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Abstract

There is broad interest in creating RL agents that can solve
many (related) tasks and adapt to new tasks and environments
after initial training. Model-based RL leverages learned surro-
gate models that describe dynamics and rewards of individual
tasks, such that planning in a good surrogate can lead to good
control of the true system. Rather than solving each task in-
dividually from scratch, hierarchical models can exploit the
fact that tasks are often related by (unobserved) causal factors
of variation in order to achieve efficient generalization, as in
learning how the mass of an item affects the force required to
lift it can generalize to previously unobserved masses. We pro-
pose Generalized Hidden Parameter MDPs (GHP-MDPs) that
describe a family of MDPs where both dynamics and reward
can change as a function of hidden parameters that vary across
tasks. The GHP-MDP augments model-based RL with latent
variables that capture these hidden parameters, facilitating
transfer across tasks. We also explore a variant of the model
that incorporates explicit latent structure mirroring the causal
factors of variation across tasks (for instance: agent properties,
environmental factors, and goals). We experimentally demon-
strate state-of-the-art performance and sample-efficiency on
a new challenging MuJoCo task using reward and dynamics
latent spaces, while beating a previous state-of-the-art baseline
with > 10× less data. Using test-time inference of the latent
variables, our approach generalizes in a single episode to novel
combinations of dynamics and reward, and to novel rewards.

1 Introduction

In our pursuit of better learning algorithms, we seek those
that can learn quickly across tasks that it encounters during
training (called positive transfer when there is helpful syn-
ergy), and generalize to novel it encounters at test-time. Con-
sider an illustrative problem of an agent with some pattern of
broken actuators (agent variation) acting in an environment
with changing surface conditions due to weather (dynamics
variation), tasked with achieving one of many possible goals
(reward variation). We would like a learning algorithm that (1)
pools information across observed tasks to learn faster (posi-
tive transfer), and generalizes from observed combinations
of agent, dynamics, and reward variations to (2) other unseen
combinations (weak generalization) and (3) novel variations
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(strong generalization) without learning a new policy entirely
from scratch (Hu et al. 2018).

To tackle this problem, we introduce Generalized Hidden
Parameter MDPs (GHP-MDP) to describe families of MDPs
in which dynamics and reward can change as a function of
hidden parameters (Section 3.1). This model introduces (mul-
tiple) latent variables that capture the factors of variation
implicitly represented by tasks at training time. At test time,
we infer the MDP by inferring the latent variables that form
a latent embedding space of the hidden parameters. This
extends and unifies two lines of work: we augment trans-
ferable models of MDPs like (Doshi-Velez and Konidaris
2016) with structure on reward and dynamics, and combine
it with powerful approaches for learning probabilistic mod-
els (Lakshminarayanan, Pritzel, and Blundell 2017) to solve
challenging RL tasks.

We propose two variants of latent variable models: one
with a shared latent variable to capture all variations in reward
and dynamics, and a structured model where latent variables
may factorize causally. Our intention is to afford GHP-MDPs
the use of prior knowledge and inductive biases that could
improve sample efficiency, transfer, and generalization.

In our experiments, agents are trained on a small subset of
possible tasks—all related as instances from the same GHP-
MDP—and then generalize to novel tasks from the same
family via inference. We show that this method improves on
the state-of-the-art sample efficiency for complex tasks while
matching performance of model-free meta-RL approaches
(Section 5) (Finn, Abbeel, and Levine 2017; Rakelly et al.
2019). Notably, our approach also succeeds with a fairly
small number of training tasks, requiring only a dozen in
these experiments.

2 Model-based RL

We first consider a reinforcement learning (RL) problem de-
scribed by a Markov decision process (MDP) comprising a
state space, action space, transition function, reward func-
tion, and initial state distribution: {S,A, T ,R, ρ0} (Bellman
1957). We define a ”task” (or ”environment”) τ to be a MDP
from a set of MDPs that share S and A but differ in one or
more of {T ,R, ρ0}.

In model-based RL, the agent uses a model of the transition
dynamics T : S × A → S in order to maximize rewards
over some task-dependent time horizon H . For a (stochastic)
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policy πθ parameterized by θ, the goal is to find an optimal
policy π∗ that maximizes the expected reward,

π∗(a|s) =argmaxθ Eat∼πθ(·|st)
t+H−1∑

t′=t

R(st′ ,at′)

s.t. st+1 ∼ T (st,at),

where T acts as a probability distribution over next states in
a stochastic environment.

While it is common to assume a known reward functionR
and even transition function T , one can simultaneously learn
an approximate model of both the dynamics and reward,

T ≈ T̃ =̇ pθ(st+1|st,at)
R ≈ R̃ =̇ pω(rt+1|st,at, st+1)

with parameters θ and ω using data collected from the en-
vironment D = {(s(n)t ,a

(n)
t , s

(n)
t+1, r

(n)
t+1)}Nn=1. In this work,

we do not learn a parametric policy πθ, but instead use model
predictive control to perform planning trajectories sampled
from the learned models (see Section 3.5.)

The RL problem is then decomposed into two parts: learn-
ing models from (limited) observations, and (approximate)
optimal control given those models. By iterating between
model learning and control, the agent uses the improved
model to improve control and vice versa. This basic approach
is effective for a single environment, but is not designed
to learn across multiple related environments. This is a key
limitation our approach overcomes, described in Section 3.1.

Another shortcoming of this approach is the tendency for
expressive models (e.g., neural networks) to overfit to ob-
served samples and produce overconfident and erroneous
predictions (also called ”model bias” (Deisenroth and Ras-
mussen 2010)). The result is a sub-optimal policy, worse
sample efficiency, or both. This problem is exacerbated for
transfer learning scenarios, in which an agent that overfits to
training tasks fails to generalize to novel tasks at test time.
Bayesian learning for neural networks can properly account
for model uncertainty given limited data, but can be difficult
to scale to high-dimensional states S and actions A (Deisen-
roth 2011) and is burdened by the hardness of representation
for the posterior over weights. As a tractable alternative,
we extend Deep Ensembles of neural networks (Lakshmi-
narayanan, Pritzel, and Blundell 2017), which perform well
on isolated tasks (Chua et al. 2018), to learn transferable
agents without changing the underlying model.

2.1 Learning probabilistic models

In order to perform model-based control, an agent re-
quires knowledge of the dynamics p(st+1|st,at) and reward
p(rt+1|st,at, st+1). When these underlying mechanisms are
unknown, one can resort to learning parameterized models
pθ(st+1|st,at) and pω(rt+1|st,at, st+1). Because environ-
ments can be stochastic, we use a generative model of dynam-
ics and reward. Because these are continuous quantities, each
can be modeled with a Gaussian likelihood. The dynamics,
for example, can be parameterized by mean μθ and diagonal
covariance Σθ produced by a neural network with parameters

θ (and similarly for the reward model using parameters ω),

pθ(st+1|st,at) = N (μθ(st,at),Σθ(st,at))

pω(rt+1|st,at, st+1) = N (μω(st,at, st+1),

Σω(st,at, st+1)) .

(1)

From these building blocks, we construct a joint probabil-
ity distribution over trajectories and jointly optimize model
parameters {θ, ω} given data D. (See Section 3.4 for the
learning objective involving μθ and Σθ.)

Also, as commonly done elsewhere, the neural net-
work prediction target is actually the change in the states
Δs = st+1 − st given the state and action: pθ(Δs|st,at; θ).

2.2 Ensembles of networks
In order to be robust to model misspecification and handle
the small data setting, one can model uncertainty about pa-
rameters θ and ω and marginalize over their posterior after
observing dataset D to obtain the predictive distributions

p(st+1|st,at,D) =

∫
pθ(st+1|st,at)p(θ|D)dθ

p(rt+1|st,at, st+1,D) =

∫
pω(rt+1|st,at, st+1)p(ω|D)dω .

(2)

Learning these models can be posed as inference of model
parameters given observed data, e.g. using a Bayesian Neural
Network (BNN) which entails inferring the posteriors p(θ|D)
and p(ω|D). As is usually the case in inference for such mod-
els, computing the exact posterior is intractable. A practical
way to approximate the predictive distribution of the network
is by capturing uncertainty through frequentist ensembles
of models, in which each ensemble member is trained on a
shuffle of the training data (Lakshminarayanan, Pritzel, and
Blundell 2017). For an ensemble with M members and the
collection of all network parameters Θ =̇ {θ1, ..., θM}, we
define a model of the next state predictive distribution as a
mixture model as follows:

p(st+1|st,at; Θ) =
1

M

∑

θ∈Θ

pθ(st+1|st,at)

≈ p(st+1|st,at) .
(3)

The reward model follows similarly,

p(rt+1|st,at, st+1; Ω) =
1

M

∑

ω∈Ω

pω(rt+1|st,at, st+1)

≈ p(rt+1|st,at, st+1) , (4)

also including its dependence on st+1, whose values are
observed from training data, but at test-time are the result of
predictions from they dynamics model of (3).

3 Modeling with hidden parameters

Our goal is to learn a model of the system we would like to
control and then plan on that model in order to achieve high
reward on the actual system. For sufficiently complex systems
and finite training data, we expect that the model can only
approximate the real system. Furthermore, the real system
may differ in significant ways from the system our models
were trained on, as when a robot actuator force degrades
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Figure 1: Probabilistic graphical model of MDP with struc-
tured latent variables for environment, agent, and reward
function variations.

over time, unless the conditions were deliberately included in
training. However, it is unreasonable to train a model across
all possible conditions an agent may encounter. Instead, we
propose a model that learns to account for the causal factors
of variation observed across tasks at training time, and then
infer at test time the model that best describe the system. We
hypothesize that explicitly incorporating these factors will
facilitate generalization to novel variations at test time.

A Hidden Parameter MDP (HiP-MDP), first formalized
in (Doshi-Velez and Konidaris 2016), describes a family
of MDPs in which the transition dynamics are parameter-
ized by hidden parameters η ∈ R

n, here expressed as Tη
or T (· ; η). In dynamical systems, for example, parameters
can be physical quantities like gravity, friction of a sur-
face, or the strength of a robot actuator. Their effects are
”felt” but not directly observed; η is not part of the obser-
vation space. Prior work using meta-learning for adaptive
dynamics problems proposes agents that learn across dis-
tinct tasks τi where the transition dynamics varies accord-
ing to some problem-specific distribution Ti ∼ p(T ). For
example, by changing the terrain, agent ability, or observa-
tions for tasks during training, agents can learn to adjust to
novel yet similar conditions at test time (Clavera et al. 2018;
Fu, Levine, and Abbeel 2016). In contrast, we treat each
task as an instance of the same HiP-MDP with differ-
ent hidden parameters η ∼ p(η) affecting the transition
function Tη. Previous work showed that for simple, low-
dimensional systems, agents can infer an effective repre-
sentation of the hidden parameters, and generalize the dy-
namics to novel parameter settings (Killian et al. 2017;
Sæmundsson, Hofmann, and Deisenroth 2018). Yet neither
the HiP-MDP nor adaptive dynamics methods account for
different task rewards.

Consider a multi-task setting, in which an agent learns
across tasks τi where only the reward functionRi varies, for
example, performing tasks that require navigation to a goal
position, or movement in a certain direction or target velocity
(Finn, Abbeel, and Levine 2017). In our formulation, all of
these tasks come from a parameterized MDP in which the
reward functionRη orR(·; η) depends on hidden parameters
η that determine the goal/reward structure.

3.1 Generalized Hidden Parameter MDPs

We denote a set of tasks/MDPs with transition dynamics Tη
and rewardsRη that are fully described by hidden parameters
η as a Generalized Hidden Parameter MDP (GHP-MDP).
A GHP-MDP includes settings in which tasks can exhibit
multiple factors of variation. For example, consider a robotic
arm with both an unknown goal position g and delivery pay-
load m. This problem can be modeled as drawing tasks from
a distribution ηg, ηm ∼ p(η) with effects on both the tran-
sition Tηm

and reward function Rηg
. Additional factors of

variation can be modeled with additional parameters, for ex-
ample, by changing the size of the payload ηl. Note that we
generalize η to describe more than just physical constants.
All of these hidden parameters are treated as latent variables
{zi ∈ R

di : i = 1, . . . , c}, and we express the GHP-MDP as
a latent variable model.

We pose jointly learning the two surrogate models of (1)
and latent embeddings zi via the maximization of a varia-
tional lower bound over data collected from a small set of
training tasks (see Section 3.4 for the inference objective.) At
test-time, only the parameters φ for the approximate poste-
rior pφ(zi|D) of the latent variables are learned via inference.
Note that the latent variables zi are an embedding of the true
parameters η, and in general, are not equal to η, nor even
have the same dimensions (i.e., di �= n).

In Section 3.2, we describe the simplest probabilistic
model of a GHP-MDP that uses a single continuous latent
variable z ∈ R

D to model hidden parameters of both the
dynamics and reward. Because a single z jointly models all
unobserved parameters, we call this the joint latent variable
(joint LV) model. In Section 3.3, we extend the model to mul-
tiple latent variables {zd, za, zr} ∈ R

D (shown graphically
in Figure 1), one for each aspect of the task that is known
to vary in the training environments. In other words, we en-
code our prior knowledge about the (plated) structure of the
tasks into the structure of the model; hence, we refer to this
as the structured latent variable (structured LV) model. In
this paper, we assume that latent variables are specified a
prior to be either shared or distinct. We leave learning how
to disentangle these factors to future work.

3.2 Joint latent variable model

For any GHP-MDP, we can model the dynamics and re-
ward hidden parameters jointly with a single latent variable
z ∈ R

D. The model for episode return R =
∑

rt+1 for a
trajectory decomposed into partial rewards rt+1 is

p(R|s0:T ,a0:T−1, z) =

T−1∏

t=0

pω(rt+1|st,at, st+1, z) , (5)

where T is the episode length. The resulting joint model
mapped over trajectories p(s0:T ,a0:T−1,R, z) is

p(z)p(s0)

T−1∏

t=0

[
p(rt+1|st,at, st+1, z)

p(st+1|st,at, z)p(at|st, z)
]

(6)

The key feature of this model is the same latent variable z
conditions both the dynamics and the reward distributions.
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The priors for auxiliary latent variable are set to simple nor-
mal distributions, p(z) = N (0, I), and initial state distribu-
tion p(s0) to the environment simulator. Again we note that
p(at|st, z) = π∗(at|st, z) via planning (Section 3.5).

Common meta-RL tasks that vary only reward/task, e.g.
by varying velocities or goal directions (Finn, Abbeel, and
Levine 2017), can be tackled with a simplified joint LV model
that conditions only the reward model. Combined with in-
ference at test-time, this approach is an alternative to meta-
learning via MAML or RNNs (Duan et al. 2017). Our ex-
periments (Section 5) demonstrate the full joint LV model
(conditioning both dynamics and reward models) can solve
one such reward-variation task.

3.3 Structured latent variable model

In the previous section, we introduced a global latent variable
z that is fed into both the dynamics and reward model. Here,
we extend this idea and introduce multiple plated variables
which constitute the structured latent space of the GHP-MDP.
Separate latent spaces for dynamics and reward are intuitive
because agents may pursue different goals across environ-
ments with different dynamics.

Consider a structured model with two latent variables zd ∈
R

D1 and zr ∈ R
D2 to separately model hidden parameters in

the dynamics T (· ; zd) and rewardR(· ; zr). The joint model
p(s0:T+1,a0:T ,R, zd, zr), including the action distribution
implied by control, is

p(zd)p(zr)p(s0)

T−1∏

t=0

[
p(rt+1|st,at, st+1, zr)

p(st+1|st,at, zd)p(at|st, zr, zd)
]
.

(7)

This structure facilitates solving tasks where both of these
aspects can vary independently. Typically, only one or
the other is varied in meta-RL tasks for continuous con-
trol (Clavera et al. 2018; Finn, Abbeel, and Levine 2017;
Rakelly et al. 2019), and so we introduce new tasks in Sec-
tion 5 to test the weak and strong generalization ability of
this modeling choice.

More generally we may have c arbitrary plated contexts,
such as agent, dynamics, reward variation, etc. Then for the
set of latent variables {z1, . . . , zc}, each explains a different
factor of variation in the system, implying p(z) =

∏
p(zc).

This allows the model to have separate degrees of freedom
in latent space for distinct effects. Note that the use of plated
variables implies that tasks will have known factors of varia-
tion (but unknown values and effects) at training time only.
In practice, this is case when training on a simulator.

By factorizing the latent space to mirror the causal struc-
ture of the task, the structured LV model can also more effi-
ciently express the full combinatorial space of variations. For
example, with c = 3 factors of variation and 10 variations for
each ηi for i ∈ {1, 2, 3}, the latent space must generalize to
10× 10× 10 = 103 combinations. Learning a global latent
space would require data from some non-trivial fraction of
this total. In contrast, a structured space can generalize from
10 + 10 + 10 = 30. We examine this generalization ability
experimentally in Section 5.3.

3.4 Training and inference

Each step/episode of training consists of two phases: collect
an episode of trajectories Dk for each task via planning (Al-
gorithm 1), and infer model parameters and latent variables
using all collected data via SGD. The goal of the inference
(learning) step is to maximize the marginal likelihood of ob-
served transitions with respect to θ and φ. For the joint latent
variable model, the intractable distribution p(z|D) is approx-
imated with qφ(z) parameterized by a diagonal Gaussian
where φ = {μ,Σ}. We then maximize the evidence lower
bound (ELBO) to the marginal log-likelihood:

log p(D) =

T∑
t=0

[
log p(st+1|st,at) + log p(rt+1|st,at, st+1)

]

≥ Ez∼qφ(z)

[
T∑

t=0

(log pθ(st+1|st,at, z)+

log pω(rt+1|st,at, st+1, z))

]
−KL

(
qφ(z)||p(z)

)
. (8)

For simplicity, we choose the prior p(z) and variational dis-
tribution qφ(z) to be Gaussian with diagonal covariance. We
can use this criterion during the training phase to jointly
update network parameters Θ and variational parameters φ
capturing beliefs about latent variables.

In practice, we use stochastic variational inference (Ran-
ganath, Gerrish, and Blei 2013; Kingma and Welling 2014)
and subsample in order to perform inference and learning via
gradient descent, yielding the loss function:

L(θ, ω, φ) =

− 1

M

M∑

m=1

T∑

t=0

[
log pθ(st+1|st,at, z(m))

+ log pω(rt+1|st,at, st+1, z
(m))

]

+KL
(
qφ(z)||p(z)

)

(9)

with z(m) ∼ qφ(z) and number of samples M = 2. Re-
call that both models are ensembles and each network in the
ensemble is optimized independently, but the variational dis-
tribution is shared according the relationship between tasks.
During training, we minimize L(θ, ω, φ), and at test time,
reset qφ to the prior and minimize with respect to φ only.

For structured latent variable models with plated con-
texts, (9) can be extended to multiple latent variables. For
a graphical model (Fig. 1) with three factors of variation—
environment, agent, and reward—and variational parameters
Φ =̇ {φd, φa, φr} for each, the loss function becomes

L(θ, ω, φ) =

− 1

M

M∑

m=1

T∑

t=0

[
log pθ(st+1|st,at, z(m)

d , z(m)
a )

+ log pω(rt+1|st,at, st+1, z
(m)
r )

]

+KL(qφd
(zd)||p(zd))

+ KL(qφa
(za)||p(za))

+ KL(qφr
(zr)||p(zr)) .

(10)
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Algorithm 1 Learning and control with MPC and Latent Variable Models
1: Initialize data D with random policy
2: for Episode m = 1 to M do
3: Sample an environment indexed by k
4: If learning, train a dynamics model pθ and reward model pω with D using (9) or (10)
5: Initialize starting state s0 and episode history Dk = ∅

6: for Time t = 0 to TaskHorizon do 	 MPC loop
7: for Iteration i = 0 to MaxIter do 	 CEM loop
8: Sample actions at:t+h ∼ CEM(·)
9: Sample latent z(p) ∼ qφ(z) for each state particle sp

10: Propagate next state s
(p)
t+1 ∼ pθ(·|s(p)t ,at, z

(p)) using TS-∞ 	 See (Chua et al. 2018)
11: Sample reward r

(p)
t+1 ∼ pω(·|s(p)t ,at, s

(p)
t+1, z

(p)) for each particle trajectory

12: Evaluate expected return Gt =
t+h∑
τ=t

1/P
P∑

p=1
r
(p)
τ+1

13: if any(early termination(s
(p)
t )) then

14: Gt ← done penalty 	 Hyperparameter for early termination
15: end if
16: Update CEM(·) distribution with highest reward trajectories
17: end for
18: Execute first action at determined by final CEM(·) distribution
19: Record outcome Dt ← {(st,at)), (st+1, rt+1)}
20: Record outcome Dk ← Dk ∪ Dt

21: If test-time, update approximate posterior qφ(z|Dt) using (9)
22: end for
23: Update data D ← D ∪Dk

24: end for

3.5 Control with Latent Variable Models

Given a learned dynamics model, agents can plan into the
future by recursively predicting future states st+1, ..., st+h

induced by proposed action sequences at,at+1, ...,at+h

such that st+1 ∼ T̃ (st,at). If actions are conditioned on
the previous state to describe a policy π(at|st), then plan-
ning becomes learning a policy π∗ to maximize expected
reward over the predicted state-action sequence. A limi-
tation of this approach is that modeling errors are com-
pounded at each time step, resulting in sub-optimal policies
when the learning procedure overfits to the imperfect dynam-
ics model. Alternatively, we use model predictive control
(MPC) to find the action trajectory at:t+H that optimizes∑t+H−1

t Eqφ(z)Ep(st,at)[p(rt+1|st,at, st+1, z)] at run-time
(Camacho and Bordons 2013), using st+1 predicted from
the learned model (Algorithm 1, line 10). At each time step,
the MPC controller plans into the future, finding a good tra-
jectory over the planning horizon H but applying only the
first action from the plan, and re-plans again at the next step.
Because of this, MPC is better able to tolerate model bias
and unexpected perturbations.

Algorithm 1 includes a control procedure that uses the
cross-entropy method (CEM) as the optimizer for an MPC
controller (De Boer et al. 2005). On each iteration, CEM
samples 512 proposed action sequences at:t+H−1 from H
independent multivariate normal distributions N (at|μt,Σt),
one for each time step in the planning horizon (line 8), and
calculates the expected reward for each sequence. The top

10% performing of these are used to update the proposal
distribution mean and covariance. However, evaluating the
expected reward exactly is intractable, so we use a particle-
based approach called trajectory sampling (TS) from (Chua et
al. 2018) to propagate the approximate next state distributions.
We adapt the TS+CEM algorithm to incorporate beliefs about
the MDP given data observed so far: Each state particle s

(p)
t

uses a sample of each latent variable z(p) ∼ qφ(z) so that
planning can account for their effect on the dynamics and
reward models.

At test time, we skip line 4 to keep the neural networks
fixed. The algorithm iterates between acting in the environ-
ment at step t and inferring p(z|Dt) in order to align the
dynamics and reward models with the current system as new
information is collected. In order to plan when episodes can
terminate early due to constraints set by the environment
(e.g., when MuJoCo Ant or Walker2d falls over), we set cu-
mulative rewards for particle trajectories that violate those
constraints to a fixed constant. This hyperparameter is set to
0 during training to allow exploration, and −100 at test time
for more conservative planning.

4 Related Work

Transfer learning and learning transferable agents has a long
history in reinforcement learning; see (Taylor and Stone 2009;
Lazaric 2012) for a survey. Recent prior work on latent
variable models of MDPs focused on models of dynamics
with small discrete action spaces (Doshi-Velez and Konidaris

5407



2016; Killian et al. 2017; Yao et al. 2018). We extend Hidden
Parameter MDPs introduced in (Doshi-Velez and Konidaris
2016) to the more general case including reward modeling
and accounting for potentially multiple factors of variation.
Latent dynamics models for hard continuous control tasks
were used in (Perez, Such, and Karaletsos 2018), and using
Gaussian Processes in (Sæmundsson, Hofmann, and Deisen-
roth 2018), albeit under significantly less challenging experi-
mental conditions. Another notable use is latent skill embed-
dings in robotics for adaptation to different goals (Hausman et
al. 2018). In contrast, DeepMDP models a single task/MDP
entirely in a latent space (Gelada et al. 2019), and can be
merged to form a Deep-GHP-MDP. Similarly, (Hafner et al.
2019) demonstrates latent space planning from pixel observa-
tions, and has some multi-task ability when the tasks appear
different. (Zhang, Satija, and Pineau 2018) also learns and
plans in a latent space with learned dynamics and reward
models, and explores transfer using prior learned encoders
on slightly perturbed tasks. The problem of learning and gen-
eralization across combinations of reward and dynamics in
discrete action spaces on visual domains was also tackled in
(Hu et al. 2018) using factorized policies and complementary
embeddings of reward and dynamics.

Meta-learning, or learning to learn, is one solution that
enables RL agents to learn quickly across different or non-
stationary tasks (Schmidhuber 1987; Ravi and Larochelle
2017; Al-Shedivat et al. 2017; Finn, Abbeel, and Levine
2017). Recently, meta-learning has been used to adapt a dy-
namics model (Clavera et al. 2018) for model-based control to
changing environments (but does not model reward or solve
multiple tasks), or to learn a policy (Rothfuss et al. 2018;
Rakelly et al. 2019) that adapts by adjusting the model or pol-
icy in response to recent experience. Extensions can continu-
ously learn new tasks online (Nagabandi, Finn, and Levine
2019). However, model-free meta-RL methods can require
millions of samples and dozens of training tasks. One can also
simply adapt a neural network online at test-time via SGD
without MAML for one/few-shot learning (Fu, Levine, and
Abbeel 2016). Learning across tasks with common dynam-
ics has been approached with meta-reinforcement learning
(Finn, Abbeel, and Levine 2017) or using successor features
(Barreto et al. 2017).

5 Experiments
The GHP-MDP conceptually unifies various RL settings,
including multi-task RL, meta-RL, transfer learning, and
test-time adaptation. In these experiments, we wish to 1)
demonstrate inference on a GHP-MDP with multiple factors
of variation, 2) compare the sample efficiency and perfor-
mance of our model-based implementation of the GHP-MDP
on hard continuous control tasks with these flavors, and 3)
explore its ability to generalize to novel tasks at test time.

5.1 Didactic example with multiple factors

To demonstrate inference over a structured latent variable
model for a GHP-MDP, we construct a toy example where
the goal is to infer the hidden parameter values at test time in
order to facilitate accurate planning given the parameterized
dynamics function.

Figure 2: Inference of latent variables when reward hidden
parameters are changing but dynamics are not. Left and right
columns are two different tasks. Top: Distance to the goal tip
position for two CartPole tasks with different hidden parame-
ters (pole length ∈ {0.5, 0.7}.) The first episode is a random
policy. Bottom: Mean and standard deviation of the poste-
rior of latent variables (solid), and the true values (dashed).
Episode 0 shows the priors on latents before inference.

For this experiment, we use a modified version of
CartPoleSwingUp with a reward function proportional
to the distance between the tip of the pole and the desired
position (xgoal−xtip)

2 (Sæmundsson, Hofmann, and Deisen-
roth 2018). The transition function T (st,at; ηa, ηl, ηx) takes
as parameters: ηa that scales the action/control signal (blue),
the length of the pole ηl (orange), and the position of the
pole tip ηx (green; Figure 2). We model the tasks by replac-
ing the hidden parameters η in the transition model Tη with
corresponding latent variables za, zl, zx. In order to use
generic priors for missing information, e.g. p(z) = N (0, 1),
we also model unknown positive parameter values η with
latent variables z via the softplus: η = log(1 + exp(z)).

The experiment consists of only two tasks with different
hidden parameters (Figure 2 left and right columns). Latent
variables are inferred using mean field variational inference
with Gaussian priors and variational distributions, and per-
form control using random search. Because there is no model
learning, we can immediately infer latent variables given
data. After collecting data for 200 steps using a random
policy (episode 1), inference yields accurate estimates (Fig-
ure 2; bottom) resulting in good control (Figure 2; top).

To test the system, the goal position is suddenly changed
in episode 4 and see a corresponding change in only the cor-
responding latent variable when continuing inference. Thus,
we demonstrate the ability of a simplified structured latent
variable model to properly disentangle variations in an en-
vironment at test time through the usage of inference alone
and even adapt on the fly to targeted changes by inferring the
right component.

5.2 GHP-MDP for continuous control

We evaluate both the joint and structured LV model with a
total of 8 latent dimensions using experiments in the MuJoCo
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Figure 3: Hidden parameters for training tasks represented by
blue dots. Weak generalization requires an agent to work on
new combinations (green crosses). Strong generalization re-
quires extrapolation to new hidden parameters (red squares).

Ant environment, a challenging benchmark for model-based
RL (Todorov, Erez, and Tassa 2012).

Because the GHP-MDP models both dynamics and reward,
we introduce novel tasks with up to two factors of variation.
In DirectionAnt, the agent receives reward proportional
to the portion of its velocity along the goal direction. This is
an example of a multi-task RL setting, often used in meta-
reinforcement learning benchmarks, in which tasks τi have
common dynamics T but a unique reward function Ri. In
CrippledLegDirectionAnt, agents must learn 1) which
of four legs is crippled and does not respond to actions, and
2) which of eight directions to travel. In both experiments,
directions are the eight cardinal plus intercardinal directions.
The method for dividing tasks into training, test, and holdout
sets is described below.

We experimentally evaluate the joint model from Sec-
tion 3.2 and structured LV model from Section 3.3. The
joint model has a global z that conditions both dynamics
and reward models. The structured model has separate latent
variables for dynamics T̃ (· ; zd) and reward model R̃(· ; zr).
Latent variables are 4-D per factor of variation zi ∈ R

4 for
i ∈ {1, . . . ,K}; the joint model has the same total dimen-
sionality in one variable z ∈ R

4K for K factors of variation.
The architecture for all experiments is an ensemble of 5
neural networks with 3 hidden layers of 256 units for the
dynamics model, and 1 hidden layer of 32 units for the re-
ward model. We report results averaged across 5 seeds using
95% bootstrapped confidence intervals. yielding new com-
binations with an unseen factors. Experimental results are
divided into three categories to probe questions/hypotheses
about different flavors of generalization:

• Transfer that occurs when learning across tasks is faster
than learning each task individually. We compare the learn-
ing curves of agents trained across tasks to those of spe-
cialists trained per task in Section 5.3.

• Weak generalization that requires performing well on a task
that was not seen during training but has closely related
dynamics and/or reward. Meta-RL commonly assumes
tasks at meta-test time are drawn from the same distribu-
tion as meta-training, and so falls under this umbrella. In
Section 5.3, we test on novel combinations of crippled leg

and goal direction in CrippledLegDirectionAnt that
were not observed during training.
• Strong generalization that requires performing well on

a task with dynamics and/or reward that is outside what
was seen during training. This setting falls under transfer
learning or online adaptation, in which an agent lever-
ages previous training to learn more quickly on a new
out-of-distribution task/environment. In Section 5.3, we
test on a novel goal direction not observed during training
in DirectionAnt and CrippledLegDirectionAnt.

Within the GHP-MDP formalism, the last two types of gen-
eralization can be visualized as in- or out-of-distribution in
the space of hidden parameters, as shown in Figure 3. An-
other point of interest is how well a structured LV model will
generalize compared to the joint LV model. Intuitively, sepa-
rating the latent variables along causal relationships ought to
improve (strong) generalization when samples are scarce.

Figure 4: Learning curves (semi-log scale) for (bottom)
DirectionAnt and (top) CrippledLegDirectionAnt.
”Joint LV” in the legend refers to the only LV model in the
bottom panel.

We compare our method to three baselines. The Gener-
alist is a ensemble-model-based baseline (Chua et al. 2018)
that learns dynamics and rewards but lacks latent variables.
This baseline is a negative control; its failure confirms that
the environments are challenging enough to require addi-
tional modeling complexity introduced by the GHP-MDP.
The Specialist is the same model as the Generalist but trains
on each task individually, providing a benchmark for per-task
sample efficiency. PEARL is a sample-efficient off-policy
meta-RL algorithm that also uses latent ”context” variables
and amortized inference (Rakelly et al. 2019), and reports
state-of-the-art sample efficiency on continuous control meta-
RL tasks like DirectionAnt. We note that PEARL can be
posed as the model-free analogue of the joint LV model, us-
ing an inference network (like a VAE) instead of SVI. (We
know of no analogue to the structured LV model.) We allow
PEARL ≈ 2M samples, up to ≈ 15× the training data as
our method. To compare generalization ability when learning
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Figure 5: Episode reward on novel combinations.

from few tasks, PEARL learns from the same number of
tasks as our model. Because reward varies across tasks in our
experiment, we do not compare against adaptive model-based
methods like (Clavera et al. 2018) that do not model reward.
Because meta-RL methods like PEARL are usually trained
with many more tasks, an additional baseline PEARL-40
trains on 40 out of 100 possible tasks. We compare PEARL
and PEARL-40 to evaluate the effect of additional tasks, and
compare our methods with PEARL trained on the same tasks
to evaluate our method’s performance.

5.3 Learning, transfer, and generalization

Of the 28 total tasks (7 directions and 4 crippled legs) in
CrippledLegDirectionAnt, 12 are sampled for training
such that each direction and crippled leg is seen at least once.
A sample of 5 remaining combinations is used to evaluate
weak generalization in the next section. For DirectionAnt,
7 training directions are seen during training.

First, we compare the training performance of the LV mod-
els to the Specialist baseline to measure positive transfer. The
average performance across tasks is plotted against the total
number of timesteps taken across all tasks in Figure 4. In both
experiments, the LV models learn significantly faster across
tasks than the Specialist, indicating that the latent variables
facilitate information sharing into the global neural network
models. This is confirmed by the poor performance of the
Generalist that also sees all the tasks but is unable to pool
information effectively, yielding agents that perform worse
than the Specialist. In addition to modeling the reward, our
controller also handles early termination of an episode (see
Sec. 3.5), whereas other model-based methods fail (Wang et
al. 2019). Accordingly, even the Specialist is state-of-the-art
under these conditions, outperforming similar models pro-
posed int he literature on our tasks. Second, we compare
to PEARL benchmarks and observe that the LV models are
> 10× more sample efficient than the most efficient off-
policy meta-RL algorithm that we are aware of. Finally, the
difference between PEARL and PEARL-40 is small, suggest-
ing that training is unaffected by fewer tasks, but as we will
see (Sec. 5.3), still negatively impacts generalization.

Figure 6: Episode reward on a novel direction.

Weak generalization: To test for weak generalization, 5
tasks are sampled from novel combinations of crippled leg
and direction in CrippledLegDirectionAnt (excluding
the holdout direction) and evaluated for 5 episodes at test-
time. For LV models, the same objective function (either (9)
or (10)) is minimized except that only variational parameters
are updated. Every 10 steps on the test task, 100 iterations of
SVI are performed on observed data at 5× the learning rate.

To address the gap in sample efficiency between model-
based and model-free methods, we evaluate all models after
the maximum amount of training so that the LV models are
compared to PEARL with much more training data. This
shifts the focus to the realized reward for a fairer comparison.
Despite far less training data and similar training perfor-
mance, Figure 5 reveals that both LV models outperform the
meta-RL baseline regardless of the training regimen. The
LV models also infer quickly, performing well on the first
episode, whereas PEARL is designed to perform well after
one or two episodes. (Note that we did not attempt to tune
PEARL’s inference to perform well in the first episode, and
ours was tuned to maximize average reward in the first 3
episodes.) There is, however, no difference between the joint
and structured LV models. We hypothesize the latter will
scale better with even more factors of variation.

Strong generalization: In this experiment, trained models
infer the eight holdout directions at test-time to evaluate gen-
eralization to a novel task. In CrippledLegDirectionAnt,
the agent must also infer which leg is crippled, further raising
the difficulty (Recall that each leg was crippled at least once
during training).

Figure 6 shows the LV models significantly outperform
the baselines, supporting the claim that the GHP-MDP effec-
tively models variations across these tasks. The structured LV
model is the best performing, consistent with our hypothesis
that causally factorized latent variables can improve gener-
alization under some circumstances. Surprisingly, PEARL
trained with fewer tasks fares slightly better than PEARL-
40, indicating that a model trained with more tasks, which
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aids weak generalization to similar tasks (Figure 5, slightly
biases the policy against out-of-distribution tasks that require
extrapolation.

6 Discussion
In this work we have introduced the GHP-MDP, which can
capture hidden structure in the dynamics and reward func-
tions of related MDPs. We demonstrate this modeling ap-
proach on continuous control tasks with dynamics and re-
ward variations that surpass strong baselines in performance
and sample efficiency. In future work, it would be interesting
to study the extent to which one can model more factors of
variation and disentangle them automatically, obviating the
specification of structure upfront.
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