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Abstract

The human brain can effectively learn a new task from a
small number of samples, which indicates that the brain can
transfer its prior knowledge to solve tasks in different do-
mains. This function is analogous to transfer learning (TL)
in the field of machine learning. TL uses a well-trained fea-
ture space in a specific task domain to improve performance
in new tasks with insufficient training data. TL with rich fea-
ture representations, such as features of convolutional neural
networks (CNNs), shows high generalization ability across
different task domains. However, such TL is still insufficient
in making machine learning attain generalization ability com-
parable to that of the human brain. To examine if the inter-
nal representation of the brain could be used to achieve more
efficient TL, we introduce a method for TL mediated by hu-
man brains. Our method transforms feature representations of
audiovisual inputs in CNNs into those in activation patterns
of individual brains via their association learned ahead using
measured brain responses. Then, to estimate labels reflect-
ing human cognition and behavior induced by the audiovisual
inputs, the transformed representations are used for TL. We
demonstrate that our brain-mediated TL (BTL) shows higher
performance in the label estimation than the standard TL. In
addition, we illustrate that the estimations mediated by differ-
ent brains vary from brain to brain, and the variability reflects
the individual variability in perception. Thus, our BTL pro-
vides a framework to improve the generalization ability of
machine-learning feature representations and enable machine
learning to estimate human-like cognition and behavior, in-
cluding individual variability.

Introduction

Transfer learning (TL) is an effective framework that im-
proves the generalization ability of machine learning in
pattern recognition (Pan and Yang 2009). In TL, feature
representations trained with large-scale, high-quality data
in a specific task are transferred to other tasks in differ-
ent domains with insufficient training data. Recently, TL
with convolutional neural networks (CNNs) has received in-
creasing attention owing to its high generalization ability
across various task domains (Tan et al. 2018). Despite the
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fact that the training of CNNs requires massive amounts
of labeled datasets, CNNs acquire generic feature repre-
sentations available for various types of pattern recogni-
tion through TL (Cimpoi et al. 2016; Donahue et al. 2014;
Girshick et al. 2014; Oquab et al. 2014; Razavian et al. 2014;
Toshev and Szegedy 2014; Xiao et al. 2014). For example,
Donahue et al. (2014) used a CNN feature space, pre-learned
with an object recognition dataset, for tasks different from
the original challenge, such as scene classification. Using
higher-layer features of the pre-trained CNN, they trained
classifiers for those new tasks and achieved state-of-the-
art performance. In this way, TL improves the generaliza-
tion ability of machine learning more effectively when using
more generic feature representations. However, the general-
ization ability of machine learning is still much lower than
that of the human brain.

The human brain has a sophisticated ability to general-
ize the knowledge acquired through limited experiences to
cognition and behavior under novel situations. This indi-
cates that the human brain can effectively use its own in-
ternal representations of cognitive information across differ-
ent task domains. Furthermore, such representations can be
used as a medium of brain decoding that infers various types
of cognition from brain activity, such as semantic cognition
(Mitchell et al. 2008; Nishida and Nishimoto 2018), affec-
tions (Kim et al. 2015; Peelen, Atkinson, and Vuilleumier
2010), economic decision (Hampton and O’doherty 2007;
Knutson et al. 2007), human mass behavior (Dmochowski
et al. 2014; Falk, Berkman, and Lieberman 2012). There-
fore, machine-learning feature representations may become
more generic by incorporating the brain representations into
them, leading to further improvements in the generalization
ability of machine learning through TL.

Recently, several studies have proposed techniques to
guide pattern recognition with CNNs by combining CNN
features with human brain activity (Fong, Scheirer, and Cox
2018; Spampinato et al. 2017). For example, Fong et al.
(2018) trained a classifier of images using higher-layer fea-
tures of a CNN while guiding the training by voxel responses
to the images measured using functional magnetic resonance
imaging (fMRI). To make the decision surface of the clas-
sifier more consistent with brain representations, the train-
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ing was weighted by voxel responses. They demonstrated
higher performance in image recognition for the classifier
with voxel response weighting than for the classifier with-
out it. These studies suggest that CNN feature representa-
tions can improve by combining them with human brain ac-
tivity. However, the recognition task they targeted was im-
age recognition, in which CNNs had already shown splen-
did performance by themselves. In addition, when their tech-
niques are applied to other types of recognition tasks, they
require brain data dedicated to each of the tasks. Therefore,
whenever their techniques are applied to a novel task, new
measurements of brain data specified to that task are re-
quired. These limitations prevent their techniques from im-
proving the generalization ability of machine learning.

To address these issues, we propose, in this paper, brain-
mediated TL (BTL). In the BTL, the voxel response data
measured from the human brain in an fMRI experiment are
combined with CNN features to be used for various types
of recognition tasks. First, CNN features for audiovisual in-
puts are transformed into features of the individual brains
using a pre-learned linear mapping between them. Then, the
transformed features are used to train learners that estimate
arbitrary pairs of audiovisual inputs and corresponding la-
bels. We apply this BTL to the estimation of labels to which
human subjective cognition is strongly related. Our results
demonstrate that the BTL shows higher estimation perfor-
mance than regular TL and the brain-by-brain variation of
estimation by the BTL reflects individual variability in sub-
jective cognition.

Model

Procedure

Our modeling procedure for BTL is divided into the four
steps (Figure 1): (1) the feature extraction from the inputs of
movies and/or sounds via CNNs, (2) the prediction of voxel
responses to the inputs using models that linearly trans-
form the extracted features to the voxel responses (CNN-
to-voxel [cnn2vox] models), (3) the modification of the pre-
dicted responses using models that predict voxel response
from the history of preceding voxel responses (voxel-to-
voxel [vox2vox] models; Figure 1A), and (4) the estimation
of cognitive labels from the predicted responses using mod-
els that have linear association between them (voxel-to-label
[vox2lab] models; Figure 1B).

The cnn2vox and vox2vox models are pretrained using
small datasets of movie-evoked voxel responses collected
from individual brains with fMRI. Once the training is done,
these models predict voxel responses to arbitrary audiovi-
sual inputs by transforming the CNN features to the re-
sponse of individual brains with no additional brain mea-
surement. Supposing that voxel responses convey brain fea-
ture representations of the inputs, this process corresponds
to the transformation from CNN features to brain feature
representations. Then, the vox2lab model is trained using
paired datasets of predicted voxel response and cognitive la-
bels linked with audiovisual inputs. Since this training does
not require datasets used in fMRI experiments, our method
allows acquiring the association between arbitrary pairs of

audiovisual inputs and cognitive labels through the feature
transformation.

CNN Feature Extraction

In this study, VGG-16 (Simonyan and Zisserman 2014) and
SoundNet (Aytar, Vondrick, and Torralba 2016), which are
pretrained and released on the web, are used to extract visual
and acoustic features, respectively, from movies. To extract
visual features from movies via VGG-16, which was origi-
nally applied to static images with a fixed size of 224 × 224
pixels, the movies are decomposed into frames and resized
to the same size. Then, unit activations of intermediate layers
when inputting the movie frames are calculated and pooled
for each second. Finally, the maximum activation value of
each unit for each second is used as the visual features of
the movies. This study uses eight layers of pool1–5 and fc6–
8 and obtains the visual features for each layer. To extract
acoustic features from the same movies, the sound waves of
the inputs are resampled with the fixed frequency of 44100
Hz and decomposed into each second. Then, unit activations
of intermediate layers in SoundNet when inputting the sound
waves are calculated as the acoustic features of the movies.
This study uses seven layers of conv1–5 and fc 6–7 and ob-
tains the acoustic features for each layer. Finally, these pro-
cesses produce eight series of visual features and seven se-
ries of acoustic features from time series of movies.

Cnn2vox Model

The construction of the cnn2vox, vox2vox, and vox2lab
models is based on the voxelwise modeling technique (Nase-
laris et al. 2011). Using a time series of features and voxel
responses, the cnn2vox model acquires the linear map-
ping from a CNN feature space to a response space of
each voxel through statistical learning. The learning ob-
jective is to estimate weights of N voxels, denoted by
Wcv = {wcv(1), · · · ,wcv(N)}, of the linear model: R =
f(X)Wcv + ε, where R = {r1, · · · , rN} is a series of re-
sponses in each of N voxels, X is a series of audiovisual
inputs, f(X) is its feature representation with the dimen-
sionality of D, and ε is isotropic Gaussian noise. A set of
linear temporal filters is used to capture the hemodynamic
delay in the response (Nishimoto et al. 2011). The matrix
of f(X) is constructed by concatenating four sets of D-
dimensional feature vectors with temporal shifts of 3, 4, 5,
and 6 s. This means that voxel response at a time point t,
denoted by R(t) (t = 1, · · · , T ), is modeled by a weighted
linear combination of the preceded series of features:

R(t) =
∑

k=3,4,5,6

f(X(t−k))Wcv,k + ε,

where Wcv,k denotes the weights corresponding to the
delay k. The weight estimation is performed using L2-
regularized linear least-squares regression. The optimal reg-
ularization parameter for each model is determined by 10-
fold cross validation of training data and shared across all
voxels. In this study, f(X) represents a series of unit activa-
tions induced by movies for each layer of VGG-16 or Sound-
Net. Since the very large number of units in lower layers of
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Figure 1: A schematic of the proposed brain-mediated transfer learning (BTL) method. (A) Voxel-response prediction from
audiovisual inputs. (B) Label estimation using predicted response.

the CNNs took too much computational cost for the regres-
sion process, the dimensionality of unit-activation features
for each layer is reduced in advance by principal component
analysis (PCA) on training datasets. This study reduces the
dimensionality, D, to 1000. Finally, eight models for eight
VGG-16 layers (pool1–5 and fc6–8) and seven models for
seven SoundNet layers (conv1–7) are constructed for each
brain.

Each of the estimated linear models predicts voxel re-
sponses to new movie inputs. Then, the predicted voxel re-
sponses from individual models are integrated using lin-
early weighted average for each voxel. The weight for a
given voxel is calculated based on the prediction accu-
racy (Pearson’s correlation coefficient between measured
and predicted voxel responses) for that voxel calculated dur-
ing the cross-validation in model training. In particular, the
weight for the i-th model, denoted by wi, is determined by
wi = ai/

∑15
j aj , where ai is the prediction accuracy of the

model. This integration process produces a single series of
predicted voxel responses to the new movie inputs.

Vox2vox Model

The vox2vox model predicts response in one voxel at a given
time point from responses in a group of voxels at the pre-
ceding time points. Hence, this model captures endogenous
properties of voxel responses, such as intrinsic connectiv-
ity between different brain regions (Fox and Raichle 2007),
whereas the cnn2vox model captures exogenous properties
of voxel responses, such as stimulus selectivity. Although
the vox2vox model is not indispensable for BTL, modifying
response prediction by the vox2vox model improves estima-
tion performance in some cases.

In the vox2vox model, a response in each of N voxels at
a time point t, denoted by R(t), is modeled by a weighted
linear combination of responses in the set of M voxels pre-
ceded by 1, 2, and 3 s:

R(t) =
∑

k=1,2,3

R′
(t−k)Wvv,k + ε.

The M voxels are selected on the basis of the cnn2vox
model prediction accuracy on model training data. In this

study, the top 2000 voxels with the highest prediction accu-
racy after the weighted average of all the models are used as
the M voxels. The regression procedure is the same as the
one used in the cnn2vox model. Response predictions from
the cnn2vox and vox2vox models are combined by weighted
sum. The weight is determined by the relative accuracy of
each prediction for each voxel.

Vox2lab Model

The vox2lab model estimates cognitive labels associated
with audiovisual inputs from predicted voxel responses. In
this model, a series of z-scored cognitive labels at a time
point t, denoted by L(t) (t = 1, · · · , T ′), is regressed by
a series of predicted responses to the inputs in the set of
N voxels with the hemodynamic delay, k, of 3, 4, and 5s
(Nishida and Nishimoto 2018):

L(t) =
∑

k=3,4,5

R̂(t+k)Wvl,k + ε.

The regression procedure is the same as the one used in the
other models, except that the regularization parameters are
determined separately for each dimension of label vectors.
This model learns the association between predicted voxel
responses (but not measured voxel responses) and cognitive
labels. This allows us to associate arbitrary pairs of audiovi-
sual data and corresponding labels, even when they are not
used for training either the cnn2vox or vox2vox models.

However, the regression occasionally requires too much
computational cost when the paired data have a large num-
ber of samples. In such cases, the number of voxels used for
the modeling is reduced in advance by PCA on the training
datasets. Then, the top PCs are used for the training of the
three models. In this study, the top 300 PCs are used as vox-
els to predict (i.e., N = 300) for only one estimation task
(see below). In addition, the top 10 PCs with the highest pre-
diction accuracy are used for the regressors of the vox2vox
model (i.e., M = 10). Even in this case, the other parame-
ters and the regression procedure remain the same.
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Data

Movie

Two sets of movies were provided by NTT DATA Corp.
(Tokyo, Japan). One includes 368 Japanese ad movies
broadcasted on the web between 2015 and 2018 (web ad
movies). The movies were divided into 7200 s and 1200 s
to collect voxel responses for the training (training dataset)
and test (test dataset), respectively, of all the three models.
The other includes 2452 Japanese ad movies broadcasted on
TV between 2011 and 2017 (TV ad movies). Out of them,
only 420 movies were used to collect voxel responses for the
training of the cnn2vox and vox2vox models. The remaining
2032 movies were not used for fMRI experiments but for the
training of the vox2lab model and the test of its estimation
performance. The movies are all unique, include a wide va-
riety of product categories (see supplemental material1), and
have the same resolution (1280 × 720 pixels) and frame rate
(30 Hz). The length of the movies is typically either 15 or
30 s. They are also accompanied by PCM sounds with the
sampling rate of 44100 Hz and are normalized so that they
have the same RMS level.

fMRI Data

fMRI responses to the movies were collected from Japanese
participants using a 3T MRI scanner. Forty and twenty-eight
participants were assigned to fMRI experiments with the
web ad movies and those with the TV ad movies, respec-
tively. The experimental protocol is approved by the ethics
and safety committees of NICT. For the modeling in each
participant, the fMRI data were preprocessed and all voxels
within the whole cortex were extracted. For more details, see
supplemental material.

Cognitive Labels

The four types of cognitive labels associated with the movie
datasets are used for testing the performance of BTL and
comparing it with the performance of other methods: (1)
scene descriptions, (2) impression ratings, (3) ad effective-
ness indices, and (4) ad preference votes. All the label sets
reflect rich perceptual information and/or complex behav-
ioral outcomes related to human subjective cognition. The
label sets (1)–(3) are linked to the web ad movies, whereas
the label set (4) is linked to the TV ad movies. The label
sets (1), (3), and (4) were provided from NTT DATA Corp.,
whereas the label set (2) was collected on psychological ex-
periments conducted in our lab. In the following, the details
of each cognitive label set are described (for more details,
see supplemental material).

Scene description data were collected from human anno-
tators as manual descriptions given for every 1-s scene of the
web ad movies. They were instructed to describe each scene
using more than 50 Japanese characters. The descriptions
contain a variety of expressions reflecting not only their
objective perceptions but also their subjective perceptions
(e.g., impression, feeling, association with ideas). To eval-
uate the scene descriptions quantitatively, the descriptions

1The supplemental material is available at https://osf.io/3hkwd

were transformed into vectors of word2vec (Mikolov et al.
2013). Individual words in each description were projected
into the pretrained word2vec vector space. Then, the word
vectors obtained from all descriptions within each scene
were averaged. This procedure yielded one 100-dimensional
vector for each 1-s scene.

Impression rating data were collected from manual rat-
ings on 30 different impression items conducted by human
annotators. The ratings were given for every 2-s scene of the
web ad movies. While the annotators sequentially watched
2-s separate clips of the movies, they evaluated each item on
a scale of 0 to 4.The mean impression ratings in every 2-s
scene were obtained by averaging multiple ratings and then
oversampled to obtain time series of rating labels in every
1-s scene.

Ad effectiveness index data for the web ad movies were
obtained as two types of mass behavior indices collected on
the web. One index is click rate, that is, the fraction of view-
ers who clicked the frame of a movie and jumped to a linked
web page. The other index is view completion rate, that is,
the fraction of viewers who continued to watch an ad movie
until the end without choosing a skip option. Although a sin-
gle value of each index was assigned to each ad, time se-
ries of indices in every 1-s scene were obtained by filling all
scenes in an ad with an identical index value assigned to the
ad.

Ad preference vote data for the TV ad movies were col-
lected for commercial investigation using questionnaires to
large-scale testers. Each tester was asked to freely recall a
small number of her/his favorite TV ads from among the ads
recently broadcasted. The total number of recalls of an ad
was regarded as its preference value. Although one prefer-
ence value was assigned to each ad, time series of the value
in every 1-s scene were obtained by filling all scenes in an
ad with an identical value assigned to the ad. Since the pref-
erence data are distributed in a similar form of a gamma dis-
tribution, the logarithm of the data was taken. Only for this
dataset, due to the large number of samples for training the
vox2label model in the dataset (2032 movies, 45375 s), the
voxel dimensionality is reduced to 300 in advance by PCA
for computational efficiency of the modeling (see also BTL).

Reference Methods

To compare the performance of label estimation with BTL,
two other methods are implemented.

Regular TL. TL estimates cognitive labels without the
transformation from CNN features to voxel responses. Al-
though the CNN feature extraction using VGG-16 and
SoundNet is the same as the one used in BTL, CNN fea-
tures are directly used to regress cognitive labels. In partic-
ular, a label at a time point t, denoted by L(t), is modeled
by a weighted linear combination of CNN features of the in-
put at the same time point. For the neutral comparison with
BTL, the reduction of CNN feature dimension to 1000 and
the regression is performed in the same manner as used in
BTL.
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Table 1: Accuracy of voxel-response prediction
Cnn2vox

VGG-16 SoundNet Vox2vox Prediction accuracy
(mean ± SEM)

� 0.096± 0.0039
� � 0.098± 0.0040

� 0.054± 0.0018
� � 0.055± 0.0018

� � 0.106± 0.0039
� � � 0.108± 0.0039

In contrast to this model, the BTL models contain linear
temporal filters that capture the hemodynamic response de-
lay. This may enable only BTL to estimate labels from a
series of features at multiple time points. If so, the compar-
ison between BTL and TL becomes unfair. To avoid this,
another TL model is also intorduced so that a label at a
given time point is estimated by a combination of CNN
features at −1, 0, and 1 s from that time point: L(t) =∑

k=−1,0,1 f(X(t−k))WTL,k + ε.
These TL models are constructed using each of the 15

layers in VGG-16 and SoundNet. The label estimation from
each layer model for new movie inputs is integrated using
linearly weighted average for each dimension of label vec-
tors. The averaging weight of i-th model, denoted by wi,
is determined according to label estimation accuracy of the
model during the cross-validation in the model training, de-
noted by ai. In particular, the averaging weight is repre-
sented as wi = ai/

∑15
j aj . This integration process pro-

duces a single series of label estimation to the new movie
inputs.

Brain Decoding (BD). BD is an effective method that esti-
mates human perception and cognition induced by complex
audiovisual inputs (Nishida and Nishimoto 2018). In the BD
of this study, cognitive labels are directly estimated by ana-
lyzing measured voxel responses to movies. The model form
is the same as in the vox2lab model of BTL except that the
measured voxel responses are used instead of the predicted
responses. The regression procedure is the same as the one
used in BTL.

Results

Performance in Voxel-response Prediction

To confirm that our models appropriately extract audiovi-
sual features of individual brains, we first examined the per-
formance of cnn2vox and vox2vox models in terms of the
prediction of voxel responses to web ad movies (Table 1).
The prediction accuracy was evaluated by Pearson’s corre-
lation between the predicted and measured voxel responses
in the test fMRI dataset, which have not been used for model
training. Each accuracy was averaged over the whole cortex
and across all participants.

The accuracy is higher when the predictions from both
VGG-16 and SoundNet cnn2vox models were integrated
than when only either of them was used. This is due to the
fact that the VGG-16 and SoundNet features distinctively
model audiovisual responses of voxels in different cortical
regions. Indeed, the VGG-16 and SoundNet models accu-
rately predict voxel responses in visual and auditory areas,
respectively (see supplemental material). This is consistent
with the previous findings that CNNs trained by datasets of
specific modality predict voxel responses in brain regions
involved in the processing of that modality (Güçlü and van
Gerven 2017; 2015; Kell et al. 2018). Thus, our cnn2vox
models well capture different modality of feature represen-
tations in the cortex. In addition, combining the predic-
tion from the vox2vox models with the prediction from the
cnn2vox models slightly improves the accuracy (Table 1; t-
test, p < 10−8), indicating that endogenous properties of
voxel response represented by the vox2vox models augment
the model ability to describe the brain feature representation
by adding them to exogenous properties of voxel response.

Label Estimation Tasks

Task1: Estimation of Semantic Perception. The first
task is the estimation of semantic perception induced by
each movie scene using the scene description data. All possi-
ble combinations of the cnn2vox and vox2vox models were
calculated for BT, whereas for TL, all possible combina-
tions of VGG-16 and SoundNet were calculated. Further-
more, for a fair comparison with BTL, the TL with the es-
timation from multiple time points was also computed (see
Reference Methods). The performance of BTL and BD was
evaluated using the mean estimation derived from the esti-
mation of each participant model. Out of all the methods,
the performance of BTL with the VGG-16 cnn2vox model
is highest (Table 2). The significance of performance differ-
ences between methods was tested with a bootstrapping test
(see supplemental material). The best performance in BTL
is significantly higher than the best performance in TL and
the performance in BD (p < 0.0001).

A previous study on brain decoding demonstrated that de-
coded contents varying brain to brain correlate with individ-
ual variability in semantic perception (Nishida and Nishi-
moto 2018). To test whether brain-by-brain variability in
contents estimated by BTL has a similar correlation, we
evaluated the correlation between individual variability in
estimated contents and that in scene descriptions. In this test,
BTL with VGG-16 cnn2vox and vox2vox models was used.
The individual variability was evaluated by mean pairwise
Pearson’s correlation distance of estimation- or description-
derived word2vec vectors between all possible pairs of
brains or annotators. We used a 2-s window slid in 1-s steps
to calculate the pairwise distance as is the case with the pre-
vious study (Nishida and Nishimoto 2018). Then, Pearson’s
and Spearman’s correlation coefficients were calculated be-
tween the pairwise distances of estimated contents and those
of scene descriptions. As a result, there are significant cor-
relations not only for BD, consistent with the previous study
(Nishida and Nishimoto 2018), but also for BTL (Figure 2; t-
test, p < 0.0001). In addition, the correlation coefficients for
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Table 2: Estimation performance in all the tasks
CNN Estimation performance

VGG-16 SoundNet Vox2vox Task1 Task2 Task3-1 Task3-2 Task4

BTL

� 0.546 0.498 0.505 0.440 0.354
� � 0.546 0.500 0.502 0.444 0.360

� 0.146 0.234 0.094 0.223 0.244
� � 0.146 0.235 0.093 0.227 0.252

� � 0.536 0.516 0.446 0.376 0.381
� � � 0.536 0.517 0.447 0.375 0.387

Time point

TL

� Single 0.504 0.450 0.478 0.217 0.320
� Multiple 0.537 0.482 0.510 0.288 0.334

� Single 0.127 0.208 0.067 0.134 0.176
� Multiple 0.143 0.232 0.065 0.166 0.213

� � Single 0.504 0.471 0.475 0.245 0.336
� � Multiple 0.535 0.501 0.502 0.303 0.365

BD 0.396 0.349 0.287 0.468 -
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Figure 2: Correlation of individual variability in semantic
perception. Each dot depicts the variability in one scene.

BTL (Figure 2B) are rather higher than those for BD (Fig-
ure 2A). These results suggest that the models constructed
from individual brains through BTL capture the individual
variability in semantic perception.

Task2: Estimation of Impression Ratings. The second
task is the estimation of impression perception induced by
each scene of the web ad movies using the impression rating
data. The estimation performance is mean values averaged
over the 30 impression items. Out of all the methods, the
performance of the BTL with the VGG-16 and SoundNet
cnn2vox models and the vox2vox model is highest (Table 2).
The best performance in BTL is significantly higher than the
best performance in TL and the performance in BD (boot-
strapping test, p < 0.0001). In this case, in contrast to the
estimation of semantic perception, the SoundNet cnn2vox
model improves the performance. This indicates that this
task requires auditory information and suggests that BTL
can extract auditory features from inputs and effectively use
them for label estimation.

Task3: Estimation of Ad Effectiveness. The third task is
the estimation of mass behavior that reflects the effective-
ness of each clip of the web ad movies. The effectiveness
was evaluated by two behavioral indices collected on the
web: click rate (task3-1) and view completion rate (task3-
2). For the estimation of click rate, of all the methods,
the TL with the VGG-16 layers and the estimation from
multiple time points shows the highest performance (Ta-
ble 2, task3-1), although its performance is not significantly
higher than the best-performing BTL (bootstrapping test,
p = 0.246). Accordingly, in this case, BTL does not outper-
form TL. However, this is not surprising because the result
that the estimation performance of BD is notably low in this
task indicates that brain representations are not efficient for
the estimation of click rate. Since BTL guides the estima-
tion through brain representations, the inefficiency of brain
representations negatively influences the estimation perfor-
mance. Indeed, assuming that the vox2vox model makes fea-
ture representations more brain-like, the observation that the
presence of the vox2vox model reduces the estimation per-
formance (bootstrapping test, p < 0.05) may be consistent
with this notion.

In contrast to the estimation of click rate, among all the
methods, the highest performance in the estimation of view
completion is shown by BD (Table 2, task3-2), although
its performance is not significantly higher than the best-
performing BTL (bootstrapping test, p = 0.215). Follow-
ing this, BTL shows the second-highest performance despite
the fact that TL shows much lower performance. This again
indicates that BTL effectively uses brain representations to
guide the estimation

Task4: Estimation of Ad Preference. The fourth task is
the estimation of mass viewers’ preference to each clip of
the TV ad movies using the ad preference data. In this task,
the vox2lab model of BTL was trained using movie datasets
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Figure 3: The effect of training sample size on the perfor-
mance in ad preference estimation. The transition of estima-
tion performance against the training sample size is shown
separately for each of BTL (blue) and TL (orange).

completely separated from movie datasets for the training of
the cnn2vox and vox2vox models. Hence, the BTL perfor-
mance in this task reflects how the transformation between
CNN and brain features by BTL is effectively generalized to
novel datasets. The estimation performance was evaluated
using 10-fold cross-validation.

Of all the methods, BTL with the VGG-16 and SoundNet
cnn2vox models and the vox2vox model shows the high-
est performance (Table 2). The best performance in BTL is
significantly higher than the best performance in TL (boot-
strapping test, p < 0.0001). In this case, the presence of the
vox2vox model improves the estimation performance.

In this task, the training of the vox2lab model in BTL and
the TL model was conducted on data much larger than the
ones used in the other tasks. Hence, to examine the impact
of the size of the training data on label estimation, we evalu-
ate the performance of the label estimation by changing the
sample size of training data (Figure 3). The estimation per-
formance of both the models gradually improves with the
increase of the training sample size. Although the perfor-
mance of each method seems to reach a plateau when all the
samples were used, BTL still outperforms TL. This indicates
that the superiority of BTL is not due to the difference be-
tween BTL and TL in terms of the sample size required for
model training.

Conclusion

We proposed BTL for guiding the estimation of cognitive
labels from complex audiovisual inputs through the trans-
formation of CNN features to brain representations. To eval-
uate the performance of BTL and compare it with the per-
formance of the other methods, we conducted four different
types of recognition tasks. Our results in these recognition
tasks demonstrated that BTL outperforms regular TL espe-
cially in the tasks in which brain representations are effective
for the estimation. In addition, our results also suggest that
the BTL estimation captures individual variability in percep-

tion. Therefore, BTL with CNNs potentially provides a pow-
erful method to improve the generalization ability of CNNs
in the estimation of human-like cognition and behavior, in-
cluding individual differences.

The primary aim of this study was not to develop a
machine-learning method that has state-of-the-art perfor-
mance in pattern recognition. We rather aimed to exam-
ine the possibility that effective use of brain representations
compensates for the shortcomings of conventional machine-
learning methods. In particular, the present study focused
on generalizability, which is one of the brain’s prominent
abilities that is better than machine learning, and we demon-
strated that the addition of brain information improves the
generalizability of machine learning. For this reason, we
used standard CNNs (VGG-16 and SoundNet) and applied
a simple TL algorithm with or without brain information.
Nevertheless, it is also of interest to investigate whether BTL
with more sophisticated CNNs and TL algorithms further
improves the generalizability of machine learning.

The modeling in BTL is based on building voxelwise en-
coding models (Naselaris et al. 2011). In this line of re-
search, there are many ongoing attempts to enhance mod-
eling performance in terms of brain-response prediction
(Çelik et al. 2019; Nunez-Elizalde, Huth, and Gallant 2019;
Wen and Li 2016). Such enhancement potentially enables
to utilize brain feature representations more efficiently by
BTL, resulting in better performance in the estimation of
human-like cognition and behavior, including their individ-
ual differences. In addition, the voxelwise modeling basi-
cally allows the prediction of brain response from any sort
of feature representations. This means that BTL can also be
applied to other machine-learning methods different from
CNNs. Therefore, BTL has the potential to improve the gen-
eralization ability of overall machine-learning methods. We
believe that BTL makes a key contribution to further devel-
opments in the field of machine learning.
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