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Abstract

Neural networks are increasingly used for graph classifica-
tion in a variety of contexts. Social media is a critical appli-
cation area in this space, however the characteristics of social
media graphs differ from those seen in most popular bench-
mark datasets. Social networks tend to be large and sparse,
while benchmarks are small and dense. Classically, large and
sparse networks are analyzed by studying the distribution of
local properties. Inspired by this, we introduce Graph-Hist:
an end-to-end architecture that extracts a graph’s latent lo-
cal features, bins nodes together along 1-D cross sections
of the feature space, and classifies the graph based on this
multi-channel histogram. We show that Graph-Hist improves
state of the art performance on true social media benchmark
datasets, while still performing well on other benchmarks.
Finally, we demonstrate Graph-Hist’s performance by con-
ducting bot detection in social media. While sophisticated bot
and cyborg accounts increasingly evade traditional detection
methods, they leave artificial artifacts in their conversational
graph that are detected through graph classification. We apply
Graph-Hist to classify these conversational graphs. In the pro-
cess, we confirm that social media graphs are different than
most baselines and that Graph-Hist outperforms existing bot-
detection models.

Introduction

Given the success of traditional machine learning, interest
in geometric learning has grown in recent years. Geomet-
ric learning seeks to extend machine learning models be-
yond Euclidean data to include objects such as graphs, point
clouds, and manifolds. Non-Euclidean data structures are
information-rich, as they can describe data that traditional
structures cannot. For example, a traditional data structure
may contain attributes of a group of individuals, while a
graph or network can also encode the relationships between
the individuals. Thus, new algorithms to leverage this type
of information can bring new insights.

There are three main problems for graphs in particular:
node classification, link prediction, and graph classification.
Here, we focus on the last task, graph classification. In this
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problem, each input sample is a graph, which has a corre-
sponding category or label. The goal is to create a model
which takes an entire graph as an input, and assigns it to the
correct class.

Graph classification is gaining interest in part due to the
variety of domains it may be applied to. The same models
that can classify proteins based on their structure may also
be used to classify social media conversations. We identify
a new application which is highly relevant in today’s socio-
political landscape: bot classification in social media. Auto-
mated accounts called bots are increasingly used in online
information operations to manipulate both networks (virtual
social links) and the narratives that transit these networks.
Since bots operate through networks, their network structure
can be used to identify them.

While many problems regarding social media data can
be posed under a graph classification framework, few prior
models focus on this domain. Much of the prior work in
graph classification focuses on benchmark data that does not
reflect the typical structure of social media data. Specifically,
social media graphs or networks tend to have large nodesets
and low density, while benchmark datasets tend to have less
than 100 nodes and are quite dense.

In this work, we develop a new graph classification ar-
chitecture inspired by classical network analysis. In analysis
of large networks, it is common practice to calculate local
features and study the distribution. Here, we use an end-to-
end graph-convolutional architecture to extract local latent
features and classify the graph based on the distribution of
these features. Due to the high dimensionality of the feature
space, we instead use one-dimensional cross sections of the
distribution in the form of a multi-channel histogram. Since
this procedure classifies graphs based on histograms of la-
tent features, it has been named Graph-Hist.

In the following sections, we review prior work in graph
classification, explain our architecture, demonstrate Graph-
Hist’s ability to achieve state of the art results on social me-
dia benchmarks, and finally demonstrate real-world applica-
tion of our model through a case study of bot classification
on Twitter data.
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Related Work

The field of graph learning has expanded rapidly since the
notation for Graph Neural Networks, or GNNs, was first
introduced by Gori et al. (Gori, Monfardini, and Scarselli
2005). The work from then to 2018 is well summarized by
Wu et. al (Wu et al. 2019).

GNNs for graph classification are typically based on a
type of graph convolution, leading to their other name:
Graph Convolutional Networks, or GCNs. Traditional con-
volutional networks have proved extremely successful at
learning shape features for problems in the Euclidean do-
main, such as image classification. However, translating this
operation to the graph domain is difficult due to irregular-
ities in graph structure (Krizhevsky, Sutskever, and Hinton
2012). Graph convolutions usually fall into one of two ap-
proaches: spectral or spatial. Spectral methods stem from
efforts to extend traditional signal processing techniques to
graph signals, or Graph Signal Processing (Shuman et al.
2013). Spectral approaches typically use the symmetric nor-
malized Laplacian, shown in Equation 1. Many spectral-
based approaches like ChebNet relied on eigenvalue cal-
culations, making them computationally costly (Defferrard,
Bresson, and Vandergheynst 2016). Spatial methods on the
other hand, operate on the local structure of the graph. In
spatial methods such as GraphSage, nodes aggregate infor-
mation from their neighbors (Hamilton, Ying, and Leskovec
2017).

Kipf and Welling introduced a model that bridged the gap
between the two: it is an approximation of a spectral convo-
lution, but it is localized in space (Kipf and Welling 2016).
This model uses the propagation rule shown in Equation 2,
which is discussed in the following section. Many architec-
tures for graph classification now build upon this convolu-
tional structure, including two works we draw from here:
SortPool and Capsule Graph Networks (Zhang et al. 2018;
Xinyi and Chen 2019).

Zhang et al, replaces the normalized Laplacian with
the random-walk Laplacian, and draws parallels to the
Weisfeiler-Lehman subtree kernel (Shervashidze et al.
2011). This effectively gives node embeddings, which they
then sort and either truncate or pad to a fixed size, hence the
name SortPool. While the sorting procedure gives some spa-
tial relationship to the nodes, the truncating/padding proce-
dure either drops important information, or adds erroneous
data. This is especially problematic when datasets have high
variance in graph size, which is often the case in social me-
dia datasets. Xinyi and Chen have also used this GNN struc-
ture, but applied attention to handle the differences in graph
size (Xinyi and Chen 2019).

Tixier et al. take a different approach (Tixier et al. 2017).
They first assume that node embeddings are given. Node
embeddings can be obtained in a number of unsupervised
ways, most of which attempt to preserve the network-based
distance between nodes in the embedded space through op-
erations like random walks (Perozzi, Al-Rfou, and Skiena
2014). They then compress this high-dimensional embed-
ding into a multi-channel image by looking at cross sections
of consecutive principle components from principle com-
ponent analysis (PCA). Finally, they use a standard image

classifier architecture to classify the graphs. This approach
achieved good results, but has two shortcomings. First, the
lack of end-to-end architecture results in embeddings that
may work well for spatial preservation, but poorly for graph
classification. Second, their pairing of PCA dimensions is
somewhat arbitrary.

Here, we effectively combine and apply a powerful CNN
architecture like that used by Tixier et al to the expressive
node embeddings from GNNs, as in Kipf, Zhang, and Xinyi.
The previously missing piece that can attach these two meth-
ods is a differentiable operation that converts node embed-
dings into a format that CNNs can leverage. To define such
an operation, we draw from classical network science. Net-
works are typically analyzed by studying the distribution of
their local features (Wasserman and Faust 1994). The most
common of such analyses is performed on the degree distri-
bution, which has been used to classify networks of different
types, such as scale-free or small-world networks. This in-
dividual analysis of feature histograms inspired the binning
mechanism introduced here. Our binning operation approx-
imates the full node embedding distribution into a multi-
channel histogram, which is easily inputted to a standard
CNN.

Graph-Hist
A graph can be represented by G = (V, X,A), where V =
{v1, v2, ..., vn}, is the set of nodes, A ∈ {0, 1}n×n, is the
adjacency matrix, and X ∈ R

n×d, is the feature matrix. If
there is a link from vi to vj , then Ai,j = 1; otherwise, Ai,j =
0. We will assume graphs contain self-loops, that is Ai,i = 1.
The number of nodes is denoted by n, and the number of
node features is denoted by d.

Typically, the graph Laplacian is operated on rather than
the adjacency matrix itself. First, the degree matrix is cal-
culated. The degree matrix, D, contains the node degrees
along its diagonal, Di,i =

∑
j Ai,j , and is zero elsewhere.

Then, the symmetric normalized Laplacian is calculated us-
ing Equation 1.

L = D− 1
2 (D −A)D− 1

2 (1)
This definition of the Laplacian is widely used in spec-

tral graph theory. Thus, GCNs that work with this form of
the Laplacian are referred to as spectral GCNs. Spectral
GCNs were popularized by Kipf and Welling when they
provided a local approximation to ChebNet, greatly reduc-
ing the computational cost (Kipf and Welling 2016). Spec-
tral GCNs serve as a local approximation to the more gen-
eral convolutional framework that was originally proposed
by Bruna et al., and have strong underpinnings in graph sig-
nal processing (Bruna et al. 2013; Shuman et al. 2013). An-
other possibility would have been the random walk Lapla-
cian, Lrw = I − D−1A, which encodes the probability of
transitioning from node to node. The random walk Lapla-
cian has been used in a variety of works, both for graph
classification and node embedding (Scarselli et al. 2009;
Zhang et al. 2018; Hamilton, Ying, and Leskovec 2017).
However, given the underpinnings in graph signal process-
ing and the success of recent spectral models, we move for-
ward with this definition.
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In graph classification we are given a set of N labeled
graphs, {(G1, y1), (G2, y2), ..., (GN , yN )}. Using a one-hot
encoding for the m classes, gives y ∈ {0, 1}N×m, where
yi,j = 1 if Gi belongs to class j, and yi,j = 0 other-
wise. We learn a classifier that outputs probabilities p, of
each class by minimizing the cross entropy loss though
stochastic gradient descent. The loss function is given by
� = −∑N

i=1

∑m
j=1 yi,j log(pi,j)

A diagram of our proposed architecture is illustrated in
Figure 1.

Graph Convolution

Kipf and Welling’s propagation rule for GCNs is shown
in Equation 2, where σ is a non-linear activation func-
tion, W (l) ∈ R

d×c, are trainable weights for layer l, and
where c is the number of channels selected for node em-
bedding. Initially, Z(0) = X. From there, the GCNs are
layered such that the features from the first GCN are the
new input features to the second GCN, which then outputs
for the third, and so forth. This scheme has been widely
adopted, and is seen in architectures like SortPool and Cap-
sule Graph. This form of layering allows the features to be
passed beyond direct neighbors. An h-level layering allows
nodes to aggregate features within its h-hop neighborhood.
Additionally, Zhang et al. show that layered GCNs pro-
vide a continuous analog to the graph coloring problem and
the Weisfeiler-Lehman subtree kernel (Zhang et al. 2018;
Shervashidze et al. 2011).

Z(l+1) = σ(LZ(l)W (l)) (2)

Despite this, GCN layering necessitates that feature ag-
gregation from a node’s extended neighborhood is reliant on
aggregation closer to the source node. Further, a layered ar-
chitecture is not parallelizable, and is harder to train. Thus,
we propose a slight variant of the GCN, given in Equation 3.

Z(l) = σ(LlXW (l) + b(l)) (3)

Instead of layering the graph convolutions, we compute
them with powers of the Laplacian, thus embedding the orig-
inal features for each hop, rather than the learned features.
Experiments with our approach show slight improvements
in performance while allowing for parallelization if mem-
ory allows. Additionally, independence of GCNs allows for
the use of a bias term, which is not natural in layered-GCN
architectures, since they would be multiplied back into the
Laplacian at the next level. Lastly, we include Z(0), which
reduces the Laplacian to the identity matrix, thus providing
a standard fully connected sub-module from the node fea-
tures.

Fully Connected Combination Layers

As in SortPool, Graph Capsules, and others, the node em-
beddings obtained from Z(0), ..., Z(h) are concatenated to
give node embeddings of dimension (h+ 1) ∗ c. In the suc-
ceeding step, the inter-dimension properties are lost. More
details on why are given in the following section.

To minimize the information loss, the embeddings are
passed through two fully connected layers, which can cap-
ture these nonlinear inter-dimension properties. For simplic-
ity, we’ve chosen layers that have the same dimension as
the initial embeddings, (h + 1) ∗ c. We denote these final
embeddings as C ∈ R

n×(h+1)∗c. This step is similar to the
initial convolution applied to the final embeddings in Sort-
Pool. The two differences are the size of the output, and that
we are applying the transformation twice.

Node Binning

One of the fundamental challenges in graph classification is
that each input graph can have a different number of nodes,
n, in its nodeset. Thus, graph classification algorithms which
rely on node embeddings must find some method of transi-
tioning from a variable size n to a fixed size k.

SortPool, for example, re-shapes the data by setting a
threshold, k. After sorting, the top k nodes are selected, and
the rest are dropped. If the graph has less than k nodes, zeros
are appended to the nodeset until it is size k. As previously
discussed, this harms the integrity of the data.

We solve this problem through a binning procedure. The
input space is discretized, and the number of nodes falling
into each discrete bin is counted. Then, a standard convo-
lutional architecture can be applied to the obtained den-
sity function. However, effective node embeddings are typi-
cally high in dimension, making discretization over the full
space intractable. The 2D-CNN approach taken by Tixier
et al. approximates the distribution using principle compo-
nents (Tixier et al. 2017). They take 2-D cross sections of
the ascending principle components, stacking them as chan-
nels of an image. A standard image classifier can then be
applied. While this achieved good results, it relies on pre-
processing and cannot update node embeddings to improve
performance.

Here we provide a differentiable alternative that does not
rely on a dimension-pairing scheme. Instead, we bin the data
along one-dimensional cross sections of each dimension, re-
sulting in a histogram with k bins and (h+ 1) ∗ c channels.
The number of bins is a tunable parameter.

The activation function used to obtain C must be
bounded. Without a bounded activation function, bin bound-
aries could not be predefined to capture all of the nodes
placements. For all experiments, we have selected tanh.
With tanh, all output values will be between -1, and 1, so
if k = 10, evenly spaced non-overlapping bins will be of
length 0.2, and will capture all potential node placements.

The derivative of the loss function, �, can then be prop-
agated through the binning layer using a weighted aver-
age of the bin gradients, as shown in Equation 4. First, the
distances, r, to the bin centers, B, are calculated, making
r ∈ R

k×n×(h+1)∗c. Then, weighted averages of the bin gra-
dients are taken, allowing bins closer to nodes to have more
pull than bins further away. Thus, each bin pulls nodes to-
wards it if its gradient is positive, and pushes nodes away if
its gradient is negative. The amount of pull is proportionate
to its distance from the nodes and is controlled by γ, which
we have set to γ = 20, giving low weight to bins far away.
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Figure 1: The general architecture used in this work. The output, H , is the multi-channel histogram that is then classified using
a 1-dimensional variant of LeNet-5, as described in the Histogram Classification section.

∂�

∂Ci,j
=

1
∑k

b=1 e
−γ|rb,i,j |

k∑

b=1

e−γ|rb,i,j |sign(rb,i,j)
∂�

∂Hb,j

(4)
r = B − C (5)

Again, this process does lose the co-variance relation-
ship between the dimensions of the distribution. However,
the combination layers overcome this simplification. Nodes
will be pushed along these 1-D cross sections during back-
propagation such that a classification can be made. The ef-
fectiveness of this approach is demonstrated on standard
benchmark data in the Experiments section and on bot de-
tection data in the Case Study section.

Histogram Classification

Finally, the multi-channel histogram can be classified using
a traditional convolutional architecture. Tixier et al. used a
variant of LeNet-5 to classify graphs based on 2-D cross sec-
tions of predefined node embeddings (Tixier et al. 2017).
The CNN achieved 99.45% accuracy on the MNIST hand-
written digit classification task. We slightly modify the ar-
chitecture to suit the 1-dimensional data that we have ob-
tained from the previous steps.

As in (Tixier et al. 2017), H is passed to 4 sub-modules,
with filter sizes of f = 3, 4, 5, and 6, respectively. A sub-
module is performed as follows. The input data is convolved
over with filter size f and a stride of 1, to 64 output channels.
Then, max pooling is performed with size and stride 2. The
convolution is performed again, but with 96 output channels.

Simultaneously, H is passed to a convolution with f =
(h+ 1) ∗ c, thus capturing the entire histogram with 96 out-
put channels. The full-histogram convolution and the sub-
module outputs are concatenated and connected to a fully
connected layer of size 256. Lastly, the 256 unit layer is con-
nected to a softmax output that classifies the graph. Dropout
layers were placed before all fully connected layers in the
histogram classifier with probability ρ. The activation func-
tion used was ReLU. The three changes from the origi-
nal classifier given are: the whole-histogram convolution is
added, the 128 hidden unit layer was changed to 256 units,
and the model was adapted to its 1-dimensional analog.

The entire model, then, can be trained in an end-to-end
manner.

Experiments

Benchmark Datasets and Methods

There are many potential benchmark datasets for graph clas-
sification, however few of them are social networks, and
even fewer resemble the type of networks seen in real world
social media data. Real world social media networks are typ-
ically large and sparse, while most benchmark datasets are
relatively dense and have nodesets with less than 100 nodes
(Wasserman and Faust 1994; Kersting et al. 2016).

With this in mind, we have selected 6 popular bench-
mark datasets, displayed in Table 1. The datasets have been
obtained from Kersting et al’s collection, but were cre-
ated by Yanardag and Vishwanathan (Kersting et al. 2016;
Yanardag and Vishwanathan 2015).

The IMDB datasets are movie collaboration datasets.
Nodes represent actors or actresses, and links represent co-
appearance in a movie. The graphs are ego networks, and the
task is to classify the genre that an ego network belongs to.
This dataset is somewhat challenging because movies may
belong to more than one genre, but may only be given one
label.

COLLAB was derived from scientific collaboration data
in three fields: High Energy Physics, Condensed Matter
Physics, and Astro Physics. Each graph is an author’s ego
network, and the task is to identify which field they work in.

All three of the Reddit datasets were scraped from the so-
cial media platform Reddit, using their API. Nodes in the
graph are Reddit users, and links are created by direct replies
in the discussion. In the binary dataset, the graphs either
come from question-and-answer subreddits, or discussion-
based subreddits. The task is to identify which type of sub-
reddit the conversational graph comes from. In the 5k and
12k, datasets, the task is to identify the specific subreddit
that the graph belongs to. We place greater emphasis on
these datasets, as they are the only social media classifica-
tion tasks. Table 1 illustrates the importance of this distinc-
tion. The graphs in the Reddit datasets tend to have ten times
more nodes, and tend to be 100 times less dense.
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Table 1: A summary of the datasets studied. Numbers for nodes and edges are averages.
Dataset IMDB-B IMDB-M COLLAB REDDIT-B REDDIT-5K REDDIT-12K BOTS
Graphs 1000 1500 5000 2000 4999 11929 14962
Classes 2 3 3 2 5 11 2
Nodes 19.77 13.00 74.49 429.63 508.52 391.41 7294
Edges 96.53 65.94 2457.78 497.75 594.87 456.89 11034

We have selected 5 different methods to compare our re-
sults against, namely Anonymous Walk Embeddings, Sort-
Pool, DiffPool, CapsGNN, and 2D CNN, (Ivanov and Bur-
naev 2018; Zhang et al. 2018; Ying et al. 2018; Tixier et al.
2017). These methods were selected to reflect state-of-the-
art classification results, and to compare our results against
methods from which we have built upon. To the best of
our knowledge, the current state-of-the-art performances are
shown for every dataset. The accuracies and standard devi-
ations are reported in Table 3 based on the values reported
in initial publication. Because of this, not every dataset has
a value for every method. Fey and Lenssen have intro-
duced PyTorch Geometric, a library with implementations
of many geometric learning algorithms (Fey and Lenssen
2019). Some gaps are filled by using values reported from
their implementations. Anonymous Walk Embeddings is the
only kernel approach shown, so it is separated in Table 3.

Experimental Setting

The general architecture used for all experiments is illus-
trated in Figure 1. Graph-Hist was implemented in PyTorch.
The hyperbolic tangent function was used for all activation
functions leading up to LeNet. We used the ReduceLROn-
Plateau scheduler with an initial learning rate of α = 1e−4,
a factor of 0.5, a patience of 2, a cooldown of 0, and a min-
imum learning rate of 1e − 7. We used stochastic gradient
descent with a mini-batch size of 32. We terminated training
after 9 consecutive epochs without progress in the testing
loss.

We then tuned parameters to each dataset in the search
space h ∈ [2, 4, 6, 8], c ∈ [32, 64, 128, 256], ρ ∈ [0.2, 0.8].
Parameters were selected based on their performance on the
test set. The final parameters are shown in Table 2.

Finally, we performed 10-fold cross-validation on each of
the datasets using the parameters in Table 2. The mean accu-
racy and its standard deviation is reported for each dataset in
Table 3. Graph-Hist advances state-of-the-art classification
in all 3 of the social media benchmarks. It also beats state-
of-the-art results for IMDB-B, and obtains second place re-
sults for the remaining two datasets.

We recognize that there are many more hyperparameters
that could be tuned, like the batch size, and that even the size
of the fully connected layers could be tuned. Exploring these
possibilities is left for future work, but could result in even
better results than those demonstrated here.

Case Study

Automated accounts called bots are increasingly used in on-
line information operations to manipulate networks and the

Table 2: The parameters used on each dataset.
Dataset k h c ρ
IMDB- B 50 2 128 0.8
IMDB-M 25 4 128 0.8
COLLAB 25 2 256 0.2
REDDIT-B 25 6 64 0.8
REDDIT-5K 25 8 64 0.8
REDDIT-12K 25 2 64 0.8
TWITTER BOTS 25 2 8 0.5

narratives that transit these networks. In doing so, state and
non-state actors can artificially manipulate the online mar-
ketplace of belief and ideas. The growing field of social
cybersecurity seeks to protect this marketplace from infor-
mation campaigns and disinformation (Carley et al. 2018).
Bot detection plays a critical role in characterizing informa-
tion campaigns, though bend maneuvers, and in understand-
ing the spread of disinformation (Beskow and Carley 2019;
Babcock, Beskow, and Carley 2018). Thus, researchers in
industry, government, and academia have developed increas-
ingly sophisticated algorithms to detect these nefarious ac-
counts. These research efforts have led to a “cat and mouse”
cycle in which increasingly sophisticated algorithms are re-
quired to detect increasingly sophisticated bots. Early detec-
tion models identified tell-tale indicators of automated ac-
tivity such as stolen identities, lack of circadian rhythms,
anonymous attributes (lack of profile picture, random string
screen name, etc), and a low follower/followee ratio. These
features, however, are relatively easy for a bot “puppet-
master” to manipulate in order to remain undetected.

It is much harder for these same bot “puppet-masters” to
change the artificial features of the social and communica-
tion networks that they inhabit. These social and communi-
cation networks (following, retweeting, mentioning, reply-
ing) lack the overlapping social integration of human social
and communication links. Thus, we exploit the structure of
these communication networks directly using Graph-Hist.
We find that this approach generalizes to new datasets better
than current alternative approaches.

Building Networks

We built the conversational network that a Twitter account
inhabits in the same manner as Beskow and Carley, resulting
in ego networks with 21 node features (Beskow and Carley
2018a). This approach combines the timelines of the target
account and their followers to build the larger conversation.
This method was selected because it creates a comprehen-
sive ego network while overcoming API rate limiting con-
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Table 3: Benchmark dataset accuracies from 10-fold cross-validation. Top-2 scores are emboldened, the state-of-the-art score
is marked with an asterisk. Scores are shown as reported in publication, so not all datasets are represented or are shown with
their standard deviation for every method.

Dataset IMDB-B IMDB-M COLLAB REDDIT-B REDDIT-5K REDDIT-12K
AWE 74.5± 5.8 51.5± 3.6∗ 73.9± 1.9 87.9± 2.5 50.5± 1.9 39.2± 2.1
SortPool 72.4± 3.8 47.8± 0.8 77.7± 3.1 74.9± 6.7 - -
DiffPool 72.6± 3.9 - 78.9± 2.3 92.1± 2.6 - 47.1
CapsGNN 73.1± 4.8 50.3± 2.6 79.6± 0.9∗ - 52.9± 1.5 46.6± 1.9
2D CNN 70.4± 3.8 - 71.3± 2.0 89.1± 1.7 52.1± 2.2 48.1± 1.5
Graph-Hist 74.7± 3.9∗ 50.3± 3.6 79.2± 2.0 92.2± 2.2∗ 55.0± 1.7∗ 49.2± 1.0∗

Table 4: Bot detection F1, Precision, and Recall scores.
All models but Botometer trained on Debot data. Top-2 F1
scores are emboldened, the state-of-the-art score is marked
with an asterisk.

Model F1 Precision Recall
Botometer 0.524 0.858 0.377
Debot 0.012 1.00 0.006
Bot-Hunter Tier1 0.656 0.821 0.546
Bot-Hunter Tier2 0.687 0.691 0.683
Bot-Hunter Tier3 0.599 0.837 0.466
Graph-Hist 0.740∗ 0.683 0.807

straints and expediting the time it would take to collect the
data (target collection is 5 minutes per account). While 5
minutes per account seems long, this is trivial compared to
the hours or days that it would take to build a single ego net-
work based on friends/followers connections. The properties
of these networks are summarized in Table 1.

Again, the differences between social media networks and
standard benchmarks are pronounced. The Twitter networks
are 2 orders of magnitude larger than the non-social media
benchmarks in terms of nodeset size. The Twitter network
densities are also 3 orders of magnitude smaller than those
of the standard benchmarks.

Previous Work in Bot Detection

For the past decade, increasing numbers of researchers have
worked on developing algorithms to detect increasingly so-
phisticated bots. These models can be broadly separated into
supervised machine learning models, unsupervised models,
and graph-based models. Several of the models have be-
come prominent tools that are used in social cybersecu-
rity workflows, including the Botometer, Bot-Hunter, De-
bot, and Botwalk algorithms (Davis et al. 2016; Beskow
and Carley 2018b; Chavoshi, Hamooni, and Mueen 2016;
Minnich et al. 2017).

Most of the graph and community detection methods have
been conducted on Facebook, where these bots are at times
called Sybils. These include random walk approaches like
Sybil-Guard (Yu et al. 2006), Sybil-Resist (Ma et al. 2014)
and Sybil-Rank (Cao et al. 2012). Other models relax some
of the assumptions and use trust propagation approaches
such as the Sybil-Fence method (Cao and Yang 2013).

Supervised models include traditional machine learning

with SVM (Lee and Kim 2014), Naı̈ve Bayes (Chen, Guan,
and Su 2014), and Random Forest (Ferrara et al. 2016)
models trained on features extracted from Twitter’s tweet
and user objects. Other methods have attempted to classify
accounts based only on their text (Kudugunta and Ferrara
2018) or their screen name (Beskow and Carley 2018c).
Several of the available models like Botometer (Davis et al.
2016) and Bot-Hunter (Beskow and Carley 2018b) are clas-
sic supervised machine learning models.

Several unsupervised methods have also emerged, largely
focused on identifying underlying patterns produced by cer-
tain types of bots. These include clustering algorithms (Be-
nigni, Joseph, and Carley 2017) and anomaly detection al-
gorithms like the BotWalk algorithm (Minnich et al. 2017).

Most of these models leverage account data and account
history while graph-based models are focused on finding
patterns in the conversation and connections. Not many
models focus on the larger conversational ego-network sur-
rounding the account. Only one supervised machine learn-
ing model has attempted to bring network science metrics
(centrality, simmelian ties, triadic census, etc) from these
ego networks into their feature space (Beskow and Carley
2018a). Rather than using network metrics as proxies for the
network itself, we approached this same problem with geo-
metric learning over the entire graph.

Bot Classification Results

For the case study, we built training data of bot accounts that
have been labeled by the Debot unsupervised algorithm. The
Debot algorithm uses warped correlation to identify bots that
post the same content at roughly the same time (Chavoshi,
Hamooni, and Mueen 2016). Debot has demonstrated high
precision identifying this special class of bots, and has been
used to train classic supervised bot detection models with
strong results; thus, it was used to label bot data for train-
ing. Non-bot “human” data was randomly sampled from the
Twitter 1% Stream. Our training data consisted of 8,842 bots
and 6,120 human accounts and their associated conversa-
tional networks.

We developed a separate test dataset to compare against
other state of the art algorithms as well as measure gener-
alizability. The final test data was created by manually an-
notating 337 bot accounts focused on propaganda and other
manipulation. Emphasis was made to ensure this test data
did not overlap with any training data. The test dataset was
balanced with 337 bot accounts and 337 human accounts.
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For an evaluation metric we used the F1-score, defined as
the harmonic mean of precision and recall. Many early bot-
detection models had relatively high precision but low re-
call, inflating accuracy metrics. With low recall, these mod-
els underestimate the scale of the bot infestation and disin-
formation problem in general. We found the F1 score as an
adequate balance emphasizing both precision and recall. F1
score for all models is provided in Table 4.

We see that the Botometer model has the highest preci-
sion of all comparison models, but lower recall and there-
fore lower relative F1 score. The Debot algorithm was able
to identify two of the bots, has perfect precision, but very
low recall and F1 score. The Bot-Hunter algorithms improve
recall at a slight cost in precision, resulting in slightly higher
F1 scores compared to other models.

Graph-Hist was hand-tuned after the grid search used on
the benchmark datasets, resulting in the final configuration
given in Table 2. The training environment was the same as
that used for the benchmark dataset experiments, except ran-
dom over-sampling of the data was performed for balanced
training. The new stopping threshold was given by F1 score
in the validation set. Graph-Hist has recall higher than all
other models and precision slightly below Bot-Hunter, re-
sulting in the highest F1 score of all models tested.

Conclusions
In this paper, we have proposed a neural network architec-
ture, Graph-Hist, for graph classification. Graph-Hist creates
expressive node embeddings from GCNs in a similar man-
ner to previous successful models, and uses a powerful CNN
architecture to classify these embeddings in an end-to-end
manner. While each aspect of the model has not appeared in
its exact form in prior literature, the most significant inno-
vation is the binning module. It allows node embedding dis-
tributions to be approximated in a differential manner, such
that convolutional architectures are then applicable. The bin-
ning procedure was inspired by the analysis of large social
networks, and as such has been applied to social network
classification tasks. Graph-Hist advances the state-of-the-art
performance on 4 out of the 6 tested benchmark datasets,
including all 3 of the social media benchmarks.

Lastly, Graph-Hist was applied to a new graph classifica-
tion domain: bot detection. Graph-Hist demonstrated better
generalization in this task than the current leading bot de-
tection models. Graph classification methods have another
huge advantage to classic approaches when it comes to bot
detection: they are hard to guard against. These models are
highly non-linear, so it is not obvious what types of graphs
a “puppet-master” should try to construct to avoid detection.
Even if an inconspicuous structure was known, the commu-
nication graph is far more challenging to manipulate than
simple features like tweet frequency. While communication
networks are more costly to collect, the popularization of
graph classification approaches to bot detection should slow
down the ongoing “cat and mouse” cycle.

Future extensions of this work may involve attaching bin-
ning modules to different embeddings schemes, classifying
the resulting histograms with new methods, or experiment-
ing with non-uniform binning modules. It could also include

improvements in the bot domain, specifically by classify-
ing other types of entities, such as trolls, which may have
communication graphs differing from both normal actors
and bots. Currently, deployment of graph classification al-
gorithms for bot detection is inhibited by social media API
bottlenecks, so work on more scalable social media graph
collection schemes could have a large impact. Finally, future
work may advocate for increased attention to social media
datasets though the release of new social media benchmark
datasets which reflect the scale and sparsity of networks seen
in the wild.
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