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Abstract

The real-world deployment of Deep Neural Networks
(DNNs) in safety-critical applications such as autonomous
vehicles needs to address a variety of DNNs’ vulnerabilities,
one of which being detecting and rejecting out-of-distribution
outliers that might result in unpredictable fatal errors. We pro-
pose a new technique relying on self-supervision for general-
izable out-of-distribution (OOD) feature learning and reject-
ing those samples at the inference time. Our technique does
not need to pre-know the distribution of targeted OOD sam-
ples and incur no extra overheads compared to other meth-
ods. We perform multiple image classification experiments
and observe our technique to perform favorably against state-
of-the-art OOD detection methods. Interestingly, we witness
that our method also reduces in-distribution classification risk
via rejecting samples near the boundaries of the training set
distribution.

Introduction

The real-world deployment of Deep Neural Networks
(DNNs) in safety-critical applications, such as autonomous
vehicles, calls for improving resiliency of DNNs for variety
of vulnerabilities in these algorithms. Improving algorithm
robustness for real-world scenarios calls for multi-fold ef-
forts in network architecture design (Wang et al. 2017) and
post-evaluation (Hendrycks and Dietterich 2019). There has
recently been increasing attention to real-world challenge
of out-of-distribution (OOD) sample errors. By quantify-
ing model or data uncertainty and rejecting predictions of
high uncertainty during inference (Kendall and Gal 2017),
one can improve dependability of (already trained) proba-
bilistic models in open-world scenarios. Current research on
out-of-distribution detection are taking different directions,
including detection based on model confidence (Liang, Li,
and Srikant 2017), employing ensemble techniques (Vyas et
al. 2018), learning DNN features (Lee et al. 2018) or using
reconstruction scores (Pidhorskyi, Almohsen, and Doretto
2018) and recently self-supervised algorithms (Golan and
El-Yaniv 2018; Hendrycks et al. 2019).
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Our paper proposes a new technique to improve model
reliability by adding OOD detector functions (with min-
imal architectural changes) to the model, to discriminate
OOD samples in multiple reject classes without sacrific-
ing the normal (i.e., in-distribution) classification perfor-
mance. Our high level idea is to simultaneously train in-
distribution classifiers and out-of-distribution detectors in
one network. Specifically, we use additional nodes as reject
functions in the last layer of our neural network. We use a
self-supervised approach to train reject functions with free
unlabeled OOD samples and the classifier functions with a
labeled in-distribution training set.

We demonstrate the effectiveness of the proposed method
through extensive comparisons with state-of-the-art tech-
niques, across different datasets. We show that:
• Our method learns to generalize nicely on unseen OOD

distributions. In particular, learning such generalizable
OOD features is important for the detection robustness
when a mixed of unseen distributions are present.
• Different from existing methods (Liang, Li, and Srikant

2017; Lee et al. 2018), our method does not need tuning
with a sub-sample of the targeted OOD set, and therefore
can use any “free” unlabeled OOD set for training.
• Our method can also benefit in-distribution classifica-

tion accuracy, via rejecting ambiguous samples near the
boundaries of the training set distribution.

Related Work

Earlier work in deep learning presents solutions such as deep
ensembles (Lakshminarayanan, Pritzel, and Blundell 2017)
and uncertainty estimation (Gal and Ghahramani 2016) to
improve the dependability of machine learning solutions in
real-world tasks. Despite their effectiveness, they carry sig-
nificant extra computation and latency costs. (Geifman and
El-Yaniv 2017) presents a simpler selective classification
approach, and SelectiveNet (Geifman and El-Yaniv 2019)
further proposes threshold on model prediction probability
and selectively classify inputs below the desired classifi-
cation risk. They show selective classification can improve
model prediction’s reliability by allowing the user to set a
desired misclassification error-risk in trade-off with the test
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Algorithm 1 Two-Step Training for In- and Out-of-Distribution Training Sets

procedure SUPERVISED IN-DISTRIBUTION LEARNING
Input: Batch of Din

train samples in c different classes.
Training the in-distribution set by solving: min (EPin(x̂,ŷ)

[− log(Pθ(y = ŷ|x̂))])
procedure SELF-SUPERVISED OUT-OF-DISTRIBUTION LEARNING

Input: Batch of mixed Din
train labeled samples and Dout

train unlabeled samples, set of OOD classes k,
learning coefficient for OOD features λ.
Training the mixed set by solving: min (EPin(x̂,ŷ)

[− log(Pθ(y = ŷ|x̂))] + λEPout(x,target)
[− log(Pθ(y = target|x))])

Where pseudo-label target for each OOD training sample is calculated at each pass during training:
if argmax(Pθ(x)) ∈ k then

target← argmax(Pθ(x)) � choosing the reject class with maximum class probability.
else

target← random(k) � choosing a random reject-label.

coverage. Along the same line, (Guo et al. 2017) presented
temperature scaling a post-processing calibration technique
to adjust the model probability estimates being off due to
over fitting. However, this line of research does not empha-
size model robustness against misclassifying OOD outliers.
In comparison, this paper presents experiments on how our
OOD rejection technique improves classification risk when
both in-distribution and OOD samples are present.

To investigate the use of class probabilities as a proper
measure for OOD detection, (Hendrycks and Gimpel 2016)
presents maximum softmax probability (MSP) as the Base-
line for OOD detection in DNN algorithms. Later, (Liang,
Li, and Srikant 2017) presents ODIN to calibrate pre-trained
models using temperature scaling and small perturbation on
in-distribution inputs to improve model robustness against
OOD samples. In a more sophisticated approach, (Lee et al.
2017) used a generative adversarial network (Goodfellow et
al. 2014) to synthesis samples which are out of but close to
the training data distribution boundaries for calibrating the
model. They employ a two term loss function to force the
predictive distribution of OOD samples toward uniform dis-
tribution. Along the same line, (Hendrycks, Mazeika, and
Dietterich 2018) investigates the effectiveness of large nat-
ural datasets disjoint from the training set to calibrate the
model prediction. However, it is an inherent problem with
ReLU family activation functions that they produce arbitrary
high confidence as inputs get further from the training distri-
bution (Hein, Andriushchenko, and Bitterwolf 2019). There-
fore, in contrast to model calibration techniques, we show
using additional decision boundaries in the network has a
better effect on discriminative feature learning.

Another line of research focuses on unsupervised and
self-supervised learning for OOD detection challenge, by
estimating a novelty score or training a one-class classi-
fier. For instance, using generative models for novelty detec-
tion has been investigated in (Nalisnick et al. 2018). (Pid-
horskyi, Almohsen, and Doretto 2018) examines the use of
reconstruction error together with probability distribution
of the full model in an autoencoder as a novelty measure,
and improve OOD detection by incorporating the Maha-
lanobis distance in the latent space. Recently, (Golan and
El-Yaniv 2018) studies self-supervised geometric transfor-
mations learners to distinguish normal and outlier samples

in a one-vs-all fashion. In a concurrent paper, Hendrycks et
al. (Hendrycks et al. 2019) presents experiments on com-
bining different self-supervised geometric translation pre-
diction tasks in one model, using multiple auxiliary heads.
Their results show improvements in detecting OOD sam-
ples as well as improvements in model robustness against
common input corruptions and adversarial examples. Differ-
ent from their work, this paper proposes using one auxiliary
head of self-supervised OOD detection head, to learn gen-
eralizable OOD features in addition to learning the normal
multi-class classification task.

Self-Supervised OOD Feature Learning

The problem we consider in this paper is to detect OOD out-
liers (Dout) using the same classifier Pθ(y|x) trained on nor-
mal distribution (Din). In order to do so, we add an auxil-
iary head to the network and train in for the OOD detection
task. Therefore, in contrast to softmax calibration methods
(Lee et al. 2017; Hendrycks, Mazeika, and Dietterich 2018),
we embed OOD discriminators in the model along with in-
distribution classifiers. We first use a full-supervised train-
ing to learn Din

train for the main classification head and then
a self-supervised training with OOD training set (Dout

train)
for the auxiliary head. Our method can use any disjoint free
unlabeled Dout

train for learning generalizable OOD features;
hence unlike previous methods (Liang, Li, and Srikant 2017;
Lee et al. 2018), it requires no validation sub-samples from
the target OOD set for tuning.

Despite its conceptual simplicity, later via thorough ex-
periments, we will show our method to compare highly fa-
vorably against other state-of-the-arts, in terms of both OOD
detection performance and generalizability.

Network Architecture and Training

Our method imposes the minimal change in the model ar-
chitecture and can be applied on top of any DNN classifier.
Precisely, we add additional nodes (set of reject classes k) in
the last layer of the network — which we call OOD detec-
tors — to learn the OOD features in a self-supervised man-
ner. We employ a two-step training that starts with the full-
supervised in-distribution feature learning and then contin-
ues with self-supervised OOD feature learning. Algorithm
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1 describes the two step training procedure. Below we ex-
plain the algorithm routine; specific architecture details and
training protocol are presented in the next section.

Training starts with a full-supervised in-distribution fea-
tures learning that can be done in any fashion and duration to
reach the optimum/desired classification performance. The
training data (Din

train) in this step comes with labels that are
used for loss minimization. We used cross entropy loss for
the supervised training step.

After learning the in-distribution features, in the sec-
ond step, we mix each mini-batch with both samples from
Din

train and Dout
train, which is an auxiliary unlabeled training

set, to train the auxiliary head for OOD features. We use a
two term loss function for two (in and out features) learning
tasks (λ is a coefficient):

Ltotal = Lin + λLout

The model is also able to self-label the unlabeled Dout
train

samples, with new target predictions at each training pass.
Similar to the full-supervised step, we also use cross entropy
loss for Dout

train training:

Lout = − log(Pθ(y = target|x))
in which the target pseudo-labels are generated using a
simple semi-random method (see Algorithm 1) during the
training process. Specifically, the model uses its own pre-
diction of Dout

train samples at each forward pass to generate
labels for Dout

train samples. If the prediction was a false neg-
ative, then it randomly assigns one of the reject class labels
to the sample. This is similar to Caron et al. (Caron et al.
2018) where pseudo-labels are generated using a k-means
algorithm to train an unsupervised deep clustering network.
Throughout the OOD features learning step, we keep some
in-distribution samples in each mini-batch so that the model
does not forget learned in-distribution features and causing
in-distribution generalization error.

Detection Inference

During inference, we only use one softmax function for all
output classes. We take the sum of softmax output of the
OOD classes as the OOD-detection signal. Naturally, we
take the maximum softmax output of the main classes as the
classifier prediction output. We then evaluate the OOD de-
tection performance with only unseen OOD test sets (Dout

test)
and the normal test set (Din

test) for each trained model.
Therefore, unlike (Hendrycks et al. 2019) and (Pidhorskyi,
Almohsen, and Doretto 2018) where the trained model only
performs novelty detection; our model unifies both multi-
class classification and OOD detection in one model.

Evaluation Experiments

In this section we present a set of experiments on our tech-
nique to evaluate the model performance for both OOD de-
tection and normal classification.

Training and Test Sets To provide adequate evaluation
results for our technique we trained and evaluated multiple
multi-class classifiers on different training sets. Notice that
in all experiments we used different OOD train and test sets

(a) CIFAR-10 Din (b) CIFAR-100 Din

Figure 1: Comparison between different OOD detection
methods when Dout

test is mix of five different and disjoint
outlier datasets. Detectors without generalized OOD feature
learning (i.e., ODIN and Mahanalobis) show significant per-
formance drop when facing mix of outlier distributions.

since our assumption is that we do not have access to outliers
in real-world cases. For example, in the MNIST (LeCun et
al. 1998) experiment, while the normal Din

train is handwrit-
ten digits, we used English letters from E-MNIST (Cohen et
al. 2017) as the source of Dout

train set. We then evaluate the
OOD detection performance with unseen Dout

test including
Kuzushiji-MNIST (Clanuwat et al. 2018), not-MNIST (Bu-
latov 2011), and Fashion-MNIST (Xiao, Rasul, and Vollgraf
2017) datasets to measure how well can the model general-
ize on unseen distributions.

Other experiments include training multi-class classifiers
on CIFAR-10, CIFAR-100 (Krizhevsky, Hinton, and others
2009), and SVHN (Netzer et al. 2011) datasets. In all ex-
periments (except the MNIST) we used 80 Million Tiny Im-
ages dataset (Torralba, Fergus, and Freeman 2008) as the
source of unlabeled Dout

train. We discuss our choice of other
natural (e.g., ImageNet dataset (Russakovsky et al. 2015))
and synthesized datasets as Dout

train in the discussion sec-
tion. We tested each trained model with test sets of five
unseen disjoint datasets including Texture (Cimpoi et al.
2014), Places365 (Zhou et al. 2017), and LSUN (Yu et al.
2015) datasets as Dout

test. For all test experiments, we used
the test set or equal mix of test sets of aforementioned out-
lier datasets as the Dout

test. For both CIFAR experiments, we
removed mutual samples from 80 Million Tiny Images to
create a disjoint Dout

train.

Network Architecture and Training For all experiments
on CIFAR-10 and CIFAR-100 datasets we used 40-2 Wide
Residual Network architecture (Zagoruyko and Komodakis
2016). We used a smaller 16-2 Wide ResNet for the SVHN
and a vanilla convolutional neural network with two con-
volution layers for the MNIST dataset. We used five reject
classes for the CIFAR-10, MNIST, and SVHN experiments
and 10 reject classes for the CIFAR-100 experiment. Simi-
lar to the conventional practice of clustering algorithms, we
perform cross-validation to test different numbers of reject
classes to reach the best detection performance. We will dis-
cuss the effect of reject class numbers in the later section.

The training starts with full-supervised training of the
multi-class classifier the Din

train (see Algorithm 1). We
trained the model for 100 epochs in CIFAR-10 and CIFAR-
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Din
train Dout

test
FPR at TPR 0.95% AUROC AUPR

Baseline OE Our method Baseline OE Our method Baseline OE Our method
M

N
IS

T not-MNIST 17.11 0.25 0 95.98 99.86 99.99 95.75 99.86 99.99

F-MNIST 2.96 0.99 0 99.30 99.83 100 99.19 99.83 100

K-MNIST 10.54 0.03 0.35 97.11 97.60 99.91 96.46 97.05 99.91

SV
H

N

Texture 4.70 1.04 2.28 98.40 99.75 99.37 93.07 99.09 98.16
Places365 2.55 0.02 0.05 99.27 99.99 99.94 99.10 99.99 99.93

LSUN 2.75 0.05 0.04 99.18 99.98 99.94 97.57 99.95 99.85
CIFAR-10 5.88 3.11 0.31 98.04 99.26 99.83 94.91 97.88 99.60
CIFAR-100 7.74 4.01 0.07 97.48 99.00 99.93 93.92 97.19 99.81

C
IF

A
R

-1
0 SVHN 28.49 8.41 3.62 90.05 98.20 99.18 60.27 97.97 99.13

Texture 43.27 14.9 3.07 88.42 96.7 99.19 78.65 94.39 98.78
Places365 44.78 19.07 10.86 88.23 95.41 97.57 86.33 95.32 97.77

LSUN 38.31 15.20 4.27 89.11 96.43 98.92 86.61 96.01 98.74
CIFAR-100 43.12 26.59 30.07 87.83 92.93 93.83 85.21 92.13 94.23

C
IF

A
R

-1
00 SVHN 69.33 52.61 18.22 71.33 82.86 95.82 67.81 80.21 95.03

Texture 71.83 55.97 40.3 73.59 84.23 89.76 57.41 75.76 83.55
Places365 70.26 57.77 39.96 73.97 82.65 89.08 70.46 81.47 88.00

LSUN 73.92 63.56 41.24 70.64 79.51 88.88 66.35 77.85 87.59
CIFAR-10 65.12 59.96 57.79 75.33 77.53 77.70 71.29 72.82 72.31

Table 1: Out-of-distribution detection results (%) on various Din
train and Dout

test experiments. We compare our method with the
Baseline (Hendrycks and Gimpel 2016) and OE (Hendrycks, Mazeika, and Dietterich 2018) techniques. All results are averaged
over 10 runs. The Dout

train is E-MNIST for the MNIST experiment and Tiny Images dataset for all other experiments.

100 experiments, 20 epochs for the SVHN training set, and
10 epochs for the MNIST experiment. We used batch size
of 128, learning rate of 0.1 (decayed on a cosine learning
rate schedule), and dropout rate of 0.3 for the CIFAR-10,
CIFAR-100, and SVHN experiments. For the MNIST ex-
periment, we used batch size of 64, learning rate of 0.01 (de-
cayed on a cosine learning rate schedule), and dropout rate
of 0.1. We measured the normal test set error rate for each
trained model as follows: 4.72% on CIFAR-10, 23.74% on
CIFAR-100, 4.94% on SVHN, and 1.33% on MNIST.

After the model learned in-distribution features, we then
continued with the self-supervised OOD feature learning
with unlabeled Dout

train dataset for more epochs. For the
self-supervised step, we mixed each mini-batch with both
Din

train and Dout
train to maintain features diversity and pre-

vent the model from forgetting normal features when learn-
ing new OOD features. In all experiments we used five
times larger Dout

train mini-batches compared to Din
train mini-

batches. Also, we used a fix λ = 5 for OOD feature learning
coefficient (see Algorithm 1) in all experiments and did not
need to tune at each run. We continued the self-supervised
training step for 10 epochs in MNIST, 20 epochs in SVHN,
and 100 epochs for CIFAR-10 and CIFAR-100 experiments.

OOD Detection Performance

We used different metrics to measure the OOD detection
performance in our experiments. Our threshold independent
metrics are Area Under Receiver Operating Characteristic
curve (AUROC) (Davis and Goadrich 2006) and Area Un-
der Precision and Recall curve (AUPR). The ROC curve
shows the relation between True Positive Rate (TPR) and

False Positive Rate (FPR) in detection. The AUROC will be
100% for a perfect detector and 50% for a random detec-
tor. We used Dout

test (test set of outlier datasets) as positive
OOD samples and the Din

test (test set of normal dataset) as
negative samples for detection. Therefore, we calculate FPR
as the probability of negative samples being misdetected as
positive and TPR as the probability of correctly detecting
positive samples. For the main experiments, we calculated
the detector’s FPR when the detector threshold is set on 95%
TPR. We also used Precision-Recall (PR) curve that shows
the relation between detector positive predictive value (pre-
cision) and TPR (recall) at different thresholds.

Table 1 presents our detailed evaluation and comparison
results with two confidence-score based methods including
the Baseline (Hendrycks and Gimpel 2016) and Outlier Ex-
posure (OE) technique presented in (Hendrycks, Mazeika,
and Dietterich 2018). The choice of comparison with OE
was because of the fact that similar our method, they also
focus on OOD feature learning together with normal distri-
bution features. To evaluate the robustness of our method,
we train multi-class classifiers on four different training sets
(CIFAR-10, CIFAR-100, MNIST, SVHN) and test each of
them (except MNIST) on five different disjoint Dout

test. For
all test experiments, we used equal number of samples from
Din

test and Dout
test sets. All detection results are from one

trained model but averaged over 10 runs. We compare our
method’s detection performance with OE by averaging mea-
sured AUROC over the five Dout

test sets in each experiment.
Our method outperforms the predecessor technique on all
tests by: 6.89% gain in CIFAR-100 experiment, 1.80% gain
in CIFAR-10 experiment, 0.21% gain in SVHN experiment,
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(d) CIFAR-100 Din

Figure 2: Comparison between the Baseline, OE, and our
method’s total misclassificaiton error rate (Top) for CIFAR-
10 and CIFAR-100 experiments at different OOD detection
TPR. Dout

test set is an equal mix of five different test sets. Our
method shows the highest test set coverage (Bottom) at all
classification error rate.

and 1.29% gain in MNIST experiment. Note that none of
compared OOD techniques in this section used sub-sample
of the targeted Dout

test set for model tuning.

Mixed-Distribution OOD Detection To evaluate the gen-
eralizability of our technique, we simulating a real-world
scenario where both samples from normal distribution and
outliers from multiple unknown distribution exists. There-
fore, we run experiments which Dout

test is a mix of different
disjoint datasets. We create an equal mix of SVHN, Tex-
ture, Places365, LSUN, and CIFAR-100 (or CIFAR-10 for
the CIFAR-100 experiment) test sets for a more diverse and
challenging Dout

test. We randomly take 2000 samples from
the test sets of each dataset to create the new Dout

test set. We
first evaluated the Baseline, OE, and our method with the
new mixed-distribution Dout

test, and observed a slight (less
than 0.5%) AUROC drop in OOD detection for these three
methods. However, comparison with ODIN (Liang, Li, and
Srikant 2017) and Mahanalobis (Lee et al. 2018) detectors in
Figure 1 shows a significant detection performance drop of
these methods when facing mix of different Dout

test sets. For
the case of ODIN detector, the AUROC drops 14.07% for
CIFAR-100 (and 7.41% for CIFAR-10) experiment when
facing the mixed distribution Dout

test set. Similarly, for the
case of Mahanalobis detector, the AUROC drops 25.84%
for CIFAR-100 (and 7.34% for CIFAR-10) experiment when
facing the mixed distribution Dout

test set. This detection per-
formance drop indicates high reliance of these two methods
on tuning on the known outlier distribution rather than learn-
ing generalizable OOD features. For both ODIN and Ma-
hanalobis detectors, we used 200 samples from each of five
Dout

test sets to tune Mahanalobis and ODIN detectors in this
experiment. We review more detailed valuation and compar-
ison with the two methods in the discussion section.
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(c) CIFAR-10 Din
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Figure 3: Normal classification error rate (Top) and risk-
coverage curves (Bottom) for CIFAR-10 and CIFAR-100
experiments. Our method consistently improves classifica-
tion error rate as we reduce the detection threshold for higher
detection true positive rates. Colored lines show different
Dout

test sets.

We next evaluate the total misclassification rate of our
model and compare it with the Baseline and OE detectors.
We calculate total misclassification rate as the number of
misclassified inputs (normal classification error plus false
negative samples) divided by total number of classified in-
puts (total number of negative samples). Figure 2 (a) and (b)
show total misclassification error rate at different OOD de-
tection TPR when feeding the model with both Din

test and
the mixed Dout

test set. All three techniques show total mis-
classification rate reduction with higher detection TPR in
CIFAR-10 and CIFAR-100 experiments. Figure 2 (c) and
(d) presents a comparison of risk-coverage curves between
these techniques which indicates our technique has the high-
est Din

test set coverage in this comparison. For the CIFAR-
10 experiments, Our method shows 4.57% higher Din

test
set coverage compared to the OE and 28.68% higher com-
pared to the Baseline method when our detector is set on
95% TPR. Likewise, for the CIFAR-100 experiments, Our
method shows 6.45% higher Din

test set coverage compared to
the OE and 21.08% higher compared to the Baseline method
when our detector is set on 95% TPR.

Normal Classification Performance

Despite most OOD detection papers which restrict the eval-
uations experiments to only the Dout

test, the presence of an
OOD detector affects normal classification performance as
well. Specifically, the false negative detection samples al-
ways increase the classification error rate, but false posi-
tive detection samples could decrease the classification er-
ror. Misdetected samples from Din

test (false positive sam-
ples) near the training distribution boundary (regions with
low density) could reduce classification error. We evaluate
how does our OOD detector affect normal classification risk
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and coverage in the concept of selective classification (Geif-
man and El-Yaniv 2017). To measure the normal error rate
at different desired OOD detection TPR, we first calculate
the detection threshold using equal size of normal and out-
lier samples. We then feed the Din

test to the network which
selectively classifies samples that are not detected as OOD.

Figure 3 (a) and (b) show normal misclassification er-
ror rate at different OOD detection TPRs on CIFAR-10 and
CIFAR-100 experiments. The normal misclassification error
drops consistently as we reduce the detection threshold for
higher TPR. Note that in all tests the normal misclassifica-
tion rate is 4.72% for the CIFAR-10 dataset and 23.74% for
CIFAR-100 without using the OOD detector. Experiments
on CIFAR-10 show the normal misclassification error rate
is reduced by 1.92% on average when the detector is set on
95% TPR detection. Similar to that, averaging on experi-
ments for CIFAR-100 dataset show the normal misclassifi-
cation error rate is fallen by 11.81% when the detector is set
on 95% TPR detection. However, this surge in the classifi-
cation performance is in a trade-off with the Din

test coverage
which is due to higher detection FPR: see Figure 3 (c) and
(d) for Din

test risk-coverage curve in different experiments.

Discussion and Analysis

In this section we discuss the robustness of our technique by
reviewing how different hyperparameters and training varia-
tions affect the OOD detection performance. We compare
the OOD detection performance and generalization with
ODIN (Liang, Li, and Srikant 2017), Mahanalobis detec-
tor (Lee et al. 2018), and Deep SVDD (Ruff et al. 2018)
one class classifier.

Generalizable OOD Feature Learning In our experi-
ments, we found size and diversity of the Dout

train set are im-
portant factors to learn generalizable OOD features. Since
our normal Din

train datasets (CIFAR-10, CIFAR-100, and
SVHN) are much smaller than Dout

train (Tiny Images dataset
with 80 million samples), we used five times more OOD
samples in each training iteration to create large enough
mini-batches for the self-supervised OOD training step.
Note that the model learns the in-distribution features in the
full-supervised training step and the self-supervised training
goal is learning Dout

train features to generalize well on unseen
Dout

test. To even further enhance the OOD feature learning,
we perform random sampling without replacement from our
large Dout

train to increase the diversity of OOD training fea-
tures. This sampling resulted in using about 30% of the Tiny
Images dataset throughout the 100 epochs of self-supervised
training for CIFAR-10 and CIFAR-100 experiments. Due to
the simpler features in SVHN dataset (compared to CIFAR),
we observed that using only about 5% of the entire Dout

train
is enough for the SVHN experiment during the 20 epochs of
self-supervised learning.

An important factor for OOD detectors is to generalize
on any unseen Dout

test independent from the training and tun-
ing data. We performed rigorous evaluations with differ-
ent individual and mixed disjoint image datasets to convey
the importance of generalization in OOD detection. On the
other hand, techniques like ODIN (Liang, Li, and Srikant

(a) OE
(Confidence score)

(b) Our Method
(Multiple reject classes)

Figure 4: Comparison of OOD detection score histograms
between OE (−1×MSP score) and our method (MSPOut

score) for the CIFAR-10 experiment.

2017), Lee et al. (Lee et al. 2017), and Mahanalobis detec-
tor (Lee et al. 2018) heavily rely on a small sub-sample of
targeted Dout

test for parameter tuning. For example, the Ma-
hanalobis detector shows an average of 13.4% AUROC drop
for CIFAR-100 classifier (9.87% AUROC drop for ODIN)
and 1.4% drop for CIFAR-10 classifier (3.6% AUROC drop
for ODIN) when using adversarial perturbation samples for
parameter tuning instead of taking 1000 samples from the
Dout

test set. Even in the case of mixed Dout
test set, figure 1 shows

significant detection performance drop for these methods.
The difference between ROC curves shows how well differ-
ent methods can generalize on mixed of unseen Dout

test sets.

Synthesized OOD Training Set Early in our experiments,
we found out the closeness of Dout

train and Din
train is impor-

tant for learning features which are outside but near the train-
ing distribution. In our CIFAR-10 and CIFAR-100 exper-
iments, Din

train are disjoint subsets of Dout
train (Tiny Images

dataset), and hence in the self-supervised training step, OOD
samples fall somewhat near (yet non-identical to) Din

train in
the feature space, as analyzed in (Recht et al. 2018).

To test the flexibility in choosing other Dout
train, we also

used down-sampled ImageNet-22k (with ImageNet-1k re-
moved from it) dataset as another choice of large scale nat-
ural images and repeated the CIFAR-10 and CIFAR-100
experiments. However, we saw an average detection AU-
ROC drop from 88.24% to 84.99% on CIFAR-100 and from
97.37% to 90.40% on CIFAR-10 experiment. To improve
the ImageNet as the Dout

train set, we simply blended OOD
samples with the Din

train to create new synthesized OOD
training set. The new OOD training set (with α = 0.1 image
blending) improve averaged detection AUROC to 85.98%
on CIFAR-100 and to 91.72% on CIFAR-10 experiment.
Our conclusion is that a suitable unlabeled Dout

train could be
provided by a mother dataset (like the Tiny Images for the
cases of CIFAR-10 and CIFAR-100), or simply collected
during the normal training data collection, and improved
with different augmentation and synthesizing (as in (Liang,
Li, and Srikant 2017)) techniques.

In the case of SVHN and MNIST training sets, we ob-
served that the network was able to easily distinguish in-
distribution features from the OOD features. For the SVHN
experiment, we observed no reduction or improvement in
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Detection Score Din
train

CIFAR-10 CIFAR-100

max (softmaxout) 97.77 88.31

sum (softmaxout) 97.83 88.20

weighted (softmaxout) 97.75 88.32

entropyout 97.88 87.93

entropyout − entropyin 97.86 87.72

Weighted All Scores 97.85 88.44

Table 2: OOD detection AUROC results (%) when using
various detection scores. Using different scores does make
make significant improvement in detection performance.

OOD detection performance when using ImageNet as the
sources of Dout

train compared to the choice of Tiny Images
dataset. Likewise for the MNIST experiment, the OOD de-
tection performance when using E-MNIST as the sources of
Dout

train (average AUROC = 99.65%) was not much differ-
ent from using K-MNIST as the sources of Dout

train (average
AUROC = 99.97%).

Multiple Reject Classes Similar to the conventional prac-
tice of unsupervised clustering techniques, we test our
technique with using different number of reject classes
for OOD distribution. We vary the number of reject
classes, denoted as k, in CIFAR-10 and CIFAR-100 ex-
periments, train for equal number of epochs, and mea-
sure the OOD detection performance. We tried k =
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, and 50 number of re-
ject classes for the CIFAR-10 experiment and k =
1, 2, 5, 10, 20, 30, 50, and 100 number of reject classes for
the CIFAR-100 experiment.

Comparing the OOD detection AUROC results shows an
average of 91.1% with a standard deviation of 0.31% when
using the different k-reject classes for the CIFAR-10 data
set. Likewise, for the CIFAR-100 dataset, OOD detection
AUROC results show an average of 79.2% with a stan-
dard deviation of 5.40% when using the different k-reject
classes for the CIFAR-100 data set. We chose k=5 for all 10-
class classifiers and k=10 for the 100-class classifier experi-
ments. Our results indicate that the optimal number of reject
classes, which results in neither over- nor under-partition
of OOD features, would be dependent on the choice of in
and out of distribution training data. However, its impact
on OOD detection performance is mild and insensitive. Fig-
ure 4 shows a comparison of the histogram of OOD detector
scores between OE and our method.

OOD Detection Scores We also considered using differ-
ent OOD scoring methods rather than taking maximum soft-
max probability (MSP) of reject classes as the detection
signal. During the self-supervised training step, our ran-
dom pseudo-labeling clusters OOD features into multiple
reject classes which is advantageous compared to 1-reject
class. For this purpose, we examined weighting softmax

probability of reject classes, the entropy of softmax vec-
tor for both reject classes (EntropyOut) and normal classes
(−1 × EntropyIn), and combination of weighted softmax
probabilities and entropy of softmax vector.

Table 2 shows a list of various detection scores that we ex-
amined as OOD detection score. We used a mix of five dif-
ference disjoint datasets as the Dout

test set and the results show
AUROC of the OOD detection in CIFAR-10 and CIFAR-
100 experiments. With a non-weighted sum of softmax prob-
abilities of reject classes we observed an AUROC increase
of 0.06% in CIFAR-10 experiment over maximum softmax
probability detection. Using a greedy search we weighted
the softmax scores of reject classes and observed 0.01%
increase in CIFAR-100 experiment. Adopting entropy of
the softmax vector (from reject classes) also resulted in
0.11% increase in CIFAR-10 experiment. Lastly, we exam-
ined combining the weighted softmax scores and softmax
vector entropy for higher AUROC. Our conclusion is that
training multiple reject classes for OOD detection improves
the detection performance via allowing better OOD detec-
tion scores compared to using only 1-reject class.

Comparison to One Class Classification We do not pri-
marily compare our method to one class classifiers and other
families of unsupervised outlier detectors/ uncertainty es-
timators, due to their often significantly higher inference
latency and memory overheads. However, we briefly com-
pared our method with the Deep SVDD (Ruff et al. 2018)
one class classifier on CIFAR-10 dataset. We train 10 differ-
ent classifiers that each takes one of the CIFAR-10 classes as
the Din

train and the other 9-classes as Dout
test. Similar to other

CIFAR experiments, we use Tiny Images as the Dout
train.

Our experimental results show average AUROC of 77.75%
for 10 trained one class classifiers which outperforms Deep
SVDD method with averaged AUROC of 64.81% with the
same train and test sets.

Conclusion and Future Work

We presented a new method to detect OOD samples with
a minimal twist in a regular multi-class DNN classifier. In
a two step training, our model jointly learns generalizable
outlier features as well as in-distribution features for nor-
mal classification. Our evaluation results show the proposed
self-supervised learning of OOD features can very well gen-
eralize to reject other unseen distribution. Also, our method
reduces the classification risk for the test sets while by re-
jecting ambiguous samples near the boundaries of training
distribution. The immediate future directions for our tech-
nique is using a clustering method to assign pseudo-labels
(instead of random pseudo-labels) to OOD samples. Includ-
ing temperature scaling as another tuning step is also worthy
to explore for better calibrating the model.
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