
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Unsupervised Attributed Multiplex Network Embedding

Chanyoung Park,1 Donghyun Kim,2 Jiawei Han,1 Hwanjo Yu3

1Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA
2Yahoo! Research, CA, USA

3Department of Computer Science and Engineering, Pohang University of Science and Technology, Korea
{pcy1302, hanj}@illinois.edu, donghyun.kim@verizonmedia.com, hwanjoyu@postech.ac.kr

Abstract

Nodes in a multiplex network are connected by multiple
types of relations. However, most existing network embed-
ding methods assume that only a single type of relation exists
between nodes. Even for those that consider the multiplexity
of a network, they overlook node attributes, resort to node
labels for training, and fail to model the global properties
of a graph. We present a simple yet effective unsupervised
network embedding method for attributed multiplex network
called DMGI, inspired by Deep Graph Infomax (DGI) that
maximizes the mutual information between local patches of
a graph, and the global representation of the entire graph. We
devise a systematic way to jointly integrate the node embed-
dings from multiple graphs by introducing 1) the consensus
regularization framework that minimizes the disagreements
among the relation-type specific node embeddings, and 2)
the universal discriminator that discriminates true samples re-
gardless of the relation types. We also show that the attention
mechanism infers the importance of each relation type, and
thus can be useful for filtering unnecessary relation types as a
preprocessing step. Extensive experiments on various down-
stream tasks demonstrate that DMGI outperforms the state-
of-the-art methods, even though DMGI is fully unsupervised.

1 Introduction

Analyzing and mining useful knowledge in graphs have
been an actively researched topic for decades both in
academia and industry. Among various graph mining tech-
niques, network embedding, which learns low-dimensional
vector representations for nodes in a graph, is shown to be
especially effective for various network-based tasks (Tang et
al. 2015; Wang et al. 2017; Meng et al. 2019).

However, most existing network embedding methods as-
sume that only a single type of relation exists between
nodes (Veličković et al. 2017; 2019; Kipf and Welling 2016),
whereas in reality networks are multiplex (De Domenico et
al. 2013) in nature, i.e., with multiple types of relations. Tak-
ing the publication network as an example, two papers can
be connected due to various reasons, such as authors (two
papers are authored by a common author), citation (one pa-
per cites the other), or keywords (two papers share common
keywords). As another example, in a movie database net-

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

work, two movies can be connected via a common director,
or a common actor.

Although different types of relations can independently
form different graphs, these graphs are related, and thus can
mutually help each other for various downstream tasks. As
a concrete example of the publication network, although it
is hard to infer the topic of a paper only from its citations
(citations can be diverse), also knowing other papers writ-
ten by the same authors will help predict its topic, because
authors usually work on a specific research topic. Further-
more, nodes in graphs may contain attribute information,
which plays important roles in many applications (Zhang
et al. 2018b). For example, if we are additionally given the
abstract of the papers in the publication network, it will be
much easier to infer their topics. As such, the main challenge
is to learn a consensus representation of a node that not only
considers its multiplexity, but also its attributes.

Several recent studies have been conducted for multi-
plex network embedding, however, some issues remain that
need further consideration. First, previous methods (Qu et
al. 2017; Zhang et al. 2018a; Shi et al. 2018; Liu et al. 2017)
focus on the integration of multiple graphs, but overlook
node attributes. Second, even for those that consider node
attributes (Schlichtkrull et al. 2018; Wang et al. 2019), they
require node labels for training. However, as node labeling
is often expensive and time-consuming, it would be the best
if a method can show competitive performance even with-
out any label. Third, most of these methods fail to model
the global properties of a graph, because they are based
on random walk-based skip-gram model or graph convo-
lutional network (GCN) (Kipf and Welling 2016), both of
which are known to be effective for capturing the local graph
structure (Yadav et al. 2019). More precisely, nodes that are
“close” (i.e., within the same context window or neighbor-
hoods) in the graph are trained to have similar representa-
tions, whereas nodes that are far apart do not have simi-
lar representations, even though they are structurally simi-
lar (Ribeiro, Saverese, and Figueiredo 2017).

Keeping these limitations in mind, we propose a simple
yet effective unsupervised method for embedding attributed
multiplex networks. The core building block of our pro-
posed method is Deep Graph Infomax (DGI) (Veličković et
al. 2019) that aims to learn a node encoder that maximizes
the mutual information between local patches of a graph,

5371

and the global representation of the entire graph. DGI is the
workhorse method for our task, because it 1) naturally inte-
grates the node attributes by using a GCN, 2) is trained in a
fully unsupervised manner, and 3) captures the global prop-
erties of the entire graph. However, it is challenging to apply
DGI, which is designed for embedding a single network, to
a multiplex network in which the interactions among multi-
ple relation types, and the importance of each relation type
should be considered.

In this paper, we present a systematic way to jointly
integrate the embeddings from multiple types of relations
between nodes, so as to facilitate them to mutually help
each other learn high-quality embeddings useful for various
downstream tasks. More precisely, we introduce the consen-
sus regularization framework that minimizes the disagree-
ments among the relation-type specific node embeddings,
and the universal discriminator that discriminates true sam-
ples, i.e., ground truth “(graph-level summary, local patch)”
pairs, regardless of the relation types. Moreover, we demon-
strate that through the attention mechanism, we can infer the
importance of each relation type in generating the consensus
node embeddings, which can be used for filtering unneces-
sary relation types as a preprocessing step. Our extensive
experiments demonstrate that our proposed method, Deep
Multplex Graph Infomax (DMGI), outperforms the state-of-
the-art attributed multiplex network embedding methods in
terms of node clustering, similarity search, and especially,
node classification even though DMGI is fully unsupervised.

2 Problem Statement

Definition 1. (Attributed Multiplex Network) An
attributed multiplex network is a network G =
{G1,G2, ...,G|R|} = {V, E ,X}, where Gr = {V, E(r),X}
is a graph of the relation type r ∈ R, V is the set of n
nodes, E =

⋃
r∈R E(r) ⊆ V × V is the set of all edges

with relation type r ∈ R, and X ∈ R
n×f is a matrix that

encodes node attributes information for n nodes. Note that
|R| > 1 for multiplex networks, and |R| = 1 for a single
network. Given the network G, A = {A(1), ...,A(|R|)} is a
set of adjacency matrices, where A(r) ∈ {0, 1}|V |×|V | is an
adjacency matrix of the network Gr.

Task: Unsupervised Attributed Multiplex Network Em-
bedding. Given an attributed multiplex network G =
{V, E ,X}, and the set of adjacency matrices A, the task of
unsupervised attributed multiplex network embedding is to
learn a d-dimensional vector representation zi ∈ Z ∈ R

n×d

for each node vi ∈ V without using any labels.

3 Unsupervised Attributed Multiplex

Network Embedding

We begin by introducing Deep Graph Informax
(DGI) (Veličković et al. 2019), then we discuss about
its limitations, and present our proposed method.
Deep Graph Infomax (DGI). Veličković et al. (2019) pro-
posed an unsupervised method for learning node repre-
sentations, called DGI, that relies on the infomax princi-
ple (Linsker 1988). More precisely, DGI aims to learn a low-

dimensional vector representation for each node vi, i.e., hi ∈
R

d, such that the average mutual information (MI) between
the graph-level (global) summary representation s ∈ R

d, and
the representations of the local patches {h1, h2, ..., hn} is
maximized. To this end, DGI introduces a discriminator D
that discriminates the true samples, i.e., (hi, s), from its neg-
ative counterparts, i.e., (h̃j , s):

L =
n∑

vi∈V
logD (hi, s) +

n∑
j=1

log
(
1−D

(
h̃j , s

))
(1)

where hi = σ
(∑

j∈N(i)
1
cij

xjW
)

, N(i) is the set of

neighboring nodes of vi including vi itself, W ∈ R
f×d,

and cij is a normalizing constant for edge (vi, vj), s =
σ
(
1
n

∑n
i=1 hi

)
, and σ is the sigmoid nonlinearity. Negative

patch representation h̃j is obtained by row-wise shuffling
the original attribute matrix X. Veličković et al. (2019) the-
oretically proved that the binary cross entropy loss shown
in Eqn. 1 amounts to maximizing the mutual information
(MI) between hi and s, based on the Jensen-Shannon di-
vergence (Veličković et al. 2019). Refer to Section 3.3
of (Veličković et al. 2019) for the detailed proof. As the lo-
cal patch representations {h1, h2, ..., hn} are learned to pre-
serve the MI with the graph-level representation s, each hi is
expected to capture the global properties of the entire graph.
Limitation. Despite its effectiveness, DGI is designed for a
single attributed network, and thus it is not straightforward
to apply it to a multiplex network. As a naive extension of
DGI to a multiplex attributed network, we can independently
apply DGI to each graph formed by each relation type, and
then compute the average of the embeddings obtained from
each graph to get the final node representations. However,
we argue that this fails to model the multiplexity of the net-
work, because the interactions among the node embeddings
from different relation types is not captured. Thus, we need a
more systematic way to integrate multiple independent mod-
els to obtain the final consensus embedding that every model
can agree on.

3.1 Deep Multiplex Graph Infomax: DMGI
We present our unsupervised method for embedding an at-
tributed multiplex network. We first describe how to inde-
pendently model each graph pertaining to each relation type,
then explain how to jointly integrate them to finally obtain
the consensus node embedding matrix.
Relation-type specific Node Embedding. For each relation
type r ∈ R, we introduce a relation-type specific node en-
coder gr : Rn×f × R

n×n → R
n×d to generate the relation-

type specific node embedding matrix H(r) of nodes in G(r).
The encoder is a single–layered GCN:

H(r) = gr(X,A(r)|W(r)) = σ
(
D̂

− 1
2

r Â(r)D̂
− 1

2
r XW(r)

)
(2)

where Â(r) = A(r) + wIn, D̂ii =
∑

j Âij , W(r) ∈ R
f×d

is a trainable weight matrix of the relation-type specific de-
coder gr, and σ is the ReLU nonlinearity. Unlike conven-
tional GCNs (Kipf and Welling 2016), we control the weight

5372

of the self-connections by introducing a weight w ∈ R.
Larger w indicates that the node itself plays a more im-
portant role in generating its embedding, which in turn di-
minishes the importance of its neighboring nodes. Then, we
compute the graph-level summary representation s(r) that
summarizes the global content of the graph G(r). We em-
ploy a readout function Readout : Rn×d → R

d:

s(r) = Readout(H(r)) = σ

(
1

n

n∑
i=1

h
(r)
i

)
(3)

where σ is the logistic sigmoid nonlinearity, and h
(r)
i de-

notes the i-th row vector of the matrix H(r). We also note
that various pooling methods such as maxpool, and SAG-
Pool (Lee, Lee, and Kang 2019) can be used as Readout(·).

Next, given the relation-type specific node embedding
matrix H(r), and its graph-level summary representation
s(r), we compute the relation-type specific cross entropy:

L(r) =

n∑
vi∈V

logD
(

h
(r)
i , s(r)

)
+

n∑
j=1

log
(
1−D

(
h̃
(r)
j , s(r)

))(4)

whereD : Rd×Rd → R is a discriminator that scores patch-
summary representation pairs, i.e., (h(r)

i , s(r)). In this paper,
we apply a simple bilinear scoring function as it empirically
performs the best in our experiments:

D
(

h
(r)
i , s(r)

)
= σ(h

(r)T
i M(r)s(r)) (5)

where σ is the logistic sigmoid nonlinearity, and M(r) ∈
R

d×d is a trainable scoring matrix. To generate the negative

node embedding h̃
(r)

j , we corrupt the original attribute ma-
trix by shuffling it in the row-wise manner (Veličković et al.
2019), i.e., X̃ ← X, and reuse the encoder in Eqn. 2. i.e.

H̃
(r)

= gr(X̃,A(r)|W(r)).

Joint Modeling and Consensus Regularization. Hereto-
fore, by independently maximizing the average MI between
the local patches {h(r)

1 , h
(r)
2 , ..., h(r)

n } and the graph-level
summary s(r) pertaining to each graph G(r)(∀r ∈ R), we
obtained relation-type specific node embedding matrix H(r)

that captures the global information in G(r). However, as
each H(r) is trained independently for each r ∈ R, these
embedding matrices only contain relevant information re-
garding each relation type, and therefore fail to take advan-
tage of the multiplexity of the network. This motivates us
to develop a systematic way to jointly integrate the embed-
dings from different relation types, so as to facilitate them to
mutually help each other learn high-quality embeddings.

To this end, we introduce the consensus embedding ma-
trix Z ∈ R

n×d on which every relation-type specific node
embedding matrix H(r) can agree. More precisely, we intro-
duce the consensus regularization framework that consists
of 1) a regularizer minimizing the disagreements between
the set of original node embeddings, i.e. {H(r) | r ∈ R}
and the consensus embedding Z, and 2) another regularizer
maximizing the disagreement between the corrupted node

�

� �

��

��

�����
��	�

�

� �

��

��

��
��

��

��

��
����

��

��
�
����������� �����	�������������		
��

��		
��

�	

	� ��	

	�

�	

� ��	

�

�	

��
�
����������� �����	�����������

Agree Disagree

���������	
�
�

���	

�	

��
��
��
��
�	

�

�

�
��	

��	

� �

� ��

� ��

�����
��	� �

�����������������
���
��

�

�

�
	�

Readout

Reado
ut

� �

� �

Figure 1: Overview of DMGI (Best viewed in color).

embeddings, i.e., {H̃(r) | r ∈ R}, and the consensus em-
bedding Z, which are formulated as follows:

�cs =
[
Z −Q

(
{H(r) | r ∈ R}

)]2
−

[
Z −Q

(
{H̃

(r) | r ∈ R}
)]2

(6)

where Q is an aggregation function that combines a set of
node embedding matrices from multiple relation types into
a single embedding matrix. i.e., H ∈ R

n×d. Q can be any
pooling method that can handle permutation invariant input,
such as set2set (Vinyals, Bengio, and Kudlur 2015) or Set
Transformer (Lee et al. 2019). However, considering the ef-
ficiency of the method, we simply employ average pooling,
i.e., computing the average of the set of embedding matrices:

H = Q
(
{H(r) | r ∈ R}

)
=

1

|R|
∑
r∈R

H(r) (7)

It is important to note that the scoring matrix M(∗) in Eqn. 5
is shared among all the relations r ∈ R. i.e., M = M(1) =

M(2) = ... = M(|R|). The intuition is to learn the universal
discriminator that is capable of scoring the true pairs higher
than the negative pairs regardless the relation types. We ar-
gue that the universal discriminator facilitates the joint mod-
eling of different relation types together with the consensus
regularization.

Finally, we jointly optimize the sum of all the relation-
type specific loss in Eqn. 4, and the consensus regularization
in Eqn. 6 to obtain the final objective J as follows:

J =
∑
r∈R
L(r) + α�cs + β||Θ||2 (8)

where α controls the importance of the consensus reg-
ularization, β is a coefficient for l2 regularization on
Θ, which is a set of trainable parameters. i.e., Θ =

{{W(r) | r ∈ R},M,Z}, and J is optimized by Adam op-
timizer. Figure 1 illustrates the overview of DMGI.
Discussion. Despite its efficiency, the above average pool-
ing scheme in Eqn. 7 treats all the relations equally, whereas,
as will be shown in the experiments, some relation type is
more beneficial for a certain downstream task than others.
For example, the co-authorship information between two pa-
pers plays a more significant role in predicting the topic of a

5373

Table 1: Statistics of the datasets. The node attributes are bag-of-words of text associated with each node.

Relations
(A-B) Num. A Num. B Num. A-B Relation type Num.

relations
Num.

node attributes
Num.

labeled data
Num.

classes

ACM Paper-Author 3,025 5,835 9,744 P-A-P 29,281 1,830
(Paper abstract) 600 3Paper-Subject 3,025 56 3,025 P-S-P 2,210,761

IMDB Movie-Actor 3,550 4,441 10,650 M-A-M 66,428 1,007
(Movie plot) 300 3Movie-Director 3,550 1,726 3,550 M-D-M 13,788

DBLP
Paper-Author 7,907 1,960 14,238 P-A-P 144,783 2,000

(Paper abstract) 80 4Paper-Paper 7,907 7,907 10,522 P-P-P 90,145
Author-Term 1,960 1,975 57,269 P-A-T-A-P 57,137,515

Amazon Item-Item 7,621 7,621
38,514 Also-view 266,237 2,000

(Item description) 80 445,446 Also-bought 1,104,257
9,783 Bought-together 16,305

paper compared with their citation information; eventually,
these two information mutually help each other to more ac-
curately predict the topic of a paper. Therefore, we can adopt
the attention mechanism (Bahdanau, Cho, and Bengio 2014)
to distinguish between different relation types as follows:

hi = Q
(
{h(r) | r ∈ R}

)
=
∑
r∈R

a
(r)
i h(r) (9)

where a(r)i denotes the importance of relation r in generating
the final embedding of node vi defined as:

a
(r)
i =

exp
(

q(r) · h(r)
i

)
∑

r′∈R exp
(
q(r′) · hr′

i

) (10)

where q(r) ∈ R
d is the feature vector of relation r.

Extension to Semi-Supervised Learning. It is important
to note that DMGI is trained in a fully unsupervised manner.
However, in reality, nodes are sometimes associated with la-
bel information, which can guide the training of node em-
beddings even with a small amount (Kipf and Welling 2016;
Qu et al. 2017). To this end, we introduce a semi-supervised
module into our framework that predicts the labels of labeled
nodes from the consensus embedding Z. More precisely, we
minimize the cross-entropy error over the labeled nodes:

�sup = − 1

|YL|
∑
l∈YL

c∑
i=1

Yli ln Ŷli (11)

where YL is the set of node indices with labels, Y ∈ R
n×c

is the ground truth label, Ŷ = softmax(f(Z)) is the output
of a softmax layer, and f : Rn×d → R

n×c is a classifier that
predicts the label of a node from its embedding, which is a
single fully connected layer in this work. The final objective
function with the semi-supervised module is:

Jsemi =
∑
r∈R
L(r) + α�cs + β||Θ||+ γ�sup (12)

where γ the coefficient of the semi-supervised module.

4 Experiments

Dataset. To make fair comparisons with HAN (Wang et
al. 2019), which is the most relevant baseline method, we

evaluate our proposed method on the datasets used in their
original paper (Wang et al. 2019), i.e., ACM, DBLP, and
IMDB. We used publicly available ACM dataset (Wang et
al. 2019), and preprocessed DBLP and IMDB datasets. For
ACM and DBLP datasets, the task is to classify the papers
into three classes (Database, Wireless Communication, Data
Mining), and four classes (DM, AI, CV, NLP)1, respectively,
according to the research topic. For IMDB dataset, the task
is to classify the movies into three classes (Action, Com-
edy, Drama). We note that the above datasets used by previ-
ous work are not truly multiplex in nature because the mul-
tiplexity between nodes is inferred via intermediate nodes
(e.g., ACM: Paper-Paper relationships are inferred via Au-
thors and Subjects that connect two Papers. i.e., “PAP” and
“PSP”). Thus, to make our evaluation more practical, we
used Amazon dataset (He and McAuley 2016) that gen-
uinely contains a multiplex network of items, i.e., also-
viewed, also-bought, and bought-together relations between
items. We used datasets from four categories2, i.e., Beauty,
Automotive, Patio Lawn and Garden, and Baby, and the
task is to classify items into the four classes. For ACM and
IMDB datasets, we used the same number of labeled data
as in (Wang et al. 2019) for fair comparisons, and for the
remaining datasets, we used 20 labeled data for each class.
Table 1 summarizes the data statistics.
Methods Compared.

1) Embedding methods for a single network

• No attributes: Deepwalk (Perozzi, Al-Rfou, and Skiena
2014), node2vec (Grover and Leskovec 2016): They learn
node embeddings by random walks and skip-gram.
• Attributed network embedding: GCN (Kipf and Welling

2016), GAT (Veličković et al. 2017): They learn node em-
beddings based on local neighborhood structures. As they
perform similarly, we report the best performing method
among them; DGI (Veličković et al. 2019): It maximizes
the MI between the graph-level summary representation
and the local patches; ANRL (Zhang et al. 2018b): It uses
neighbor enhancement autoencoder to model the node at-
tribute information, and skip-gram model to capture the

1DM: KDD,WSDM,ICDM, AI: ICML,AAAI,IJCAI, CV:
CVPR, NLP: ACL,NAACL,EMNLP

2We chose these categories because the three types of item-item
relations from these categories are similar in number

5374

Table 2: Properties of the compared methods (Mult.: Mutli-
plexity, Attr: Attribute, Unsup: Unsupervised, Glo: Global).

Mult. Attr. Unsup. Glo.
Dw/n2v � � � �
GCN/GAT � � � �
DGI � � � �
ANRL � � � �
CAN � � � �
DGCN � � � �
CMNA � � � �
MNE � � � �
mGCN � � � �
HAN � � � �
DMGI � � � �

Table 3: Performance for node clustering and similarity
search on test data.

Method
ACM IMDB DBLP Amazon

NMI Sim@5 NMI Sim@5 NMI Sim@5 NMI Sim@5

Deepwalk 0.310 0.710 0.117 0.490 0.348 0.629 0.083 0.726
node2vec 0.309 0.710 0.123 0.487 0.382 0.629 0.074 0.738
GCN/GAT 0.671 0.867 0.176 0.565 0.465 0.724 0.287 0.624
DGI 0.640 0.889 0.182 0.578 0.551 0.786 0.007 0.558
ANRL 0.515 0.814 0.163 0.527 0.332 0.720 0.166 0.763
CAN 0.504 0.836 0.074 0.544 0.323 0.792 0.001 0.537
DGCN 0.691 0.690 0.143 0.179 0.462 0.491 0.143 0.194

CMNA 0.498 0.363 0.152 0.069 0.420 0.511 0.070 0.435
MNE 0.545 0.791 0.013 0.482 0.136 0.711 0.001 0.395
mGCN 0.668 0.873 0.183 0.550 0.468 0.726 0.301 0.630
HAN 0.658 0.872 0.164 0.561 0.472 0.779 0.029 0.495

DMGI 0.687 0.898 0.196 0.605 0.409 0.766 0.425 0.816
DMGIattn 0.702 0.901 0.185 0.586 0.554 0.798 0.412 0.825

network structure; CAN (Meng et al. 2019): It learns em-
beddings of both attributes and nodes in the same semantic
space; DGCN (Zhuang and Ma 2018): It models the local
and global properties of a graph by employing dual GCNs.

2) Multiplex embedding methods
• No attributes: CMNA (Chu et al. 2019): It leverages

the cross-network information to refine inter-vector for
network alignment and intra-vector for other down-
stream tasks. We use the intra-vector for our evaluations;
MNE (Zhang et al. 2018a): It jointly models multiple net-
works by introducing a common embedding, and a addi-
tional embedding for each relation type.
• Attributed multiplex network embedding: mGCN (Ma et

al. 2019), HAN (Wang et al. 2019): They apply GCNs,
and GATs on multiplex network considering the inter-,
and intra-network interactions. For fair comparisons, we
initialized the initial node embeddings of mGCN by us-
ing the node attribute matrix, although the node attributes
information is ignored in the original mGCN; DMGIattn:
DMGI with the attention mechanism (Eqn. 9).
For the sake of fair comparisons with DMGI, which con-

siders the node attributes, we concatenated the raw attribute
matrix X to the learned node embeddings Z of the methods
that ignore the node attributes. i.e., Deepwalk, node2vec,
CMNA, and MNE. i.e., Z ← [Z;X]. Moreover, regarding
the embedding methods for a single network, i.e., the meth-
ods that belong to the first category in the above list, we

obtain the final node embedding matrix Z by computing the
average of the node embeddings obtained from each single
graph. i.e., Z = 1

|R|
∑

r∈R H(r). We provide a summary of
the properties of the compared methods in Table 2.
Evaluation Metrics. Recall that DMGI is an unsupervised
method that does not require any labeled data for training.
Therefore, we evaluate the performance of DMGI in terms
of node clustering and similarity search, both of which are
classical performance measures for unsupervised methods.
For node clustering, we use the most commonly used met-
ric (Wang et al. 2019), i.e., Normalized Mutual Information
(NMI). For similarity search, we compute the cosine sim-
ilarity scores of the node embeddings between all pairs of
nodes, and for each node, we rank the nodes according to
the similarity score. Then, we calculate the ratio of the nodes
that belong to the same class within top-5 ranked nodes
(Sim@5). Moreover, we also evaluate DMGI on the perfor-
mance in terms of node classification. More precisely, after
learning the node embeddings, we train a logistic regression
classifier on the learned embeddings in the training set, and
then evaluate on the nodes in the test set. We use Macro-F1
(MaF1) and Micro-F1 (MiF1) (Wang et al. 2019).
Experimental Settings. We randomly split our dataset
into train/validation/test, and we have the equal number of
labeled data for training and validation datasets. We re-
port the test performance when the performance on vali-
dation data gives the best result. For DMGI, we set the
node embedding dimension d = 64, self-connection weight
w = 3, tune α, β, γ ∈ {0.0001, 0.001, 0.01, 0.1}. We imple-
ment DMGI in PyTorch3, and for all other methods, we used
the source codes published by the authors, and tried to tune
them to their best performance. More precisely, apart from
the guidelines provided by the original papers, we tuned
learning rate, and the coefficients for regularization from
{0.0001,0.0005,0.001,0.005} on the validation dataset. Af-
ter learning the node embeddings, for fair comparisons, we
conducted the evaluations within the same platform.

Table 4: Node classification performance on test data.

ACM IMDB DBLP Amazon

MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1

Deepwalk 0.739 0.748 0.532 0.550 0.533 0.537 0.663 0.671
node2vec 0.741 0.749 0.533 0.550 0.543 0.547 0.662 0.669
GCN/GAT 0.869 0.870 0.603 0.611 0.734 0.717 0.646 0.649
DGI 0.881 0.881 0.598 0.606 0.723 0.720 0.403 0.418
ANRL 0.819 0.820 0.573 0.576 0.770 0.699 0.692 0.690
CAN 0.590 0.636 0.577 0.588 0.702 0.694 0.498 0.499
DGCN 0.888 0.888 0.582 0.592 0.707 0.698 0.478 0.509

CMNA 0.782 0.788 0.549 0.566 0.566 0.561 0.657 0.665
MNE 0.792 0.797 0.552 0.574 0.566 0.562 0.556 0.567
mGCN 0.858 0.860 0.623 0.630 0.725 0.713 0.660 0.661
HAN 0.878 0.879 0.599 0.607 0.716 0.708 0.501 0.509

DMGI 0.898 0.898 0.648 0.648 0.771 0.766 0.746 0.748
DMGIattn 0.887 0.887 0.602 0.606 0.778 0.770 0.758 0.758

4.1 Performance Analysis

Overall evaluation. Table 3 and Table 4 show the evalu-
ation results on unsupervised and supervised task, respec-

3https://github.com/pcy1302/DMGI

5375

PAP PPP PATAP

Attention

E
p
o
ch

Epoch Epoch Epoch

A
tt
e
n
ti
o
n

Figure 2: Visualization of the attention weights on DBLP
dataset.

tively. We have the following observations: 1) Our pro-
posed DMGI and DMGIattn outperform all the state-of-the-
art baselines not only on the unsupervised tasks, but also
the supervised task, although the improvement is more sig-
nificant in the unsupervised task as expected. This veri-
fies the benefit of our framework that models the multi-
plexity and the global property of a network together with
the node attributes within a single framework. 2) Although
DGI shows relatively good performance, the performance
is unstable (poor performance on Amazon dataset), indicat-
ing that multiple relation types should be jointly modeled.
3) Attribute-aware multiplex network embedding methods,
such as mGCN and HAN, generally perform better than
those that neglect the node attributes. i.e., CMNA and MNE,
even though we concatenated node attributes to the node em-
beddings. This verifies not only the benefit of modeling the
node attributes, but also that the attributes should be system-
atically incorporated into the model. 4) Multiplex network
embedding methods generally outperform single network
embedding methods, although the gap is not significant. This
verifies that the multiplexity of a network should be care-
fully modeled, otherwise a simple aggregation of multiple
relation-type specific embeddings learned from independent
single network embedding methods may perform better.
Effect of the attention mechanism. In Table 5, we
show the performance of DMGI and DMGIattn, to-
gether with the performance of single network embed-
ding methods (GCN/GAT, DGI, and ANRL). We observe
that DMGIattn outperforms DMGI in most of the datasets but
IMDB dataset. To analyze the reason for this, we first plot
the distribution of the attention weights on DBLP dataset
over the training epochs in Figure 2. The above graph in
Figure 2 demonstrates that the attention weights eventually
end up in both extremes. i.e., close to 0 or close to 1, and
the below graphs show that most of the attention weight is
dedicated to a single relation type, i.e., “PAP”, which actu-

Table 5: Performance of similarity search (Sim@5) of em-
bedding methods for a single network. (Merged denotes the
average of all the relation-type specific embeddings.)

ACM GCN DGI ANRL
DMGI DMGI

attn
Rel.
Type

PAP 0.822 0.875 0.795
PSP 0.721 0.675 0.694

Merged 0.867 0.889 0.814 0.898 0.901

IMDB GCN DGI ANRL
DMGI DMGI

attn
Rel.
Type

MAM 0.485 0.484 0.495
MDM 0.548 0.562 0.520

Merged 0.566 0.578 0.527 0.605 0.586

DBLP GCN DGI ANRL

DMGI DMGI
attn

Rel.
Type

PAP 0.730 0.779 0.692
PPP 0.456 0.477 0.680

PATAP 0.431 0.409 OOM

Merged 0.724 0.786 0.720 0.766 0.799

Amazon GCN DGI ANRL

DMGI DMGI
attn

Rel.
Type

Also-V 0.355 0.367 0.563
Also-B 0.357 0.381 0.516
Bou.-T 0.662 0.639 0.770

Merged 0.624 0.558 0.764 0.816 0.825

ally turns out to be the most important relation among the
three (See Table 5); This phenomenon is common in every
dataset. Next, we look at the performance of the single net-
work embedding methods, especially DGI, on each relation
type in Table 5. We observe that the performance differences
among relation types in ACM, DBLP, and Amazon datasets
are more biased to a single relation type, whereas in IMDB
dataset, “MAM” and “MDM” relations relatively show sim-
ilar performance. To summarize our findings, since the at-
tention mechanism tends to favor the single most important
relation type (“PAP” in ACM, “MDM” in IMDB, “PAP” in
DBLP, and “Bought-together” in Amazon), DMGIattn out-
performs DMGI on datasets where one relation type signif-
icantly outperforms the other, i.e., ACM, DBLP, and Ama-
zon, by removing the noise from other relations. On the other
hand, for datasets where all the relations show relatively
even performance, i.e., IMDB, extremely favoring a single
well performing relation type (“MDM”) is rather detrimen-
tal to the overall performance because the relation “MAM”
should also be considered to some extent.

We also note that since the attention mechanism
of DMGIattn can infer the importance of each relation type,
we can filter out unnecessary relation types as a prepro-
cessing step. To verify this, we evaluated on all possi-
ble combinations of relation types in DBLP dataset (Ta-
ble 6). We observe that by removing the relation “PATAP”,
which turned out to be the most useless relation type in Ta-
ble 5, DMGIattn obtains even better results than using all the
relation types, whereas for GCN and DGI, still considering
all the relation types shows the best performance. This in-
dicates that the attention mechanism can be useful to filter
out unnecessary relation types, which will especially come

5376

Table 6: NMI on various combinations of relation types.

DBLP dataset GCN/GAT DGI DMGIattn

NMI

PAP+PPP 0.464 0.543 0.565
PAP+PATAP 0.458 0.535 0.017
PPP+PATAP 0.332 0.237 0.201

All 0.465 0.551 0.554

Table 7: Result for ablation studies of DMGIattn.

DBLP dataset MaF1 NMI Sim@5
DMGIattn 0.778 0.554 0.798

1) DMGIattn+ Semi supervised 0.791 0.555 0.798

2) Readout
(Eqn. 3)

Random sample 0.774 0.555 0.797
Maxpool 0.778 0.552 0.802

Linear projection 0.783 0.565 0.803
SAGPool 0.797 0.563 0.797

3) Without 2nd term of Eqn. 6 0.749 0.448 0.787
4) M �= M(1) �= ... �= M(|R|). 0.645 0.076 0.677
5) No attributes (Adj. as attribute) 0.377 0.053 0.763
6) Neg sample: Shuffle adj. 0.364 0.156 0.504

in handy when the number of relation types is large.
Ablation study. To measure the impact of each compo-
nent of DMGIattn, we conduct ablation studies on the largest
dataset, i.e., DBLP, in Table 7. We have the following obser-
vations: 1) As expected, the semi-supervised module specif-
ically helps improve the node classification performance,
which is a supervised task, whereas the performance on the
unsupervised task remains on par. 2) Various readout func-
tions including ones that contain trainable weights (Linear
projection and SAGPool (Lee, Lee, and Kang 2019)) do not
have much impact on the performance, which promotes our
use of average pooling. 3) The second term in Eqn. 6 in-
deed plays a significant role in the consensus regularization
framework. 4) The sharing of the scoring matrix M facili-
tates DMGI to model the interaction among multiple rela-
tion types. 5) Node attributes are crucial for representation
learning of nodes. 6) Shuffling adjacency matrix instead of
attribute matrix deteriorates the model performance.

5 Related Work

Network embedding. Network embedding methods aim
at learning low-dimensional vector representation for nodes
in a graph while preserving the network structure (Per-
ozzi, Al-Rfou, and Skiena 2014; Grover and Leskovec 2016;
Tang et al. 2015), and various other properties such as node
attributes (Zhang et al. 2018b; Meng et al. 2019), structural
role (Ribeiro, Saverese, and Figueiredo 2017), and node la-
bel information (Huang, Li, and Hu 2017).
Multiplex Network embedding. A multiplex network,
which is also known as a multi-view network (Tang et al.
2015; Shi et al. 2018) or a multi-dimensional network (Ma et
al. 2018; 2019) in the literature, consists of multiple relation
types among a set of single-typed nodes. It can be thought of
as a special type of heterogeneous network (Dong, Chawla,
and Swami 2017; Fu, Lee, and Lei 2017) with a single type
of node and multiple types of edges. Therefore, a multi-

plex network calls for a special attention because there is
no need to consider the semantics between different types
of nodes, which is often addressed by the concept of meta-
path (Sun et al. 2011). Distinguished from heterogeneous
network, a key challenge in the multiplex network embed-
ding is to learn a consensus embedding for each node by
taking into account the interrelationship among the mul-
tiple graphs. In this regard, existing methods mainly fo-
cused on how to integrate the information from multiple
graphs. HAN (Wang et al. 2019) employed graph atten-
tion network (Veličković et al. 2017) on each graph, and
then applied the attention mechanism to merge the node
representations learned from each graph by considering the
importance of each graph. However, the existing meth-
ods either require labels for training (Wang et al. 2019;
Qu et al. 2017; Schlichtkrull et al. 2018), or overlook the
node attributes (Liu et al. 2017; Xu et al. 2017; Li et al. 2018;
Shi et al. 2018; Zhang et al. 2018a; Ni et al. 2018; Chu et
al. 2019). Most recently, Ma et al. (2019) proposed a graph
convolutional network (GCN) based method called mGCN,
which is not only unsupervised, but also naturally incorpo-
rates the node attributes by using GCNs. However, since it
is based on GCNs that capture the local graph structure (Ya-
dav et al. 2019), it fails to fully model the global properties
of a graph (Zhuang and Ma 2018; Wang, Cui, and Zhu 2016;
Veličković et al. 2019).
Attributed Network Embedding. Nodes in a network
are often affiliated with various contents, such as abstract
text in the publication network, user profiles in social net-
works, and item description text in movie database or
item networks. Such networks are called attributed net-
works, and have been extensively studied (Li et al. 2017;
Hamilton, Ying, and Leskovec 2017; Yang et al. 2015;
Zhang et al. 2018b; Gao and Huang 2018; Zhou et al. 2018;
Veličković et al. 2019; Meng et al. 2019). Their goal is to
preserve not only the network structure, but also the node
attribute proximity in learning representations. Recently,
GCNs (Kipf and Welling 2016; Veličković et al. 2017;
2019) have been widely praised for its seamless integration
of the network structure, and node attributes into a single
framework.
Mutual Information. it has been recently made possible
to compute the MI between high dimensional input/output
pairs of deep neural networks (Belghazi et al. 2018). Several
recent work adopted the infomax principle (Linsker 1988) to
learn the unsupervised representations in different domains,
such as images (Hjelm et al. 2019), speech (Ravanelli and
Bengio 2018) and graphs (Veličković et al. 2019). More pre-
cisely, Veličković et al. (2019) proposed Deep Graph Info-
max (DGI) for learning representations of graph structured
inputs by maximizing the MI between a high-level global
representation, and the local patches of a graph.

6 Conclusion
We presented a simple yet effective unsupervised method for
embedding attributed multiplex network. DMGI can jointly
integrate the embeddings from multiple types of relations
between nodes through the consensus regularization frame-
work, and the universal discriminator. Moreover, the atten-

5377

tion mechanism of DMGIattn can infer the importance of
each relation type, which facilitates the preprocessing of the
multiplex network. Experimental results on not only unsu-
pervised tasks, but also a supervised task verify the superi-
ority of our proposed framework.
Acknowledgment: IITP2018-0-00584, IITP-2019-2011-1-
00783, 2016R1E1A1A01942642, 2017M3C4A7063570.

References

Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural machine
translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473.
Belghazi, M. I.; Baratin, A.; Rajeswar, S.; Ozair, S.; Bengio, Y.;
Courville, A.; and Hjelm, R. D. 2018. Mine: mutual information
neural estimation. ICML.
Chu, X.; Fan, X.; Yao, D.; Zhu, Z.; Huang, J.; and Bi, J. 2019.
Cross-network embedding for multi-network alignment. In WWW.
De Domenico, M.; Solé-Ribalta, A.; Cozzo, E.; Kivelä, M.;
Moreno, Y.; Porter, M. A.; Gómez, S.; and Arenas, A. 2013. Math-
ematical formulation of multilayer networks. Physical Review X.
Dong, Y.; Chawla, N. V.; and Swami, A. 2017. metapath2vec:
Scalable representation learning for heterogeneous networks. In
KDD. ACM.
Fu, T.-y.; Lee, W.-C.; and Lei, Z. 2017. Hin2vec: Explore meta-
paths in heterogeneous information networks for representation
learning. In CIKM. ACM.
Gao, H., and Huang, H. 2018. Deep attributed network embedding.
In IJCAI.
Grover, A., and Leskovec, J. 2016. node2vec: Scalable feature
learning for networks. In KDD. ACM.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive repre-
sentation learning on large graphs. In NIPS.
He, R., and McAuley, J. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In
WWW.
Hjelm, R. D.; Fedorov, A.; Lavoie-Marchildon, S.; Grewal, K.;
Trischler, A.; and Bengio, Y. 2019. Learning deep representations
by mutual information estimation and maximization. ICLR.
Huang, X.; Li, J.; and Hu, X. 2017. Label informed attributed
network embedding. In WSDM. ACM.
Kipf, T. N., and Welling, M. 2016. Semi-supervised classification
with graph convolutional networks. ICLR.
Lee, J.; Lee, Y.; Kim, J.; Kosiorek, A. R.; Choi, S.; and Teh, Y. W.
2019. Set transformer. ICML.
Lee, J.; Lee, I.; and Kang, J. 2019. Self-attention graph pooling.
ICML.
Li, J.; Dani, H.; Hu, X.; Tang, J.; Chang, Y.; and Liu, H. 2017.
Attributed network embedding for learning in a dynamic environ-
ment. In CIKM. ACM.
Li, J.; Chen, C.; Tong, H.; and Liu, H. 2018. Multi-layered network
embedding. In SDM. SIAM.
Linsker, R. 1988. Self-organization in a perceptual network. Com-
puter.
Liu, W.; Chen, P.-Y.; Yeung, S.; Suzumura, T.; and Chen, L. 2017.
Principled multilayer network embedding. In ICDMW. IEEE.
Ma, Y.; Ren, Z.; Jiang, Z.; Tang, J.; and Yin, D. 2018. Multi-
dimensional network embedding with hierarchical structure. In
WSDM. ACM.

Ma, Y.; Wang, S.; Aggarwal, C. C.; Yin, D.; and Tang, J. 2019.
Multi-dimensional graph convolutional networks. In SDM. SIAM.
Meng, Z.; Liang, S.; Bao, H.; and Zhang, X. 2019. Co-embedding
attributed networks. In WSDM. ACM.
Ni, J.; Chang, S.; Liu, X.; Cheng, W.; Chen, H.; Xu, D.; and Zhang,
X. 2018. Co-regularized deep multi-network embedding. In WWW.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk: Online
learning of social representations. In KDD. ACM.
Qu, M.; Tang, J.; Shang, J.; Ren, X.; Zhang, M.; and Han, J. 2017.
An attention-based collaboration framework for multi-view net-
work representation learning. In CIKM. ACM.
Ravanelli, M., and Bengio, Y. 2018. Learning speaker representa-
tions with mutual information. arXiv preprint arXiv:1812.00271.
Ribeiro, L. F.; Saverese, P. H.; and Figueiredo, D. R. 2017.
struc2vec: Learning node representations from structural identity.
In KDD. ACM.
Schlichtkrull, M.; Kipf, T. N.; Bloem, P.; Van Den Berg, R.; Titov,
I.; and Welling, M. 2018. Modeling relational data with graph
convolutional networks. In ESWC. Springer.
Shi, Y.; Han, F.; He, X.; He, X.; Yang, C.; Luo, J.; and Han, J.
2018. mvn2vec: Preservation and collaboration in multi-view net-
work embedding. arXiv preprint arXiv:1801.06597.
Sun, Y.; Han, J.; Yan, X.; Yu, P. S.; and Wu, T. 2011. Pathsim:
Meta path-based top-k similarity search in heterogeneous informa-
tion networks. VLDB.
Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; and Mei, Q. 2015.
Line: Large-scale information network embedding. In WWW.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; and
Bengio, Y. 2017. Graph attention networks. ICLR.
Veličković, P.; Fedus, W.; Hamilton, W. L.; Liò, P.; Bengio, Y.; and
Hjelm, R. D. 2019. Deep graph infomax. ICLR.
Vinyals, O.; Bengio, S.; and Kudlur, M. 2015. Order matters:
Sequence to sequence for sets. NIPS.
Wang, X.; Cui, P.; Wang, J.; Pei, J.; Zhu, W.; and Yang, S. 2017.
Community preserving network embedding. In AAAI.
Wang, X.; Ji, H.; Shi, C.; Wang, B.; Ye, Y.; Cui, P.; and Yu, P. S.
2019. Heterogeneous graph attention network. In WWW. ACM.
Wang, D.; Cui, P.; and Zhu, W. 2016. Structural deep network
embedding. In KDD. ACM.
Xu, L.; Wei, X.; Cao, J.; and Philip, S. Y. 2017. Multi-task network
embedding. In DSAA. IEEE.
Yadav, P.; Nimishakavi, M.; Yadati, N.; Vashishth, S.; Rajkumar,
A.; and Talukdar, P. 2019. Lovasz convolutional networks. In
AISTATS.
Yang, C.; Liu, Z.; Zhao, D.; Sun, M.; and Chang, E. 2015. Network
representation learning with rich text information. In IJCAI.
Zhang, H.; Qiu, L.; Yi, L.; and Song, Y. 2018a. Scalable multiplex
network embedding. In AAAI.
Zhang, Z.; Yang, H.; Bu, J.; Zhou, S.; Yu, P.; Zhang, J.; Ester, M.;
and Wang, C. 2018b. Anrl: Attributed network representation
learning via deep neural networks. In IJCAI.
Zhou, S.; Yang, H.; Wang, X.; Bu, J.; Ester, M.; Yu, P.; Zhang, J.;
and Wang, C. 2018. Prre: Personalized relation ranking embedding
for attributed networks. In CIKM. ACM.
Zhuang, C., and Ma, Q. 2018. Dual graph convolutional networks
for graph-based semi-supervised classification. In WWW.

5378

