
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Stealthy and Efficient Adversarial Attacks against Deep Reinforcement Learning

Jianwen Sun,1 Tianwei Zhang,1 Xiaofei Xie,1,∗ Lei Ma,2 Yan Zheng,1,* Kangjie Chen,1 Yang Liu1

1Nanyang Technological University, Singapore
2Kyushu University, Japan

{kevensun, tianwei.zhang, xfxie, yan.zheng, kangjie.chen,yangliu}@ntu.edu.sg
malei@ait.kyushu-u.ac.jp

Abstract

Adversarial attacks against conventional Deep Learning (DL)
systems and algorithms have been widely studied, and various
defenses were proposed. However, the possibility and feasi-
bility of such attacks against Deep Reinforcement Learning
(DRL) are less explored. As DRL has achieved great success
in various complex tasks, designing effective adversarial at-
tacks is an indispensable prerequisite towards building robust
DRL algorithms. In this paper, we introduce two novel adver-
sarial attack techniques to stealthily and efficiently attack the
DRL agents. These two techniques enable an adversary to in-
ject adversarial samples in a minimal set of critical moments
while causing the most severe damage to the agent. The first
technique is the critical point attack: the adversary builds a
model to predict the future environmental states and agent’s
actions, assesses the damage of each possible attack strategy,
and selects the optimal one. The second technique is the an-
tagonist attack: the adversary automatically learns a domain-
agnostic model to discover the critical moments of attacking
the agent in an episode. Experimental results demonstrate the
effectiveness of our techniques. Specifically, to successfully
attack the DRL agent, our critical point technique only re-
quires 1 (TORCS) or 2 (Atari Pong and Breakout) steps, and
the antagonist technique needs fewer than 5 steps (4 Mujoco
tasks), which are significant improvements over state-of-the-
art methods.

Introduction

Past years have witnessed the rapid development of Deep
Reinforcement Learning (DRL) technology. The essential
component of a DRL system is the policy, which instructs
the agent to perform the optimal action responding to the
environment state. Advanced algorithms were proposed to
train these policies, making them achieve significant perfor-
mance on various artificial intellectual tasks, e.g., Go (Sil-
ver et al. 2016), robotics (Levine et al. 2016), autonomous
driving (Sallab et al. 2017), multiagent system (Zheng et al.
2018b; 2018a), video game playing (Mnih et al. 2015), test-
ing (Zheng et al. 2019b) and designing (Zheng et al. 2019a).
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A DRL policy usually adopts a Deep Neural Network
(DNN) to approximate the action-value function. How-
ever, DNNs are well known to be vulnerable to adversar-
ial attacks (Szegedy et al. 2014; Goodfellow, Shlens, and
Szegedy 2015). An adversary can add small but carefully
crafted perturbations in an input, which can mislead the
DNN to give an incorrect output with very high confidence.
Extensive work have been done towards attacking super-
vised DNN applications across various domains such as im-
age classification (Goodfellow, Shlens, and Szegedy 2015;
Szegedy et al. 2015; Carlini and Wagner 2017), audio recog-
nization (Alzantot, Balaji, and Srivastava 2018; Carlini and
Wagner 2018), and natural language processing (Alzantot
et al. 2018). To date, little attention has been paid to adver-
sarial attacks against DNN-based policies in DRL. As DRL
is widely applied in many decision-making tasks, which re-
quire high safety and security guarantee, it is of importance
to understand the possibility and cost of adversarial attacks
against DRL policies, which can help us design more robust
and secure algorithms and systems.

There are two challenges to attack a DRL system due to
its unique features. First, for a supervised DNN model, the
task is to produce an output given an input. Then the ad-
versary’s goal is to make the model predict the wrong out-
put. In contrast, the task of a DRL is more complicated and
application-specific: a self-driving car needs to reach the
destination safely in the shortest time; a video game player
needs to win the game with more points. Completion of a
DRL task requires a sequence of action predictions, which
are highly correlated. So the adversary needs to compromise
the agent’s end goal, instead of simply misleading some pre-
dictions in a task. Second, one major requirement for adver-
sarial attacks is stealthiness. For the supervised DNN case,
the adversary needs to add human imperceptible perturba-
tions to the input. For the DRL case, in addition to injecting
small perturbations in one input, the adversary is also re-
quired to interfere with a very small number of steps to cause
the damage. Otherwise, crafted inputs in too many steps can
be easily detected and corrected by the agent. In sum, to con-
duct a successful attack against DRL, the adversary needs
to add smallest perturbations to the environment states in a
minimal number of steps to incur maximum damage to the
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agent’s end goal.
Some attempts were made to design adversarial attacks

against DRL. In (Huang et al. 2017), the conventional ex-
ample crafting technique (Goodfellow, Shlens, and Szegedy
2015) was evaluated on different policy networks under both
blackbox and whitebox settings. However, it only consid-
ered the misprediction in each step, instead of the agent’s
end goal. Besides, it required the adversary to attack the
agent at every time step, which is less efficient and stealthy.
Two more sophisticated approaches were proposed in (Lin
et al. 2017). The first one is the strategically-timed attack:
the adversary dynamically decided whether the perturbation
should be injected at each time step using a threshold-based
judgment. However, this technique only considered the at-
tack effect on one step, while ignoring the impact on the
following states and actions. Thus the final end goal was
not considered. Besides, the adversary could not control the
number of steps being attacked. Evaluations showed that it
needed 25% of the total steps in an episode to conduct an
attack, which is still too heavy. The second technique is the
enchanting attack: the adversary planned a sequence of ac-
tions for the agent to reach a damaged state. Then it crafted
a series of adversarial examples that could lead the agent to
perform the planned actions. This approach considered the
end goal and global optimization of attack steps. However,
accurate prediction and enforcement of future states and ac-
tions are hard to achieve, especially for a long time range.
Thus, this approach suffers from a low attack success rate.

In this paper, we propose two novel techniques to attack
a DRL agent efficiently and stealthily. The first technique
is Critical Point Attack. The adversary builds a domain-
specific model to predict the states of the next few steps,
as well as the damage consequences of all possible attack
strategies. He adopts a Damage Awareness Metric with the
criteria of the agent’s end goal to assess each attack strategy
which guarantees that the adversary can select the optimal
solution with a very small number of attack steps. The sec-
ond technique is Antagonist Attack. The adversary trains
a domain-agnostic antagonist model to identify the best at-
tack strategy from one specific state automatically. It utilizes
the agent’s end goal, the reward function as the optimization
object to train this model. This model will instruct the adver-
sary when and how to add perturbations in order to achieve
the maximum damage.

Our attack techniques have several advantages over past
work. First, we consider the global optimal selection of at-
tack strategies. As such, we can significantly reduce the
number of attack steps to achieve the same performance as
past work: evaluations indicate that Critical Point Attack
only requires 1 step to attack TORCS and 2 steps to at-
tack Atari Pong and Breakout, while 25% of the total steps
are required to attack the same applications in (Lin et al.
2017). Our Antagonist Attack does not need domain-specific
knowledge, and can successfully attack Atari and Mujoco
within 5 steps. Second, our techniques are general-purpose
and effective for different DRL tasks and algorithms, while
the strategically-timed attack in (Lin et al. 2017) cannot
work in tasks with continuous action spaces. Third, our at-
tacks consider long-term damage impacts. We define a more

accurate and explicit damage metric for assessment, en-
abling the adversary to select the most critical moments for
perturbation injection.

The key contributions of this paper are:

• design of Critical Point Attack which can discover the
least number of critical moments to achieve the most se-
vere damage.

• design of Antagonist Attack which can automatically dis-
cover the optimal attack strategy using the least attack cost
without any domain knowledge.

• comprehensive evaluations on the effectiveness of the
techniques against different DRL tasks and algorithms.

Related Work

Adversarial examples against supervised DL. (Szegedy
et al. 2013) found that small and undetectable perturbations
in input samples could affect the results of a target classi-
fier. Following this initial study, many researchers designed
various attack methods against image recognition applica-
tions (Goodfellow, Shlens, and Szegedy 2015; Papernot et
al. 2016; Carlini and Wagner 2017). Besides, adversarial ex-
amples can also be applied to speech recognition (Alzantot,
Balaji, and Srivastava 2018; Carlini and Wagner 2018) and
natural language processing (Alzantot et al. 2018). These
techniques have been realized in physical scenarios (Ku-
rakin, Goodfellow, and Bengio 2016; Eykholt et al. 2017;
Sharif et al. 2016). Recently, how to systematically gener-
ate adversarial inputs were studied in DNN testing scenarios
(Ma et al. 2018; Guo et al. 2019; Xie et al. 2019a; 2019b;
Du et al. 2019).
Adversarial examples against DRL. In contrast to super-
vised DNN tasks, adversarial attacks against the DRL ap-
plications are still largely untouched. As an agent policy is
usually parameterized by a DNN, the adversary can add per-
turbations on the state observations of the agent to alter his
actions, which could finally affect the task’s end goal.

(Huang et al. 2017) made an initial attempt to attack neu-
ral network policies by applying Fast Gradient Sign Method
(FGSM) (Goodfellow, Shlens, and Szegedy 2015) to the
state at each time step. Follow-up work investigated the ad-
versarial example vulnerabilities of DRL under various sce-
narios. Transferability of adversarial examples across dif-
ferent DRL models were studied in (Behzadan and Munir
2017a). (Behzadan and Munir 2017b) evaluated the robust-
ness and resillience of DRL against training-time and test-
time attacks. (Pattanaik et al. 2018) designed methods of
generating adversarial examples by maximizing the proba-
bility of taking the worst action. (Tretschk, Oh, and Fritz
2018) improved the training-time attack by injecting small
perturbations into the training input states. (Hussenot, Geist,
and Pietquin 2019) designed targeted attacks, which can lure
an agent to consistently follow an adversary-desired pol-
icy. Block-box adversarial attacks against DRL were demon-
strated in (Russo and Proutiere 2019).

Those work proved the possibility of attacking DRL poli-
cies under different settings. However, they only focused on
attacking specific states using traditional techniques, while
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ignoring the end goal of the entire DRL task, which consists
of a continuous sequence of states. As a result, they are sig-
nificantly inefficient: too many invalid and aimless perturba-
tions cost a large amount of effort and can be easily detected
by the agent. A more interesting and challenging direction
is to identify optimal moments for perturbation injection, in
order to improve the attack efficiency and reduce cost.

(Kos and Song 2017) proposed some simple methods to-
wards this goal: instead of compromising every environmen-
tal state, an adversary can compute and inject the perturba-
tions every N frames. This strategy can reduce the injection
frequency of adversarial examples compared to past work.
But it still needs to attack about 120 states in each episode to
affect the performance of the victim agent, as it is not smart
enough to select the optimal moments. (Lin et al. 2017) pro-
posed two advanced approaches to improve this strategy.
The first one is strategically-timed attack, where an action
preference function is introduced to compute the preference
of the agent in taking the most preferred action over the least
preferred action. The adversary will inject the perturbation if
the function value is larger than a threshold. This technique
considers the attack impact only on the current step but ig-
noring the following states. Besides, it heavily relies on the
action probability distribution of the policy network output
and only works for specific algorithms (A3C and DQN) and
specific tasks (discrete action space). The second one is en-
chanting attack, where the adversary pre-computes a set of
adversarial states and examples, which will lure the agent
into entering the final damaged state. However, it is diffi-
cult to predict and control the agent’s dynamic behaviors,
making the approach less effective. More importantly, these
approaches still require a relatively large number of attack
steps (25% of total steps) to succeed.

Motivated by the above observations, in this paper we aim
to further reduce the step number to achieve similar or better
attack results. We propose two novel techniques to achieve
this goal, as described below.

Adversarial Attacks

Problem Statement and Attack Overview

The DRL agent learns an optimal behavior through trial-
and-error by interacting with an environment, which is re-
ferred to as the Markov Decision Process (MDP). Normally,
the MDP can be formulated as a tuple (S,A,P, r, γ), where
S is the state space, A is the action space, P : S ×A×S →
[0, 1] is the transition probability, r(s, a) ∈ R is the re-
ward function and γ ∈ [0, 1) is the discount factor. At
each timestep t, the agent receives an observation st and
chooses an action at ∼ π(st) according to its policy π,
which can be a stochastic model π(s, a) ∼ [0, 1], out-
putting the possibility of choosing action a or a determin-
istic policy a = π(s) outputting the action a directly. The
r(st, at) measures the immediate reward of at at state st and
Rt =

∑
i=t...∞ ri denotes the cumulative reward. The DRL

agent’s goal is to learn an optimal policy π∗ that maximizes
the cumulative reward R0. Without loss of generality, we
consider a trajectory terminated at time T : {s0, ..., sT−1}.
The expected discounted reward of a policy u is denoted as

R1 =
∑T−1

t=0 Eat∼u(st)[γ
tr(st, at)]. The DRL agent aims to

find a policy that can maximize R1.
In contrast, the adversary in our consideration tries to

decrease R1 using synthesized adversarial examples, i.e.,
adding perturbation δt into the agent’s observation st and
misleading the agent into performing the wrong action at.
Specifically, the adversary tries to minimize the expected re-
ward R2 =

∑T−1
t=0 Eat∼u(st+ktδt)[γ

tr(st, at)], where the
attack strategy kt denotes whether at time step t the per-
turbation should be applied (kt = 1) or not (kt = 0).
To achieve a stealthy and efficient attack, the adversary
wishes to affect the agent’s observations in a very small
number of steps to incur a significant decrease in R2. Then
the problem is: how can the adversary find an efficient at-
tack strategy {k0, ..., kT−1} with the corresponding per-
turbations {δ0, ..., δt−1}, that can minimize R2 and satisfy∑T−1

t=0 kt ≤ N? Here N is the upper limit of attack steps
that should be far smaller than the episode length T .

It is challenging to solve this optimization problem di-
rectly as it involves too many variables. Instead, we con-
vert it into two sub-problems. The first one is “when-to-
attack”, where we will identify the optimal attack strat-
egy {k0, ..., kT−1}. We propose two alternative approaches.
The first approach is Critical Point Attack, which builds
a model to predict the environment states and discover the
critical steps for perturbations. The second technique is An-
tagonist Attack, where an adversarial agent is introduced
to learn the attack strategy from the agent’s policy. These
two approaches can significantly reduce the number of steps
required to conduct a successful attack. The second sub-
problem is “how-to-attack”, where we will figure out the
corresponding perturbations {δ0, ..., δt−1}. We leverage ex-
isting adversarial example techniques to compute and add
perturbations in the selected critical moments from the pre-
vious step. This will finally mislead the policy network to
reach the adversary-desired end goal.

Critical Point Attack

The key idea of Critical Point Attack is inspired by human
behaviors: when a human encounters an event and has mul-
tiple actions to choose, he will always evaluate the conse-
quences of each action based on his understanding of the
event before making the selection. Similarly, when the ad-
versary encounters an environment state at one step, he has
choices of misleading the agent to different incorrect ac-
tions, or doing nothing. The best strategy for him is to eval-
uate the attack consequences of each choice based on his
understanding of the environment states and the agent’s ex-
pected behaviors, and then select the optimal one with the
most effective results.

To establish such understanding, the adversary builds a
prediction model, which can reveal the subsequential states
and agent’s actions from a starting step. At step t, the ad-
versary considers all possible N consecutive perturbations
(each one can lead the agent to a different action) from this
step to step t + N − 1, predicts the environment state and
evaluates the attack damage at step t + M where M ≥ N
is a predefined parameter. The adversary picks the N pertur-
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Figure 1: Illustration of Critical Point Attack on TORCS.

bations that can cause the most severe damage at step t+M
and adds them to the states of the following N steps. Com-
pared to the strategically-timed attack in (Lin et al. 2017),
our solution assesses and compares all the possible attack
scenarios, and is able to discover a more optimal strategy.

Specifically, the attack is performed in two stages. First,
the adversary samples the observations of the target envi-
ronment and trains a Prediction Model (PM ). This Pre-
diction Model is a function P : (si, ai) �→ si+1, taking
a state-action pair as its input and outputs a deterministic
prediction of the next state. We adopt the network architec-
ture that resembles the convolutional feedforward network
from (Oh et al. 2015). The input X consists of state frame
st and an action at. The loss function we use is defined as
L (θ) =

∑
(st+1 − ŝt+1)

2 where ŝt+1 is the predicted state
value. We use the 1-step prediction loss to evaluate the per-
formance of PM . With this PM and the agent’s policy, the
adversary is able to predict the subsequential states and ac-
tions from step t: {(st, at), (st+1, at+1), ...}.

Second, the adversary assesses the potential damage of all
possible strategies at step t. We use the divergence between
the post-attack state and the original one to assess the poten-
tial damage. The intuition behind this idea is that if an attack
can mislead the agent to a wrong state significantly far away
from the original correct one, this can incur dangerous and
severe consequence, e.g., terminating the current episode ab-
normally. Specifically, a divergence function T (si) is intro-
duced to represent the distance indicator of the agent at state
si. The adversary first predicts the state st+M , and calculates
T (st+M ) as the baseline. Then he considers all the possible
attack strategies for the next N steps: for each step, he can
use an adversarial example to make the agent perform an ar-
bitrary action. For each attack strategy, he predicts the state
s′t+M , calculates T (s′t+M ), and the Danger Awareness Met-
ric DAM = |T (s′t+M )−T (st+M )|. If this DAM is larger
than a threshold Δ, the adversary will conduct the attacks in
the next N steps following this strategy. Otherwise, he will
do nothing and repeat this assessment process from the next
step t+ 1.

The essential point of this attack technique is to define the
divergence function T for one specific state. One possible
solution is to utilize the reward function (if this is explic-
itly given): a smaller reward indicates a higher possibility
of termination. We empirically evaluated this metric, and
found that the reward prediction became inaccurate when
the number of predicted steps was larger. Instead, it is nec-
essary to have a domain-specific definition for this function
to accurately reflect the damage of the attack on different
tasks. Similar to the domain-specific reward function, which
represents the most favorable state the agent desires to have,
divergence function T should be defined as the least favor-
able state to reach.

Algorithm 1 outlines the details of Critical Point Attack.
First, the adversary calculates the baseline st+M based on
the prediction of PM , which is normally following the
agent’s policy. Next, the adversary generates a set of attack
strategies A based on some planning algorithms. A simple
way to do this is to enumerate all possible combinations of
{a′t, ..., a′t+N−1}. Then, for each attack strategy, the adver-
sary calculates s′t+M with the action sequence for the first
N steps replaced by the attack. If attack damage is large
enough, we pick the {a′t, ..., a′t+N−1} to be the target se-
quence to make perturbations. We use a case to describe the
whole attack process.
Case studies. Fig. 1 illustrates an example that uses our
technique to attack a self-driving agent. The adversary sam-
ples the observations of the environment in advance and
trains a prediction model offline to predict the subsequent
states in this self-driving task. At each step, the adversary
(1) obtains observations from the environment and (2) pre-
dicts DAM for each possible strate. In this case, function
T (si) is defined as the distance between the car and the cen-
ter of the road. This car will be more dangerous (i.e., more
likely to collide) if this state value is high. The adversary
compares each DAM with Δ. At step 36, all the possible
strategies give smaller DAM , so the adversary chooses not
to conduct attacks. In contrast, at state 64, one possible at-
tack strategy can incur significant damage at step 67, and the
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Algorithm 1 Critical Point Attack at step t

Input: M , N , P , T , st
Output: optimal attack strategy {a′t, ..., a′t+N−1}
// Calculate the baseline st+M

for i in {0, ...,M − 1} do
at+i = AgentAct(st+i)
st+i+1 = P(st+i, at+i)
st+i = st+i+1

Plan for all possible N -step attack strategies as a set A
s′t = st
for each attack strategy {a′t, ..., a′t+N−1} in A do

for i in {0, ...,M − 1} do
if i < N then

at+i = a′t+i

else
at+i = AgentAct(st+i)

s′t+i+1 = P(s′t+i, at+i)
s′t+i = s′t+i+1

if |T (s′t+M )− T (st+M )| > Δ then
return {a′t, ..., a′t+N−1}

return None

corresponding DAM is larger than Δ. So the adversary will
select step 64 as the critical point and (3) inject perturbation.

Antagonist Attack

Critical Point Attack is very effective and it can reduce the
number of required attack steps to 1 or 2 as evaluated in a
later section. However, it requires the adversary to have the
domain knowledge to define the divergence function. To re-
lax this assumption, we propose an enhanced attack, Antag-
onist Attack, which is domain-agnostic, and general enough
to be applied to different tasks easily.

The key idea of Antagonist Attack is the introduction
of an adversarial agent, dubbed antagonist. This antagonist
aims to learn the optimal attack strategy automatically with-
out any domain knowledge. Then at each time step, the an-
tagonist decides whether the adversarial perturbation should
be added to the state. If so, the antagonist also decides which
incorrect action the victim agent should make to achieve the
best attack effects.

Specifically, the antagonist maintains a policy uadv :
si �→ (pi, a

′
i), mapping the current state to the attack strat-

egy. At each time step t, the antagonist observes state st, and
produces the strategy (pt, a

′
t). If pt > 0.5, then step t is cho-

sen as the critical point and the adversary adds the perturba-
tion to mislead the agent to trigger the action a′t. Otherwise,
the agent follows the original action at.

The challenging part in this attack is to obtain the antago-
nist policy uadv(st). Algorithm 2 describes the procedure of
training an antagonist policy. The adversary first initializes
the parameters of this antagonist policy sampled from ran-
dom distributions. For each step in an episode, the adversary
gets the attack strategy (pt, a

′
t) from the policy uadv , and de-

cides whether to add perturbation or not based on pt. If so,
the adversary generates the adversarial sample s′t that can
mislead the agent’s action from at to a′t. He performs the ac-

Algorithm 2 Training Antagonist Policy
Initialize the parameters θadv of policy uadv

for each episode do
attack num = 0
for each step t and current episode not terminated do

(pt, a
′
t) = uadv(st)

if pt > 0.5 and attack num < N then
s′t = GenerateAdversarialSample(st, a

′
t)

attack num+ = 1
else

s′t = st
a′′t = u(s′t)
Perform a′′t and receive radvt and st+1

Collect (st, pt, a′t, r
adv
t , st+1)

Train policy uadv to update θadv

tion a′t and receives the reward as well as the next state from
the environment. These data will be collected to train or up-
date the antagonist policy uadv(st). The adversary trains a
deep neural network with the optimization goal of Equation
1, which is very similar to the agent’s goal. The difference is
that the adversary’s reward radv is set as the negative of the
agent’s reward: radv(st, a′t) = −r(st, a

′
t).

T−1∑

t=0

E(pt,a′
t)∼uadv(st),at∼u(st)[γ

tradv(st, a
′
t)] (1)

Note that we set an integer variable attack num to count
the number of compromised steps. If attack num reaches
the upper bound N , the antagonist will be not allowed to
attack during the current episode. After the training, the an-
tagonist policy can be used to guide the adversarial attacks.

Adding Perturbation

We can utilize either Critical Point Attack or Antagonist At-
tack introduced above to identify the critical moments for
adversarial example injection. The next step is to generate
such examples. Let function F (x) = y be a neural network
that maps input x ∈ R to output y ∈ R. In the case of
m-class classifier, the output of the network is usually com-
puted by a softmax activation function such that y satisfies
0 ≤ yi ≤ 1 and

∑m
i=0 yi = 1. Thus the output y represents a

probability distribution over the class labels. The predicted
label of x is L(x) = argmaxiF (x)i. The goal of an ad-
versarial attack for a victim classifier is to find δ such that
L(x + δ) �= L(x). If the classifier can be misled to a target
label z, i.e. L(x+ δ) = z ∧ L(x) �= z, δ is known as quali-
fied adversarial perturbations. In the case of a DRL system,
we need to mislead the policy network F ′, which outputs the
action probability similar as a classifier network. Given the
critical moment t and the adversarial target action a′t from
the previous step, the goal of this step is to find δt at time
step t such that argmaxiF

′(st + δt)i = a′t. We leverage
C&W attack technique to generate the adversarial perturba-
tion. This method can misguide the neural network of each
individual input with 100% success rate, which can increase
the success rate of attacking the DRL’s end goal.
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Experiments

We evaluate the effectiveness of our proposed attacks in dif-
ferent types of DRL environments. In particular, we want to
investigate the following research questions:

• RQ1: Are the proposed attacks generic and effective for
various reinforcement learning tasks and algorithm?

• RQ2: How effective and efficient are our attacks com-
pared to past work?

Experimental Settings and Implementations

Benchmarks. We select different types of DRL applica-
tions as the target victim: Atari games (Pong and Breakout),
autonomous driving (TORCS) and continuous robot control
(Mojuco). For Atari games, the agents are trained with A3C
algorithms. We adopt the same neural network architecture
as the one in (Mnih et al. 2016), where the policy network
takes 4 continuous images as input. These input images are
re-sized as 80*80 and pixel values for each image are re-
scaled to [0,1]. The output of the neural network is the action
probability distribution. For TORCS environment, the agent
is trained by Deep Deterministic Policy Gradient method
(DDPG) (Lillicrap et al. 2015). The action space of TORCS
is a 1-dimensional continuous steering angle, from -1.0 to
1.0. This environment provides sensory data of a racing car
including speed, distance from the center of the road, engine
speed, LIDAR sensor, etc. For Mojuco tasks, the agent is
trained using Proximal Policy Optimization (PPO) (Schul-
man et al. 2017) as the policy optimizer. All testing results
of the attack methods are obtained as an average of 20 ran-
dom seeds.
Training prediction models in Critical Point Attack. The
training data for PM is sampled from the training process
of the agent. In Atari games, as the image input cannot di-
rectly provide any metrics information (the position of the
ball in Breakout), we turn to predict RAM data of Atari
games, which provide memory information of the game and
are equivalent with screen data in representing the state of
Atari games. In TORCS, the observation is the sensory data
that can be directly used to train PM . The sizes of training
data and testing data are about 20M frames and 5M, respec-
tively. The evaluation criterion of PM is the mean squared
error. We use a fully-connected feedforward neural network
with 4 hidden layers. The output of the network is the nor-
malized value of predicted states.
Training antagonist policies in Antagonist Attack. For
Atari games, we train the antagonist policies using Prox-
imal Policy Optimization (PPO). For the Mujoco control
missions (Inverted Pendulum, Hopper, HalfCheetah, and
Walker2d), we train the antagonists for 8M frames.

Results of Critical Point Attack

Atari games. We first test Critical Point (CP) Attack on
two Atari games: Pong and Breakout. The essential com-
ponents of Critical Point attack are the prediction model
PM and the divergence function T . In Breakout, we de-
fine T (s) = p(s) ∗ δ(s), where δ(s) is the distance between
the paddle and the ball, and p(s) is the probability of the
ball falling to the bottom (Breakout) or approaching the right

(a) Pong, CP Attack (b) Breakout, CP Attack

(c) Pong, ST Attack (d) Breakout, ST Attack

(e) Pong, Attack Steps (f) Breakout, Attack Steps

Figure 2: Experimental results of Atari Pong and Breakout.

edge (Pong). By increasing the attack step N , we find that
we need at least a 2-step attack to prevent the paddle from
catching the ball. As the attack effect can be captured imme-
diately in both Pong and Breakout, we set M as the number
of attack steps.

We launch Critical Point attack by checking |T (s′t+2) −
T (st+2)| > Δ with different Δ values under various ini-
tial conditions. The results are shown in Fig. 2a and Fig. 2b,
where the y-axis denotes the accumulated reward, and the
x-axis denotes different Δ values. From the figure, we find
that if we set Δ to [9, 56] for Pong and [23, 43] for Breakout,
our method can largely reduce average return by the 2-step
attack. Lower Δ represents lower deviations from where the
agent originally intended and may lead to less effective at-
tacks. Higher Δ improves the requirement of the dangerous
value and would make it difficult to find proper timing for
the attack.

We compare our approach with strategically-timed (ST)
attack (Lin et al. 2017). As shown in Fig. 2c and Fig. 2d, ST
attack can reach the same effect as our approach at proper
attacked step rates (9.0% for Pong and 4.5% for Breakout).
As a comparison, the minimum attack step is 6 for Pong and
5 for Breakout, which is larger than the attack steps we need
in CP attack.

Fig. 2e and Fig. 2f compare the damage metrics of our ap-
proach (DAM , re-scaled to [0, 1]) and ST attack (c value) at
different time steps of the same trajectory. We can observe
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that both of the approaches give similar trends for select-
ing the critical steps. However, the metric in our approach is
more precise and explicit.
TORCS. The reward function in TORCS is given as: rt =
speed ∗ cos(αt) − speed ∗ trackpos where speed is the
speed of the car, α is the head angle, trackpos is the distance
between the car and the track axis. Based on this reward, we
define T (s) = trackpos, as a larger trackpos indicates that
the car is in greater danger.

The parameter N is set to 1 because we found that a 1-step
attack is already capable of misleading the car to collide. We
set M = 3 to assess the damage impact, as the effect of an
incorrect action usually shows up after a couple of steps. For
each time step, we enumerate 200 target steering angles in [-
1.0, 1.0] with the granularity of 0.01. The adversary predicts
the states after taking these steering angles based on PM .
The agent policy gives actions after the attack.

In Fig. 3a, we sample a single trajectory of our DDPG
agent and calculate DAM for possible actions (y-axis) at
each step (x-axis), represented as color. The green zone
means that the DAM values are within the safe range (Δ =
0.5), while the blue zone and the red zone mean that the
agent would be too close to the borders. The dark red dots in
the green zone are actions taken by the DDPG agent. We test
these attacks on the same trajectories under the same initial
condition in the TORCS simulator. The results are shown in
Fig. 3b, where the red zone means that the agent crashes re-
sulted from the attack, and the green zone means the agent is
still safe after the attack. Our CP attack can correctly predict
the critical moments with an accuracy of 81.5%.

We launch CP attack on the DDPG agent using different
Δ values for 2,000 episodes. Fig. 3c shows the average re-
turn (y-axis) for different Δ values (x-axis). We find that
1-step attack would be the most effective when we set Δ
to about 0.82. These attacks usually cause a car collision or
loss of control.

To compare with ST attack against TORCS, we train an
A3C policy in discrete action space. We discretize the steer-
ing wheel from -1.0 to 1.0 in 7 degrees and treat these de-
grees as discrete actions. Fig. 3d and 3e show the average re-
turn (y-axis) using our approach and ST attack for different δ
and c values (x-axis). ST attack can achieve the same effect
by attacking 80 steps (20% of an episode with a length of
400 time steps), which is much larger than 1 step in our ap-
proach. The comparison results between c values and DAM
values are shown in Fig. 3f. As we expect, the adversary us-
ing our approach is more inclined to attack the agent when
the car is close to the corner (from steps 105 to 135), because
the car is unstable and it is easy for the adversary to make the
car collide. An interesting discovery is that ST attack tends
to fool the agent when the car goes straight (from steps 65
to 95). The reason is that the agent can gain more rewards
at these steps. Therefore the action preference is strong even
though these steps are non-critical. This explains why ST
attack takes more steps to achieve an equivalent attack goal.

Results of Antagonist Attack

For each environment, we train multiple versions of antag-
onists by selecting various numbers of attack steps (N =

(a) Predicted DAM (b) Crush Test

(c) DDPG, CP attack (d) A3C, CP attack

(e) A3C, ST attack (f) A3C, Attack Steps

Figure 3: Experimental results of TORCS.

1, ..., 5). The results are shown in Fig. 4.
Atari games. For both Pong and Breakout, Antagonist At-
tack can break down the agent using 3 steps in one life cycle.
This result is much better compared to strategically-timed
attack (6 steps for Pong and 5 steps for Breakout). Antago-
nist Attack cannot beat Critical Point Attack (2 steps), as it
needs to explore the optimal strategy in the state space with-
out domain knowledge.
Mujoco. To reduce the rewards significantly, the numbers
of attack steps required for each environment are 2 for In-
vertedPendulum (Fig. 4c), 1 for Hopper (Fig. 4d), 5 for
HalfCheetah (Fig. 4e) and 3 for Walker2d (Fig. 4f). Con-
sidering that each step takes about 4ms in Mujoco envi-
ronment, these results show that our trained antagonist can
break down the agent within 20ms.

Summary

Our evaluation results answer the questions proposed at the
beginning of this section. For RQ1, we show that both of
the two attacks can effectively compromise different DRL
tasks (Atari games, TORCS, Mojuco) and algorithms (A3C,
DDPG, PPO). We believe they can be applied to other DRL
scenarios and environments.

For RQ2, we show that our techniques can beat past
work in several aspects. (1) Our attacks require much fewer
time steps to perform a successful attack. For Atari games,
Critical Point Attack needs 1 or 2 steps, and Antagonist
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(a) Pong (b) Breakout

(c) InvertedPendulum (d) Hopper

(e) HalfCheetah (f) Walker2d

Figure 4: Experimental results of the antagonist attack.

Attack needs 3 steps, while strategically-timed attack (Lin
et al. 2017) requires 5 or 6 steps to achieve similar ef-
fects. For TORCS, Critical Point Attack needs 1 step, while
strategically-time attack requires about 80 steps. This is a
significant improvement for the attack efficiency. (2) The
damage metric adopted in our techniques is more accurate
and explicit (Fig. 2e, 2f, 3f). This enables the adversary to
always make the optimal selection for the critical attack mo-
ments. (3) Our techniques are generic for different tasks and
algorithms, while strategically-time attack can only work for
specific algorithms (A3C and DQN) and specific tasks (dis-
crete action space). It cannot attack the agent for a task of
continuous action space, e.g., DDPG algorithm.

Conclusion

In this paper, we propose two novel techniques to realize
stealthy and efficient adversarial attacks against Deep Re-
inforcement Learning systems. These approaches can help
the adversary identify the most critical moments to add per-
turbations, incurring the most severe damage. We evalu-
ate our approaches in different types of DRL environments
and demonstrate that they need much fewer attack steps to
achieve the same effects compared to past work. As future
work, we plan to train the antagonist policy with multiple
safety goals and enhance the robustness of DRL algorithms.
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