resizeing, or global
color change, to name a few for the case of an image classi-
fication task. In a next section, we propose use of composite
transformations as fφ to further enhance the effect of the
smoothing.

Use of Composite Transformations

Let F be a set of functions, {fφ : Sk → Sk; ‖φ‖ ≤ ε}, sat-
isfying the conditions C1 and C2. F may contain composite
functions of the form f̃φ̃ = f

(1)

φ(1) ◦ f (2)

φ(2) · · · ◦ f (n)

φ(n) , where

f
(i)

φ(i) ∈ F ; ‖φ(i)‖ ≤ ε(i) and φ̃ ≡ {φ(i)}ni=1. It is obvious

that these composite functions f̃φ̃ : Sk → Sk(∀k) satisfy
the conditions C1 and C2.

By having such composite functions, one can obtain a
much richer set of transformations that still yield class-
invariant transformations, as given by the relation, f̃φ̃ =

f
(j)

φ(j) when f
(i)

φ(i) = f
(i)
id for all i except for j. It is reason-

able for RAT to utilize the composite functions, because the
composite functions leads to the richer transformation and
imposing the consistency over a wider range.

Fast Approximation of fφT-adv

Although φT -adv emerges as the eigenvector correspond-
ing to the largest eigenvalue of Hessian matrix H̃ =
∇∇φ̃Δ̃KL(f̃φ̃, x, θ)|φ̃=φ̃id

as already described, the compu-
tational costs of the eigenvector are O(n3). There is a way
to approximate the eigenvector with small computational
costs (Golub and Van der Vorst 2001; Miyato et al. 2016;
2018).

We approximate the parameters φ̃ with the power iter-
ation and the finite difference method, just as VAT does.
For each transformation f (i) ∈ F , we sample random unit
vectors ṽ ≡ {v(i)}ni=1 as initial parameters and calculate
ṽ ← H̃ṽ iteratively. It makes ṽ converge to the eigenvector
corresponding to the largest eigenvalue of H̃ .

The Hessian-vector product is calculated with the finite
difference method as follows:

H̃ṽ ≈
∇φ̃Δ̃KL(f̃φ̃, x, θ)|φ̃=φ̃id+ξṽ −∇φ̃Δ̃KL(f̃φ̃, x, θ)|φ̃=φ̃id

ξ
,

=
∇φ̃Δ̃KL(f̃φ̃, x, θ)|φ̃=φ̃id+ξṽ

ξ
, (12)

with ξ �= 0. We used the fact that∇φ̃Δ̃KL(f̃φ̃, x, θ)|φ̃=φ̃id
=

0. We approximate φT -adv by normalizing the norm of the
approximated eigenvector as described in the next section.
Note that we calculate just one iteration for power iteration
in this paper, because it is reported in (Miyato et al. 2016;
2018) that one iteration is sufficient for computing accurate
H̃ṽ and increasing the iteration does not have an effects.

ε-Rampup

Although φT -adv should satisfy ‖φ‖ ≤ ε, φT -adv is actu-
ally given as the parameter satisfying ‖φ‖ = ε when solving
(11), because the Hessian of KL divergence is semi-positive
definite.

In the case of VAT, the smoothing with ‖r‖2 = ε means
that the model should satisfy consistency between the out-
puts with respect to the original data and the data on the
surface of the ε-ball centered on the original data.

We propose a technique, ε-rampup, that enhances the
effect of the smoothing not only on the boundary but
also inside the boundary with small computational costs.
The technique is to ramp up ε from 0 to a pre-
defined value during training, and the parameters of
the adversarial transformation are determined by solving
argmaxφ{Δ̃KL(fφ, x, θ); ‖φ‖ = ε}. One can approxi-
mately solve this by normalizing the approximated eigen-
vector to satisfy ‖φ‖ = ε after the power iteration.

Although there are many techniques to ramp up or an-
neal parameters (Tarvainen and Valpola 2017; Smith 2017),
we adopt the procedure used in Mean Teacher (Tarvainen
and Valpola 2017). Mean Teacher utilizes a sigmoid shape
function, exp(−5(1 − x)2); x = [0, 1], for ramping up the
regularization coefficient, and we adopt it for ε.

We show the pseudocode of the generation process of
φT -adv in Algorithm 1.

5918

Algorithm 1 Generation of φT -adv

1: Input: Data x ∈ X ; transformation functions
{f (i)}ni=1 ∈ F ; scalar parameters {ε(i)}ni=1 and ξ

2: Output: function parameters {φ(i)
T -adv}ni=1

3: Make copy of data x̂← x
4: for i = 1, . . . , n do
5: initialize v(i) as a random unit vector
6: φ(i) = φ

(i)
id + ξv(i)

7: x̂← f
(i)

φ(i)(x̂)

8: end for
9: for i = 1, . . . , n do

10: v(i) ← ∇v(i)KL[pθ(y|x)‖pθ(y|x̂)]
11: ε(i) ← Rampup(ε(i))
12: Normalize v(i) to satisfy ‖φ(i)‖ = ε(i)

13: φ
(i)
T -adv = φ

(i)
id + v(i)

14: end for

Evaluation on Synthetic Dataset

We show the smoothing effect of RAT with a toy prob-
lem, a moons dataset, in Figure 1. We make 10 labeled
samples and 30 labeled samples for each moon. pθ(y|x)
consists of a three-layer neural network with ReLU non-
linearity. All hiden layers have 128 units. θ is optimized with
Adam optimizer for 500 iterations with default parameters
suggested in (Kingma and Ba 2014). In each iteration, we
use all samples for updating θ. We treat this toy problem
as if we already know appropriate class-invariant transfor-
mations; we adopt class-wise rotation along each moon as
f̃φ̃(x) = R(x, φ(1)) + φ(2); ‖φ(2)‖2 ≤ 0.3, |φ(1)| ≤ 10◦ for
illustraintion purpose. Note that we do not ramp up ε in this
experiment.

VAT with a small ε draws the decision boundary cross-
ing Sk as shown in Figure 1 (b). When we adopt a lager ε,
VAT cannot smooth the output distribution within the ε-ball
as shown in Figure 1 (c), because the larger ε allows the un-
expected transformation f : Sk → Sk′ , and causes inconsis-
tency. On the other hand, RAT draws the decision boundary
along Sk.

In this toy problem, we utilize Sk and it is equal to using
the label information implicitly. Therefore, in a next section,
we evaluate RAT using realistic situations, where we do not
know Sk.

Experiments

We evaluate the effectiveness of RAT and ε-rampup through
three experiments on a semi-supervised image classifica-
tion task: (i) evaluation of composite transformations, (ii)
evaluation of ε-rampup for VAT and RAT, and (iii) com-
parison of RAT to baseline methods. As the baseline meth-
ods, we use Π-Model (Sajjadi, Javanmardi, and Tasdizen
2016; Laine and Aila 2017), Pseudo-label (Lee 2013), Mean
Teacher (Tarvainen and Valpola 2017), and VAT (Miyato et
al. 2018). Note that VAT utilizes entropy regularization in
all experiments. To evaluate on realistic situations, we fol-
low the setting proposed by Oliver et al. (2018). We use Py-

Torch (Paszke et al. 2017) to implement and evaluate SSL al-
gorithms, and we carefully reproduced the results of Oliver
et al. (2018). All hyperparameters for SSL algorithms are
adopted the same as in Oliver et al. (2018) except that we do
not use L1 and L2 regularization.

For all experiments, we used the same Wide ResNet archi-
tecture, depth 28 and width 2 (Zagoruyko and Komodakis
2016), and we use the CIFAR-10 (Krizhevsky and Hinton
2009) and SVHN (Netzer et al. 2011) datasets for evaluation.
CIFAR-10 has 50,000 training data and 10,000 test data, and
we split training data into a train/validation set, 45,000 data
for training and 5,000 data for validation. SVHN has 73,257
data for training and 26,032 data for testing. We also split
training data into 65,931 data for training and 7,326 data for
validation. For the semi-supervised setting, we further split
training data into labeled data and unlabeled data.

We utilize standard preprocessing and data augmentations
for training, following Oliver et al. (2018). For SVHN, we
normalize the pixel value into the range [−1, 1], and use ran-
dom translation by up to 2 pixels as data augmentation. For
CIFAR-10, we apply ZCA normalization (Krizhevsky and
Hinton 2009) and global contrast normalization as normal-
ization, and random horizontal flipping, random translation
by up to 2 pixels, and Gaussian noise injection with standard
deviation 0.15 as data augmentation.

We report the mean and standard deviation of error rates
over five trials with test sets. The test error rates are eval-
uated with the model that has the minimum error rate on
validation sets. The evaluation on validation set is executed
every 25,000 training iterations.

Implementation Details of RAT

We tested three types of data transformations, all of which
are commonly used in data augmentation in image classifi-
cation tasks. All transformations fφ discussed below satisfy
the conditions C1 and C2. We evaluated different types of
composite transformations as is discussed below.

Noise Injection The noise injection is represented as
fφ(x) = x + φ. We define the norm for the parameters of
the noise injection as the L2 norm, ‖φ‖2. This is equal to the
formulation of VAT.

Spatial Transformation We consider three spatial trans-
formations with different degrees of freedom: affine trans-
formation, thin plate spline (Bookstein 1989), and flow field.
All these transformations shift the pixel position (u, v) by
offset vector (δu, δv) to give (u + δu, v + δv). The pixel
values of the transformed image are calculated by bilinear
interpolation. The details of these transformations are pro-
vided in (Jaderberg et al. 2015).

The difference between transformations is the degrees of
freedom to calculate the offset vectors as follows: affine
transformation has six parameters, thin plate spline has pa-
rameters proportional to the number of control points m, and
the flow field directly has the local offset vectors as parame-
ters, meaning that the number of parameters of the flow field
is proportional to the spatial resolution of the image. We set
m to 16 in all experiments, which means we employ a 4× 4
grid.

5919

Table 1: The parameters ε for transformations.

Transformations ε
Channel-wise weighting 0.001

Affine transformation 0.6
Thin plate spline 1

Flow field 0.01

Table 2: VAT and RAT shared parameters. ε is required 6.0
for CIFAR-10 and 1.0 for SVHN.

Parameters values
Initial learning rate 0.003

Max consistency coefficient λ 0.3
noise injection ε 6.0 or 1.0

ξ 10−6

Entropy penalty multiplier 0.06

We define the norm for the parameters of the flow field

transformations as the L2 norm,
√∑N

i (δu2
i + δv2i), where

N is the number of pixels. The norm for thin plate spline is
also defined as the L2 norm of offset vectors for the control
points.

Affine transformation is a linear operator in homogeneous
coordinates, and the norm is given as the operator norm.
Thus, ‖φ‖ is calculated as the maximum singular value of
an affine transformation matrix.

Color Distortion Color distortion is an effective augmen-
tation method for image classification tasks. Among many
methods for color distortion, we use a simple way, channel-
wise weighting, fφ(xc) = φcxc,i, where xc,i is the pixel
value of the c-th channel of the i-th pixel, and φc is the scalar
value for each channel. This transformation is described as
the linear operator, and we define the norm as the opera-
tor norm. Note that channel-wise weighting is represented
as the multiplication of a diagonal matrix and a pixel value,
and the operator norm is calculated as maxc |φc|.
Evaluation of Composite Transformations

Since the performance of RAT depends on the combination
of the transformations, we report the effect of a combination
of functions by adding transformations to VAT.

We first seek good ε for each transformation with a grid
search on CIFAR-10 with 4,000 labeled data, from 0.001 to
0.01 with 0.001 step size for channel-wise weighting, from
0.1 to 1 with a 0.1 step size for affine transformation and thin
plate spline, and from 0.01 to 0.1 with a 0.01 step size for
flow field. We show the grid search results in Table 1. Other
parameters such as ξ, λ, and parameters for optimization are
the same as VAT suggested in (Oliver et al. 2018). We sum-
marize the parameters in Table 2. Note that ε-rampup is not
utilized in this experiment, because this experiment explores
the effect of composite transformations.

The results of adopting various transformations with
CIFAR-10 with 4,000 labeled data and SVHN with 1,000
labeled data are shown in Table 3. All transformations
and combinations improve the performance from supervised

learning. However, channel-wise weighting and flow field
increase the test error rates from VAT in CIFAR-10. For
CIFAR-10, since we apply the ZCA normalization and the
global contrast normalization, channel-wise weighting for
the space of normalized data is an unnatural transformation
for natural images. On the other hand, flow field is the trans-
formation that can break object structure. Unlike a simple
structure like the data in SVHN, the detail structure is the
important feature for general objects. Thus, flow field in-
duces the unfavorable effect.

Affine transformation achieves the best performance of
all spatial transformations, and the results are induced by
the low degree of freedom of the affine transformation.
The affine transformation has the lowest degree of freedom
among the three. In particular, the affine transformation pre-
serves points, straight lines and planes. In other words, the
affine transformation preserves the basic structure of the ob-
jects. Therefore, except for extreme cases, the affine trans-
formation ensures that the class of transformed data is the
same as the class of original data. This fact matches the strat-
egy of RAT, which is that the output distribution of the data
belonging to the same class should be close.

The effect of combining channel-wise weighting and each
spatial transformation is less effective. This fact means that
combining channel-wise weighting does not expand the
smoothing effect to a meaningful range. Indeed, the dif-
ference of combining channel-wise weighting is within the
standard deviation.

Evaluation of ε-Rampup

We evaluate the effectiveness of ε-rampup with CIFAR-10
with 4,000 labeled data. Since ε-rampup is the technique
for VAT and RAT, we compare the results with and with-
out ramping up for VAT and RAT. We ramp up ε for 400,000
iterations. We utilize the composite transformations consist-
ing of affine transformation and noise injection for RAT, and
the hyperparameters are as in Table 2.

The results are shown in Table 4. For both VAT and RAT,
ε-rampup brings a positive effect. As interesting effects, ε-
rampup allows for a large ε. Since the smoothing effect
reaches within the range of ‖φ‖ ≤ ε by ramping up, VAT
and RAT with ramping up work well with a relatively large
ε.

Comparison of RAT to Baselines

We show the effectiveness of RAT by comparing it with
baseline methods and non-adversarial version of RAT (Ran-
dom Transformation). We use the composite transformations
consisting of affine transformation and noise injection for
RAT. The hyperparameters of RAT and ε for transformations
are the same as shown in Tables 1 and 2, respectively, ex-
cept that we set ε for affine transformation to 1 for RAT with
ramping up with CIFAR-10, and set ε for noise injection to
5 for RAT and VAT with ε-rampup with SVHN. Note that all
the parameters of the random transformation are the same as
RAT.

In Table 5, we show the comparison results with standard
SSL settings, CIFAR-10 with 4,000 labeled data and SVHN
with 1,000 labeled data. On both datasets, RAT improves

5920

Table 3: Test error rates of RAT with various transformations on CIFAR-10 with 4,000 labeled data and SVHN with 1,000
labeled data. All settings of RAT include noise injection as transformation, and all of the hyperparameters and experiment
settings of VAT and RAT are the same, except for the inherent parameters of RAT.

Methods Channel-wise Affine Thin Plate Spline Flow Field CIFAR-10 SVHN
Supervised 20.35±0.14% 12.33±0.25%
VAT 13.68±0.25% 5.32±0.25%
RAT � 14.33±0.44% 5.19±0.29%

� 11.70±0.32% 3.10±0.12%
� 13.06±0.44% 4.12±0.11%

� 14.27±0.41% 4.93±0.35%
� � 11.32±0.44% 3.14±0.12%
� � 13.46±0.37% 4.06±0.16%
� � 14.17±0.27% 4.85±0.12%

(a) SVHN (b) CIFAR-10

Figure 2: Test error rates obtained by varying the number of labeled data. Shaded regions indicate standard deviation over five
trials.

Table 4: Comparison between with and without ε-rampup on
CIFAR-10 with 4,000 labeled data. RAT has two ε, one for
the noise injection and one for the affine transformation.

Methods maximum ε CIFAR-10
VAT 6 13.68±0.25%
VAT 10 14.31±0.33%
VAT w/ ε-rampup 10 13.26±0.20%

RAT (6, 0.6) 11.70±0.32%
RAT (6, 1) 12.68±0.29%
RAT w/ ε-rampup (6, 1) 11.26±0.34%

test error rates more than 2% from the best baseline method,
VAT. Futhermore, RAT also improves the error rates from
the random transformation. The results prove the importance
of the adversariality.

We evaluate the test error rates of each method with a
varying number of labeled data from 250 to 8,000. The
results are shown in Figure 2. RAT consistently outper-
forms other methods for all the range on both datasets.
Remarkably, RAT significantly improves the test error rate
in CIFAR-10 with 250 labeled data compared with the
best result of baseline methods, from 50.20±1.88% to
36.31±2.03%. We believe that the improvement results from

Table 5: Test error rates of RAT and baseline methods on
CIFAR-10 with 4,000 labeled data and SVHN with 1,000
labeled data.

CIFAR-10 SVHN
Methods 4,000 Labels 1,000 Labels
Supervised 20.35±0.14% 12.33±0.25%
Π-Model 16.24±0.38% 7.81±0.39%
Pseudo-Label 14.78±0.26% 7.26±0.27%
Mean Teacher 15.77±0.22% 6.48±0.44%
VAT 13.68±0.25% 5.32±0.25%
VAT w/ ε-rampup 13.26±0.20% 5.17±0.26%

Random Transformation 12.71±0.82% 6.06±0.50%
RAT 11.70±0.32% 3.10±0.12%
RAT w/ ε-rampup 11.26±0.34% 2.86±0.07%

appropriately smoothed model prediction along the under-
lying data distribution. The experimental fact of VAT’s un-
derperformance, namely 15% degraded CIFAR-10 test error
rate compared to RAT, is a clear indication that adversar-
ial, class-invariant transformation provides far better consis-
tency regularization than isotropic, adversarial noise super-
position.

Lastly, we compare our results with very recently reported
results of Mixup-based SSL method, MixMatch (Berthelot

5921

et al. 2019). Interestingly, RAT is comparative or superior to
MixMatch on SVHN, while MixMatch is superior to RAT
on CIFAR-10. But, we should point out that this comparison
does not seem fair because the experimental settings of Mix-
Match are different in several respects from ours and others
shown in Figure 2. In MixMatch paper, the authors took ex-
ponential moving average of models, and the final results
were given by the median of the last 20 test error rates mea-
sured every 216 training iterations. These settings, that are
missing in our experiments, seem to partly boost their per-
formance. Readers are referred to Appendix for the detailed
comparison with MixMatch.

Related Work

There are many SSL algorithms such as graph-based
methods (Kipf and Welling 2017; Bengio, Delalleau, and
Le Roux 2006), generative model-based methods (Kingma
et al. 2014; Kumar, Sattigeri, and Fletcher 2017), and
regularization-based methods (Miyato et al. 2016; Sajjadi,
Javanmardi, and Tasdizen 2016; Laine and Aila 2017; Tar-
vainen and Valpola 2017; Berthelot et al. 2019).

Label propagation (Bengio, Delalleau, and Le Roux 2006)
is a representative graph-based SSL method. Modern graph-
based approaches utilize neural networks for graphs (Kipf
and Welling 2017). Graph-based methods demonstrate the
effectiveness, when elaborated graph structure is given.

Generative models such as VAE and GAN are now pop-
ular frameworks for the SSL setting (Kingma et al. 2014;
Kumar, Sattigeri, and Fletcher 2017). Although generative
model-based SSL methods typically have to train additional
models, they tend to show remarkable gain in test perfor-
mance.

Regularization-based methods are comparatively much
more tractable, and can be utilized in arbitrary models. Next,
we review three regularization-based methods closely re-
lated to RAT.

Consistency Regularization

Consistency regularization is a method imposing the consis-
tency between the outputs of one model with respect to a
typically unlabeled data and its perturbed counterpart, or the
outputs of two models with respect to the same input. One
of the simplest ways of constructing consistency regulariza-
tion is to add stochastic perturbation to the data, x → x̂, as
follows:

min
θ

d(pθ(y|x), pθ(y|x̂)) (13)

where d is some distance functions; e.g., Euclidean distance
or KL divergence. VAT (Miyato et al. 2016; 2018) and RAT
are classified in this category.

The random transformation-based consistency regulariza-
tion techniques, the work (Sajjadi, Javanmardi, and Tasdizen
2016) and “Π-Model” (Laine and Aila 2017) are vary simi-
lar and famous ones. We refer to these models as Π-Model
in this paper. One can view Π-Model as non-adversarial ver-
sion of RAT.

The other way of constructing consistency regularization
is to utilize dropout (Srivastava et al. 2014). Let θ1 and θ2 be

the randomly selected parameters through dropout. Dropout
as consistency regularization is represented as follows:

min
θ1,θ2∼θ

d(pθ1(y|x), pθ2(y|x)). (14)

Mean Teacher (Tarvainen and Valpola 2017) is a success-
ful method that employs consistency regularization between
two models. It makes a teacher model by exponential mov-
ing average of the parameters of a student model, and im-
poses the consistency between the teacher and the student.
Although Mean Teacher can be combined with other SSL
methods, the combination sometimes impairs the model per-
formance as reported in (Berthelot et al. 2019).

VAT (Miyato et al. 2016; 2018) is a very effective con-
sistency regularization method. The advantage of VAT lies
in the generation of adversarial noises, and the adversarial-
ity leads to isotropic smoothness around sampled datapoints.
VAT also show the effectiveness in natural language process-
ing tasks (Miyato, Dai, and Goodfellow 2016).

Entropy Regularization

Entropy regularization is a way to bring low entropy on
pθ(y|x) to make model prediction more discriminative, and
is known to give low-density separation (Grandvalet and
Bengio 2005; Chapelle, Scholkopf, and Zien 2006). The en-
tropy regularization term is:

min
θ
−pθ(y|x) log pθ(y|x). (15)

This regularization is often combined with other SSL algo-
rithms (Sajjadi, Javanmardi, and Tasdizen 2016; Miyato et
al. 2018) and a combined method, VAT+entropy regulariza-
tion, shows the state-of-the-art results in (Oliver et al. 2018).

Mixup

Mixup (Zhang et al. 2018) is a powerful regularization
method that is very recently used for SSL (Verma et al.
2019a; Berthelot et al. 2019; Verma et al. 2019b). Mixup
blends two different data, x1 and x2, and their labels, y1 and
y2, as follows:

x̂ = βx1 + (1− β)x2, ŷ = βy1 + (1− β)y2, (16)

where β is the scalar value sampled from Beta distribution.
In a semi-supervised setting, ŷ is calculated as a blend be-
tween a label and a prediction or predictions, βy1 + (1 −
β)pθ(y|x2) or βpθ(y|x1) + (1 − β)pθ(y|x2), and a reg-
ularization term is described as consistency regularization,
minθ d(ŷ, pθ(y|x̂)).

Conclusion

We proposed an SSL framework, called RAT, Regulariza-
tion framework based on Adversarial Transformation. RAT
aims to smooth model output along the underlying data dis-
tribution within a given class based on recent advancement
of generation of adversarial inputs that stem from unlabeled
data. Instead of just superposing adversarial noise, RAT uses
a wider range of data transformations, each of which leaves
class label invariant. We further propose use of composite

5922

transformations and a technique, called ε-rampup, to en-
large the area in which the smoothing is effective without
sacrificing computational cost. We experimentally show that
RAT significantly outperform the baseline methods includ-
ing VAT in semi-supervised image classification tasks. RAT
is especially robust against reduction of labeled samples,
compared to other methods. As a future work, we would like
to replace the designing of composite functions by black box
function optimization.

References

Alaifari, R.; Alberti, G. S.; and Gauksson, T. 2018. Adef: An itera-
tive algorithm to construct adversarial deformations. International
Conference on Learning Representations.
Bengio, Y.; Delalleau, O.; and Le Roux, N. 2006. Label Propaga-
tion and Quadratic Criterion, chapter 11. MIT Press.
Berthelot, D.; Carlini, N.; Goodfellow, I.; Papernot, N.; Oliver, A.;
and Raffel, C. 2019. Mixmatch: A holistic approach to semi-
supervised learning. arXiv preprint arXiv:1905.02249.
Bookstein, F. L. 1989. Principal warps: Thin-plate splines and
the decomposition of deformations. IEEE Transactions on pattern
analysis and machine intelligence 11(6):567–585.
Chapelle, O.; Scholkopf, B.; and Zien, A. 2006. Semi-supervised
learning. MIT Press.
Golub, G. H., and Van der Vorst, H. A. 2001. Eigenvalue compu-
tation in the 20th century. In Numerical analysis: historical devel-
opments in the 20th century. Elsevier. 209–239.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explaining
and harnessing adversarial examples. International Conference on
Learning Representations.
Grandvalet, Y., and Bengio, Y. 2005. Semi-supervised learning by
entropy minimization. In Advances in neural information process-
ing systems, 529–536.
Jaderberg, M.; Simonyan, K.; Zisserman, A.; and Kavukcuoglu,
K. 2015. Spatial transformer networks. In Advances in neural
information processing systems, 2017–2025.
Kingma, D. P., and Ba, J. 2014. Adam: A method for stochastic
optimization. International Conference on Learning Representa-
tions.
Kingma, D. P.; Mohamed, S.; Rezende, D. J.; and Welling, M.
2014. Semi-supervised learning with deep generative models. In
Advances in neural information processing systems, 3581–3589.
Kipf, T. N., and Welling, M. 2017. Semi-supervised classification
with graph convolutional networks. International Conference on
Learning Representations.
Krizhevsky, A., and Hinton, G. 2009. Learning multiple layers of
features from tiny images. Technical report, Citeseer.
Kumar, A.; Sattigeri, P.; and Fletcher, T. 2017. Semi-supervised
learning with gans: Manifold invariance with improved inference.
In Advances in Neural Information Processing Systems, 5534–
5544.
Laine, S., and Aila, T. 2017. Temporal ensembling for semi-
supervised learning. International Conference on Learning Rep-
resentations.
Lee, D.-H. 2013. Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks. In ICML
Workshop on Challenges in Representation Learning, volume 3,
2.

Miyato, T.; Maeda, S.-i.; Koyama, M.; Nakae, K.; and Ishii, S.
2016. Distributional smoothing with virtual adversarial training.
International Conference on Learning Representations.
Miyato, T.; Maeda, S.-i.; Koyama, M.; and Ishii, S. 2018. Vir-
tual adversarial training: a regularization method for supervised
and semi-supervised learning. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 41(8):1979–1993.
Miyato, T.; Dai, A. M.; and Goodfellow, I. 2016. Adversarial train-
ing methods for semi-supervised text classification. arXiv preprint
arXiv:1605.07725.
Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; and Ng,
A. Y. 2011. Reading digits in natural images with unsupervised
feature learning. In NIPS Workshop on Deep Learning and Unsu-
pervised Feature Learning.
Oliver, A.; Odena, A.; Raffel, C. A.; Cubuk, E. D.; and Goodfellow,
I. 2018. Realistic evaluation of deep semi-supervised learning al-
gorithms. In Advances in Neural Information Processing Systems,
3235–3246.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito,
Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer, A. 2017. Auto-
matic differentiation in PyTorch. In NIPS Autodiff Workshop.
Sajjadi, M.; Javanmardi, M.; and Tasdizen, T. 2016. Regularization
with stochastic transformations and perturbations for deep semi-
supervised learning. In Advances in Neural Information Processing
Systems, 1163–1171.
Smith, L. N. 2017. Cyclical learning rates for training neural net-
works. In 2017 IEEE Winter Conference on Applications of Com-
puter Vision (WACV), 464–472. IEEE.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: a simple way to prevent neu-
ral networks from overfitting. The journal of machine learning
research 15(1):1929–1958.
Tarvainen, A., and Valpola, H. 2017. Mean teachers are better
role models: Weight-averaged consistency targets improve semi-
supervised deep learning results. In Advances in Neural Informa-
tion Processing Systems, 1195–1204.
Tsuzuku, Y., and Sato, I. 2019. On the structural sensitivity of deep
convolutional networks to the directions of fourier basis functions.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 51–60.
Verma, V.; Lamb, A.; Beckham, C.; Najafi, A.; Mitliagkas, I.;
Lopez-Paz, D.; and Bengio, Y. 2019a. Manifold mixup: Better rep-
resentations by interpolating hidden states. In Proceedings of the
36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, 6438–6447. PMLR.
Verma, V.; Lamb, A.; Kannala, J.; Bengio, Y.; and Lopez-Paz,
D. 2019b. Interpolation consistency training for semi-supervised
learning. arXiv preprint arXiv:1903.03825.
Zagoruyko, S., and Komodakis, N. 2016. Wide residual networks.
In The British Machine Vision Conference.
Zhang, H.; Cisse, M.; Dauphin, Y. N.; and Lopez-Paz, D. 2018.
mixup: Beyond empirical risk minimization. International Confer-
ence on Learning Representations.

5923

