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Abstract

Standard adversarial attacks change the predicted class label
of a selected image by adding specially tailored small pertur-
bations to its pixels. In contrast, a universal perturbation is an
update that can be added to any image in a broad class of im-
ages, while still changing the predicted class label. We study
the efficient generation of universal adversarial perturbations,
and also efficient methods for hardening networks to these at-
tacks. We propose a simple optimization-based universal at-
tack that reduces the top-1 accuracy of various network ar-
chitectures on ImageNet to less than 20%, while learning the
universal perturbation 13× faster than the standard method.
To defend against these perturbations, we propose univer-
sal adversarial training, which models the problem of robust
classifier generation as a two-player min-max game, and pro-
duces robust models with only 2× the cost of natural training.
We also propose a simultaneous stochastic gradient method
that is almost free of extra computation, which allows us to
do universal adversarial training on ImageNet.

1 Introduction

Deep neural networks (DNNs) are vulnerable to adversarial
examples, in which small and often imperceptible perturba-
tions change the class label of an image (Szegedy et al. 2013;
Goodfellow, Shlens, and Szegedy 2014; Nguyen, Yosinski,
and Clune 2015; Papernot et al. 2016). Many works have
shown that these vulnerabilities can be exploited by show-
ing real world attacks on face detection (Sharif et al. 2016),
object detection (Wu et al. 2019), and copyright detection
(Saadatpanah, Shafahi, and Goldstein 2019).

Adversarial examples were originally formed by select-
ing a single example, and sneaking it into a different class
using a small perturbation (Carlini and Wagner 2017b). This
is done most effectively using (potentially expensive) itera-
tive optimization procedures (Dong et al. 2017; Madry et al.
2018; Athalye, Carlini, and Wagner 2018).

Different from per-instance perturbation attacks,
(Moosavi-Dezfooli et al. 2017b; 2017a) show there exists
“universal” perturbations that can be added to any image
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Universal
Perturbation

Figure 1: A universal perturbation made using a subset of
ImageNet and the VGG-16 architecture. When added to the
validation images, their labels usually change. The perturba-
tion was generated using the proposed algorithm 2. Pertur-
bation pixel values lie in [−10, 10] (i.e. ε = 10).

to change its class label (fig. 1) with high probability.
Universal perturbations empower attackers who cannot
generate per-instance adversarial examples on the go, or
who want to change the identity of an object to be selected
later in the field. Also, universal perturbations have good
cross-model transferability, which facilitates black-box
attacks.

Among various methods for hardening networks to per-
instance attacks, adversarial training (Madry et al. 2018) is
known to dramatically increase robustness (Athalye, Carlini,
and Wagner 2018). In this process, adversarial examples are
produced for each mini-batch during training, and injected
into the training data. While effective at increasing robust-
ness against small perturbations, it is not effective for larger
perturbations which are often the case for universal pertur-
bations. Also, the high cost of this process precludes its use
on large and complex datasets.

Contributions This paper studies effective methods for
producing and deflecting universal adversarial attacks. First,
we pose the creation of universal perturbations as an opti-
mization problem that can be effectively solved by stochas-
tic gradient methods. This method dramatically reduces the
time needed to produce attacks as compared to (Moosavi-
Dezfooli et al. 2017b). The efficiency of this formulation
empowers us to consider universal adversarial training. We
formulate the adversarial training problem as a min-max op-
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timization where the minimization is over the network pa-
rameters and the maximization is over the universal pertur-
bation. This problem can be solved quickly using alternating
stochastic gradient methods with no inner loops, making it
far more efficient than per-instance adversarial training with
a strong adversary (which requires a PGD inner loop to gen-
erate adversarial perturbations). Prior to our work, it was ar-
gued that adversarial training on universal perturbations is
infeasible because the inner optimization requires the gener-
ation of a universal perturbation from scratch using many ex-
pensive iterations (Perolat et al. 2018). We further improve
the defense efficiency by providing a “low-cost” algorithm
for defending against universal perturbations. Through ex-
periments on CIFAR-10 and ImageNet, we show that this
“low-cost” method works well in practice. Note, the ap-
proach first introduced here has been expanded on to create a
range of “free” adversarial training strategies with the same
cost as standard training (Shafahi et al. 2019).

2 Related work
We briefly review per-instance perturbation attack tech-
niques that are closely related to our paper and can be
used during the universal perturbation update step of uni-
versal adversarial training. The Fast Gradient Sign Method
(FGSM) (Goodfellow, Shlens, and Szegedy 2014) is one
of the most popular one-step gradient-based approaches for
�∞-bounded attacks. FGSM applies one step of gradient as-
cent in the direction of the sign of the gradient of the loss
function with respect to the input image. When a model is
FGSM adversarially trained, the gradient of the loss function
may be very small near unmodified images. In this case, the
R-FGSM method remains effective by first using a random
perturbation to step off the image manifold, and then ap-
plying FGSM (Tramèr et al. 2018). Projected Gradient De-
scent (PGD) (Madry et al. 2018) iteratively applies FGSM
multiple times, and is one of the strongest per-instance at-
tacks (Athalye, Carlini, and Wagner 2018). The PGD ver-
sion of (Madry et al. 2018) applies an initial random per-
turbation before multiple steps of gradient ascent and pro-
jection of perturbation onto the norm-ball of interest, and
in a standard projected gradient method (Goldstein, Studer,
and Baraniuk 2014). Finally, DeepFool (Moosavi-Dezfooli,
Fawzi, and Frossard 2016) is an iterative method based on a
linear approximation of the training loss objective.

Adversarial training, in which adversarial examples are
injected into the dataset during training, is an effective
method to learn a robust model resistant to per-instance at-
tacks (Madry et al. 2018; Huang et al. 2015; Shaham, Ya-
mada, and Negahban 2015; Sinha, Namkoong, and Duchi
2018). Robust models adversarially trained with FGSM can
resist FGSM attacks (Kurakin, Goodfellow, and Bengio
2017), but can be vulnerable to PGD attacks (Madry et al.
2018). (Madry et al. 2018) suggest strong attacks are im-
portant, and they use the iterative PGD method in the in-
ner loop for generating adversarial examples when optimiz-
ing the min-max problem. PGD adversarial training is ef-
fective but time-consuming when the perturbation is small.
The cost of the inner PGD loop is high, although this can
sometimes be replaced with neural models for attack gen-

eration (Baluja and Fischer 2018; Poursaeed et al. 2018;
Xiao et al. 2018). These robust models are adversarially
trained to fend off per-instance perturbations and have not
been designed for, or tested against, universal perturbations.

Unlike per-instance perturbations, universal perturbations
can be directly added to any test image to fool the classi-
fier. In (Moosavi-Dezfooli et al. 2017b), universal pertur-
bations for image classification are generated by iteratively
optimizing the per-instance adversarial loss for training sam-
ples using DeepFool. In addition to classification tasks, uni-
versal perturbations are also shown to exist for semantic
segmentation (Metzen et al. 2017). Robust universal adver-
sarial examples are generated as a universal targeted ad-
versarial patch in (Brown et al. 2017). They are targeted
since they cause misclassification of the images to a given
target class. (Moosavi-Dezfooli et al. 2017a) prove the ex-
istence of small universal perturbations under certain cur-
vature conditions of decision boundaries. Data-independent
universal perturbations are also shown to exist and can be
generated by maximizing spurious activations at each layer.
These universal perturbations are slightly weaker than the
data dependent approaches (Mopuri, Garg, and Babu 2017;
Mopuri, Ganeshan, and Radhakrishnan 2018). As a vari-
ant of universal perturbation, unconditional generators are
trained to create perturbations from random noises for attack
(Reddy Mopuri, Krishna Uppala, and Venkatesh Babu 2018;
Reddy Mopuri et al. 2018). Universal perturbations are often
larger than per-instance perturbation. For example on Ima-
geNet, universal perturbations generated in prior works have
�∞ perturbations of size ε = 10 while non-targeted per-
instance perturbations as small as ε = 2 are often enough
to considerably degrade the performance of conventionally
trained classifiers possibly due to the fact that ImageNet is
a complex dataset and is fundamentally susceptible to per-
instance perturbations (Shafahi et al. 2018). As a conse-
quence, from a defense perspective, per-instance defenses
on ImageNet focus on smaller perturbations compared to
universal perturbations.

There has been very little work on defending against uni-
versal attacks. To the best of our knowledge, the only ded-
icated study is by (Akhtar, Liu, and Mian 2018), who pro-
pose a perturbation rectifying network that pre-processes in-
put images to remove the universal perturbation. The recti-
fying network is trained on universal perturbations that are
built for the downstream classifier. While other methods of
data sanitization exist (Samangouei, Kabkab, and Chellappa
2018; Meng and Chen 2017) , it has been shown (at least for
per-instance adversarial examples) that this type of defense
is easily subverted by an attacker who is aware that a defense
network is being used (Carlini and Wagner 2017a).

Two recent preprints (Perolat et al. 2018; Mummadi,
Brox, and Metzen 2018) model the problem of defend-
ing against universal perturbations as a two-player min-max
game. However, unlike us, and similar to per-instance ad-
versarial training, after each gradient descent iteration for
updating the DNN parameters, they generate a universal ad-
versarial example in an iterative fashion. Since the genera-
tion of universal adversarial perturbations can be very time-
consuming, this makes their approach slow and prevents
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Algorithm 1 Iterative solver for universal perturbations
(Moosavi-Dezfooli et al. 2017b)

Initialize δ ← 0
while Prob(X, δ) < 1− ξ do

for xi in X do
if f(w, xi + δ) �= f(w, xi) then

Solve minr ‖r‖2 s.t. f(w, xi + δ + r) �= f(w, xi)
by DeepFool

Update δ ← δ + r, then project δ to �p ball
end if

end for
end while

them from training the DNN parameters for many iterations.

3 Optimization for universal perturbation

Given a set of training samples X = {xi, i = 1, . . . , N} and
a network f(w, ·) with frozen parameter w that maps images
onto labels, (Moosavi-Dezfooli et al. 2017b) propose to find
universal perturbations δ that satisfy,

‖δ‖p ≤ ε and Prob(X, δ) ≥ 1− ξ, (1)

Prob(X, δ) represents the “fooling ratio,” which is the frac-
tion of images x whose perturbed class label f(w, x + δ)
differs from the original label f(w, x). The parameter ε con-
trols the �p diameter of the bounded perturbation, and ξ is
a small tolerance hyperparameter. Problem (1) is solved by
the iterative method in algorithm 1. This solver relies on
an inner loop to apply DeepFool to each training instance,
which makes the solver slow. Moreover, the outer loop of
algorithm 1 is not guaranteed to converge. Different from
(Moosavi-Dezfooli et al. 2017b), we consider the following
optimization problem for building universal perturbations,

max
δ
L(w, δ) = 1

N

N∑

i=1

l(w, xi + δ) s.t. ‖δ‖p ≤ ε, (2)

where l(w, ·) represents the loss used for training DNNs.
This simple formulation (2) searches for a universal pertur-
bation that maximizes the training loss, and thus forces im-
ages into the wrong class.

The naive formulation (2) suffers from a potentially sig-
nificant drawback; the cross-entropy loss is unbounded from
above, and can be arbitrarily large when evaluated on a sin-
gle image. In the worst-case, a perturbation that causes mis-
classification of just a single image can maximize (2) by
forcing the average loss to infinity. To force the optimizer
to find a perturbation that fools many instances, we propose
a “clipped” version of the cross entropy loss,

l̂(w, xi + δ) = min{l(w, xi + δ), β}. (3)

We cap the loss function at β to prevent any single image
from dominating the objective in (2), and giving us a bet-
ter surrogate of misclassification accuracy. In section 5, we
investigate the effect of clipping with different β.

We directly solve eq. (2) by a stochastic gradient method
described in algorithm 2. Each iteration begins by using
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Figure 2: Classification accuracy on adversarial examples of
universal perturbations generated by increasing the cross-
entropy loss. PGD and ADAM converge faster. We use 5000
training samples from CIFAR-10 for constructing the uni-
versal adversarial perturbation for naturally trained WRN
model from (Madry et al. 2018). The batch-size is 128, ε=8,
and the learning-rate/step-size is 1.

gradient ascent to update the universal perturbation δ so
that it maximizes the loss. Then, δ is projected onto the
�p-norm ball to prevent it from growing too large. We ex-
periment with various optimizers for this ascent step, in-
cluding Stochastic Gradient Descent (SGD), Momentum
SGD (MSGD), Projected Gradient Descent (PGD), and
ADAM (Kingma and Ba 2014).

Algorithm 2 Stochastic gradient for universal perturbation

for epoch = 1 . . . Nep do
for minibatch B ⊂ X do

Update δ with gradient variant δ ← δ + g
Project δ to �p ball

end for
end for

We test this method by attacking a naturally trained WRN
32-10 architecture on the CIFAR-10 dataset. We use ε = 8
for the �∞ constraint for CIFAR. Stochastic gradient meth-
ods that use “normalized” gradients (ADAM and PGD) are
less sensitive to learning rate and converge faster, as shown
in fig. 2. We visualize the generated universal perturbation
from different optimizers in fig. 3. Compared to the noisy
perturbation generated by SGD, normalized gradient meth-
ods produced stronger attacks with more well-defined geo-
metric structures and checkerboard patterns. The final eval-
uation accuracies (on test-examples) after adding universal
perturbations with ε = 8 were 42.56% for the SGD pertur-
bation, 13.08% for MSGD, 13.30% for ADAM, and 13.79%
for PGD. The clean test accuracy of the WRN is 95.2%.

Our proposed method of universal attack using a clipped
loss function has several advantages. It is based on a stan-
dard stochastic gradient method that comes with conver-
gence guarantees when a decreasing learning rate is used
(Bottou, Curtis, and Nocedal 2018). Also, each iteration is
based on a minibatch of samples instead of one instance,
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(a) SGD (b) MSGD (c) ADAM (d) PGD

Figure 3: Visualizations of universal perturbations after 160
iterations of the optimizers depicted in fig. 2.

which accelerates computation on a GPU. Finally, each iter-
ation requires a simple gradient update instead of the com-
plex DeepFool inner loop; we empirically verify fast conver-
gence and good performance of the proposed method (see
section 5).

4 Universal adversarial training

We now consider training robust classifiers that are resistant
to universal perturbations. Similar to (Madry et al. 2018),
we borrow ideas from robust optimization. We use robust
optimization to build robust models that can resist universal
perturbations. In particular, we consider universal adversar-
ial training, and formulate this problem as a min-max opti-
mization problem,

min
w

max
‖δ‖p≤ε

L(w, δ) = 1

N

N∑

i=1

l(w, xi + δ) (4)

where w represents the neural network weights, X =
{xi, i = 1, . . . , N} represents training samples, δ represents
universal perturbation noise, and l(·) is the loss function.
Here, unlike conventional adversarial training, our δ is a uni-
versal perturbation (or, more accurately, mini-batch univer-
sal). Previously, solving this optimization problem directly
was deemed computationally infeasible due to the large cost
associated with generating a universal perturbation (Perolat
et al. 2018), but we show that eq. (4) is efficiently solvable
by alternating stochastic gradient methods shown in algo-
rithm 3. We show that unlike (Madry et al. 2018), updat-
ing the universal perturbation only using a simple step is
enough for building universally hardened networks. Each it-
eration alternatively updates the neural network weights w
using gradient descent, and then updates the universal per-
turbation δ using ascent.

We compare our formulation (4) and algorithm 3 with
PGD-based adversarial training, which trains a robust model
by optimizing the following min-max problem,

min
w

max
Z

1

N

N∑

i=1

l(w, zi) s.t. ‖Z −X‖p ≤ ε. (5)

The standard formulation (5) searches for per-instance per-
turbed images Z, while our formulation in (4) maximizes us-
ing a universal perturbation δ. (Madry et al. 2018) solve (5)
by a stochastic method. In each iteration, an adversarial ex-
ample zi is generated for an input instance by the PGD itera-
tive method, and the DNN parameter w is updated once. Our

Algorithm 3 Alternating stochastic gradient method for ad-
versarial training against universal perturbation

Input: Training samples X , perturbation bound ε, learning
rate τ , momentum μ
for epoch = 1 . . . Nep do

for minibatch B ⊂ X do
Update w with momentum stochastic gradient

gw ← μgw − Ex∈B [∇w l(w, x+ δ)]
w ← w + τgw

Update δ with stochastic gradient ascent
δ ← δ + ε sign(Ex∈B [∇δ l(w, x+ δ)])

Project δ to �p ball
end for

end for

formulation (algorithm 3) only maintains one single pertur-
bation that is used and refined across all iterations. For this
reason, we need only update w and δ once per step (there is
no expensive inner loop), and these updates accumulate for
both w and δ through training.

We consider different rules for updating δ during univer-
sal adversarial training,

FGSM δ ← δ + ε · sign(Ex∈B [∇δl(w, x+ δ)]), (6)
SGD δ ← δ + τδ · Ex∈B [∇δl(w, x+ δ)], (7)

and ADAM. We found that the FGSM update rule was most
effective when combined with the SGD optimizer for updat-
ing DNN weights w.

We use fairly standard training parameters in our exper-
iments. In our CIFAR experiments, we use ε = 8, batch-
size of 128, and we train for 80,000 steps. For the optimizer,
we use Momentum SGD with an initial learning rate of 0.1
which drops to 0.01 at iteration 40,000 and drops further
down to 0.001 at iteration 60,000. One way to assess the up-
date rule is to plot the model accuracy before and after the
ascent step (i.e., the perturbation update). It is well-known
that adversarial training is more effective when stronger at-
tacks are used. In the extreme case of a do-nothing adver-
sary, the adversarial training method degenerates to natural
training. As illustrated in the supplementary, we see a gap
between the accuracy curves plotted before and after gra-
dient ascent. We find that the FGSM update rule leads to a
larger gap, indicating a stronger adversary. Correspondingly,
we find that the FGSM update rule yields networks that are
more robust to attacks as compared to SGD update.

Attacking hardened models

We evaluate the robustness of different models by applying
algorithm 2 to find universal perturbations. We attack univer-
sally adversarial trained models (produced by eq. (4)) using
the FGSM universal update rule (uFGSM), or the SGD uni-
versal update rule (uSGD). We also consider robust models
from per-instance adversarial training (eq. (5)) with adver-
sarial steps of the FGSM and PGD type.

Robust models adversarially trained with weaker attack-
ers such as uSGD and (per-instance) FGSM are relatively
vulnerable to universal perturbations, while robust models
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(a) FGSM (b) PGD (c) uFGSM (d) uSGD

Figure 4: Universal perturbations made (with 400 itera-
tions) for 4 different CIFAR-10 robust models: adversarially
trained with FGSM or PGD, and universally adversarially
trained with FGSM (uFGSM) or SGD (uSGD).

Table 1: Validation accuracy of hardened WideResnet mod-
els trained on CIFAR-10. Note that Madry’s PGD training is
significantly slower than the other training methods.

Validation Accuracy on
UnivPert Natural

(Robust)
models
trained
with

Natural 9.2% 95.2%
FGSM 51.0% 91.42%
PGD 86.1% 87.25%

uADAM (ours) 91.6% 94.28%
uFGSM (ours) 91.8% 93.50%

from (per-instance) PGD and uFGSM can resist universal
perturbations. We plot the universal perturbations gener-
ated using algorithm 3 in fig. 4. When we visually com-
pare the universal perturbations of robust models (fig. 4)
and those of a naturally trained model (fig. 3), we can see
a drastic change in structure. Similarly, even among hard-
ened models, universal perturbations generated for weaker
robust models have more geometric textures, as shown in
fig. 4 (a,d).

While an ε-bounded per-instance robust model is also ro-
bust against ε-bounded universal attacks since the univer-
sal attack is a more constrained version of the per-instance
attack, training robust per-instance models is only possible
for small datasets like CIFAR and for small ε. For larger
datasets like ImageNet, we cannot train per-instance robust
models with such large ε’s common for universal attacks.
However, we include the per-instance adversarially trained
model as a candidate universally robust model for CIFAR-10
in our comparisons to allow comparisons in settings where
it is possible to train per-instance robust models.

We apply the strongest attack to validation images of the
natural model and various universal adversarially trained
models using different update steps. The results are sum-
marized in table 1. Our models become robust against uni-
versal perturbations and have higher accuracies on natural
validation examples compared to per-instance adversarially
trained models. Their robustness is even more if attacked
with iDeepFool (93.29%). Compared to the per-instance
FGSM trained model which has the same computational cost
as ours, our universal model is more robust. Note that the
PGD trained model is trained on a 7-step per-instance ad-
versary and requires about 4× more computation than ours.

Low-cost universal adversarial training

As shown in table 1, our proposed algorithm 3 was able
to harden the CIFAR-10 classification network. This comes
at the cost of doubling the training time. Adversarial train-
ing in general should have some cost since it requires the
generation or update of the adversarial perturbation of the
mini-batch before each minimization step on the network’s
parameters. However, since universal perturbations are ap-
proximately image-agnostic, results should be fairly invari-
ant to the order of updates. For this reason, we propose to
compute the image gradient needed for the perturbation up-
date during the same backward pass used to compute the
parameter gradients. This results in a simultaneous update
for network weights and the universal perturbation in algo-
rithm 4, which backprops only once per iteration and pro-
duces approximately universally robust models at almost no
cost in comparison to natural training. The “low-cost univer-
sal adversarially trained” model of CIFAR-10 is 86.1% ro-
bust against universal perturbations and has 93.5% accuracy
on the clean validation examples. When compared to the
original version in table 1, the robustness has only slightly
decreased. However, the training time is cut by half. This
is a huge improvement in efficiency, in particular for large
datasets like ImageNet with long training times.

Algorithm 4 Simultaneous stochastic gradient method for
adversarial training against universal perturbation

Input: Training samples X , perturbation bound ε, learning
rate τ , momentum μ
Initialize w, δ
for epoch = 1 . . . Nep do

for minibatch B ⊂ X do
Compute gradient of loss with respect to w and δ

dw ← Ex∈B [∇w l(w, x+ δ)]
dδ ← Ex∈B [∇δ l(w, x+ δ)]

Update w with momentum stochastic gradient
gw ← μgw − dw
w ← w + τgw

Update δ with stochastic gradient ascent
δ ← δ + εsign(dδ)

Project δ to �p ball
end for

end for

5 Universal perturbations for ImageNet

To validate the performance of our proposed optimization
on different architectures and more complex datasets, we
apply algorithm 2 to various popular architectures designed
for classification on the ImageNet dataset (Russakovsky et
al. 2015). We compare our method of universal perturbation
generation with the current state-of-the-art method, iterative
DeepFool (iDeepFool for short – alg. 1). We use the authors’
code to run the iDeepFool attack on these classification net-
works. We execute both our method and iDeepFool on the
exact same 5000 training data points and terminate both
methods after 10 epochs. We use ε = 10 for �∞ constraint
following (Moosavi-Dezfooli et al. 2017b), use a step-size of
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1.0 for our method, and use suggested parameters for iDeep-
Fool. Similar conclusions could be drawn when we use �2
bounded attacks. We independently execute iDeepFool since
we are interested in the accuracy of the classifier on attacked
images – a metric not reported in (Moosavi-Dezfooli et al.
2017b) 1.

Benefits of the proposed method We compare the per-
formance of our stochastic gradient method for eq. (2) and
the iDeepFool method for eq. (1). We generate universal
perturbations for Inception (Szegedy et al. 2016) and VGG
(Simonyan and Zisserman 2014) networks trained on Ima-
geNet, and report the top-1 accuracy in table 2. Universal
perturbations generated by both iDeepFool and our method
fool networks and degrade the classification accuracy. Uni-
versal perturbations generated for the training samples gen-
eralize well and cause the accuracy of validation samples
to drop. However, when given a fixed computation budget
such as number of passes on the training data, our method
outperforms iDeepFool by a large margin. Our stochastic
gradient method generates the universal perturbations at a
much faster pace than iDeepFool. About 20× faster on In-
ceptionV1 and 6× on VGG16 (13× on average).

After verifying the effectiveness and efficiency of our pro-
posed stochastic gradient method2, we use our algorithm 2
to generate universal perturbations for ResNet-V1 152 (He
et al. 2016) and Inception-V3. Our attacks degrade the val-
idation accuracy of ResNet-V1 152 and Inception-V3 from
76.8% and 78% to 16.4% and 20.1%, respectively. The fi-
nal universal perturbations used for the results presented are
illustrated in the supplementary.

Table 2: Top-1 accuracy on ImageNet for natural images,
and adversarial images with universal perturbation.

InceptionV1 VGG16

Natural Train 76.9% 81.4 %
Val 69.7% 70.9%

iDeepFool Train 43.5% 39.5%
Val 40.7% 36.0%

Ours Train 17.2% 23.1%
Val 19.8% 22.5%

iDeepFool time (s) 9856 6076
our time (s) 482 953

The effect of clipping Here, we analyze the effect of the
“clipping” loss parameter β in eq. (2). For this purpose, sim-
ilar to our other ablations, we generate universal perturba-
tions by solving eq. (2) using PGD for Inception-V3 on Im-
ageNet. We run each experiment with 5 random subsets of

1They report “fooling ratio” which is the ratio of examples
who’s label prediction changes after applying the universal pertur-
bation. This has become an uncommon metric since the fooling
ratio can increase if the universal perturbation causes an example
that was originally miss-classified to become correctly classified.

2Unless otherwise specified, we use the sign-of-gradient PGD
for our stochastic gradient optimizer in algorithm 2.
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Figure 5: Attack performance varies with clipping parameter
β in eq. (2). Attacking Inception-V3 is more successful with
clipping (β = 9) than without clipping (β =∞).
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Figure 6: Attack success significantly improves when the
number of training points is larger than number of classes.
For reference, Inception-V3’s top-1 accuracy is 78%. Nep in
algorithm 2 was set to 100 epochs for 500 data samples, 40
for 1000 and 2000 samples, and 10 for more.

training data. The accuracy reported is the classification ac-
curacy on the entire validation set of ImageNet after adding
the universal perturbation. The results are summarized in
fig. 5. The results showcase the value of our proposed loss
function for finding universal adversarial perturbations.

How much training data does the attack need? As in
(Moosavi-Dezfooli et al. 2017b), we analyze how the num-
ber of training points (|X|) affects the strength of universal
perturbations in fig. 6. We build δ using varying amounts of
training data. For each experiment, we report the accuracy
on the entire validation set after we add the perturbation δ.

6 Universal adversarial training ImageNet

In this section, we analyze our robust models that are uni-
versal adversarially trained by solving the min-max prob-
lem (section 4) using algorithm 3. We use ε = 10 for Ima-
geNet. Note that unlike CIFAR where we were able to train
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Figure 7: Universal perturbations fool naturally trained AlexNet on ImageNet, but fail to fool our robust AlexNets. The uni-
versal perturbations generated for the universal adversarial trained AlexNets have little geometric structure compared to that of
naturally trained nets. (b) Universal perturbation of natural model. The accuracy of the validation images + noise is only 3.9%
(c) Perturbation for our universally trained model using algorithm 3. The accuracy of the validation images + noise is 42.0%.
(d) Perturbation for the model trained with low-cost universal training variant (algorithm 4). The accuracy of the validation
images + noise is 28.3%. While the universal noise for the low-cost variant of universal adversarial training has some structure
compared to the original, it is less structured than an attack on the natural model (b). Curves smoothed for better visualization.

a per-instance PGD-7 robust model with ε = 8, for Ima-
geNet, there exists no model which can resist per-instance
non-targeted perturbations with such large ε. For ImageNet,
we again use fairly standard training parameters (90 epochs,
batch-size 256).

Since our universal adversarial training algorithm (algo-
rithm 3) is cheap, it scales to large datasets such as Ima-
geNet. We first train an AlexNet model on ImageNet. We use
the natural training hyper-parameters for universal adversar-
ially training our AlexNet model. Also, we separately use
our “low-cost universal training” algorithm to train a robust
AlexNet with no overhead cost. We then attack the natural,
universally trained, and no-cost universally trained versions
of AlexNet using universal attacks.

As seen in fig. 7 (a), the AlexNet trained using our uni-
versal adversarial training algorithm (algorithm 3) is robust
against universal attacks generated using both algorithm 1
and algorithm 2. The naturally trained AlexNet is suscepti-
ble to universal attacks. The final attacks generated for the
robust and natural models are presented in fig. 7 (b,c,d).
The universal perturbation generated for the robust AlexNet
model has little structure compared to the universal pertur-
bation built for the naturally trained AlexNet. This is similar
to the trend we observed in fig. 3 and fig. 4 for the WRN
models trained on CIFAR-10.

The accuracy of the universal perturbations on the valida-
tion examples are summarized in table 3. Similar to CIFAR-
10, the low-cost version of universal adversarial training is
robust but not as robust as the main method. We also train
a universally robust ResNet-101 ImageNet model. While a
naturally trained ResNet-101 achieves only 7.23% accuracy
on universal perturbations, our ResNet-101 achieves 74.43%
top1 and 92.00% top5 accuracies.

7 Conclusion

We proposed using stochastic gradient methods and a
“clipped” loss function as an effective universal attack that
generates universal perturbations much faster than previous

Table 3: Accuracy on ImageNet for nat and robust models.

Training
Evaluated Against

Natural Images Universal Attack
Top-1 Top-5 Top-1 Top-5

Natural 56.4% 79.0 % 3.9 % 9.4 %
Universal 49.5% 72.7% 42.0% 65.8 %

Low-cost U. 48.4% 72.4% 28.3% 48.3 %

methods. To defend against universal perturbations, we pro-
posed to train robust models by optimizing a min-max prob-
lem using alternating or simultaneous stochastic gradient
methods. We show that this is possible using certain univer-
sal noise update rules that use “normalized” gradients. The
simultaneous stochastic gradient method comes at almost no
extra cost compared to natural training and has almost no ad-
ditional cost compared to conventional training.
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