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Abstract

The chronological order of user-item interactions can reveal
time-evolving and sequential user behaviors in many recom-
mender systems. The items that users will interact with may
depend on the items accessed in the past. However, the sub-
stantial increase of users and items makes sequential recom-
mender systems still face non-trivial challenges: (1) the hard-
ness of modeling the short-term user interests; (2) the diffi-
culty of capturing the long-term user interests; (3) the effec-
tive modeling of item co-occurrence patterns. To tackle these
challenges, we propose a memory augmented graph neural
network (MA-GNN) to capture both the long- and short-term
user interests. Specifically, we apply a graph neural network
to model the item contextual information within a short-term
period and utilize a shared memory network to capture the
long-range dependencies between items. In addition to the
modeling of user interests, we employ a bilinear function to
capture the co-occurrence patterns of related items. We exten-
sively evaluate our model on five real-world datasets, com-
paring with several state-of-the-art methods and using a vari-
ety of performance metrics. The experimental results demon-
strate the effectiveness of our model for the task of Top-K
sequential recommendation.

Introduction

With the rapid growth of Internet services and mobile de-
vices, personalized recommender systems play an increas-
ingly important role in modern society. They can reduce
information overload and help satisfy diverse service de-
mands. Such systems bring significant benefits to at least
two parties. They can: (i) help users easily discover products
from millions of candidates, and (ii) create opportunities for
product providers to increase revenue.

On the Internet, users access online products or items in
a chronological order. The items a user will interact with
in the future may depend strongly on the items he/she has
accessed in the past. This property facilitates a practical ap-
plication scenario—sequential recommendation. In the se-
quential recommendation task, in addition to the general
user interest captured by all general recommendation mod-
els, we argue that there are three extra important factors to
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model: user short-term interests, user long-term interests,
and item co-occurrence patterns. The user short-term inter-
est describes the user preference given several recently ac-
cessed items in a short-term period. The user long-term in-
terest captures the long-range dependency between earlier
accessed items and the items users will access in the future.
The item co-occurrence pattern illustrates the joint occur-
rences of commonly related items, such as a mobile phone
and a screen protector.

Although many existing methods have proposed effec-
tive models, we argue that they do not fully capture the
aforementioned factors. First, methods like Caser (Tang and
Wang 2018), MARank (Yu et al. 2019), and Fossil (He and
McAuley 2016a) only model the short-term user interest and
ignore the long-term dependencies of items in the item se-
quence. The importance of capturing the long-range depen-
dency has been confirmed by (Belletti, Chen, and Chi 2019).
Second, methods like SARSRec (Kang and McAuley 2018)
do not explicitly model the user short-term interest. Neglect-
ing the user short-term interest prevents the recommender
system from understanding the time-varying user intention
over a short-term period. Third, methods like GC-SAN (Xu
et al. 2019) and GRU4Rec+ (Hidasi and Karatzoglou 2018)
do not explicitly capture the item co-occurrence patterns in
the item sequences. Closely related item pairs often appear
one after the other and a recommender system should take
this into account.

To incorporate the factors mentioned above, we propose
a memory augmented graph neural network (MA-GNN) to
tackle the sequential recommendation task. This consists of
a general interest module, a short-term interest module, a
long-term interest module, and an item co-occurrence mod-
ule. In the general interest module, we adopt a matrix fac-
torization term to model the general user interest without
considering the item sequential dynamics. In the short-term
interest module, we aggregate the neighbors of items using
a GNN to form the user intentions over a short period. These
can capture the local contextual information and struc-
ture (Battaglia et al. 2018) within this short-term period.
To model the long-term interest of users, we use a shared
key-value memory network to generate the interest repre-
sentations based on users’ long-term item sequences. By do-
ing this, other users with similar preferences will be taken
into consideration when recommending an item. To combine
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the short-term and long-term interest, we introduce a gating
mechanism in the GNN framework, which is similar to the
long short-term memory (LSTM) (Hochreiter and Schmid-
huber 1997). This controls how much the long-term or the
short-term interest representation can contribute to the com-
bined representation. In the item co-occurrence module, we
apply a bilinear function to capture the closely related items
that appear one after the other in the item sequence. We
extensively evaluate our model on five real-world datasets,
comparing it with many state-of-the-art methods using a va-
riety of performance validation metrics. The experimental
results not only demonstrate the improvements of our model
over other baselines but also show the effectiveness of the
proposed components.

To summarize, the major contributions of this paper are:
• To model the short-term and long-term interests of users,

we propose a memory augmented graph neural network
to capture items’ short-term contextual information and
long-range dependencies.

• To effectively fuse the short-term and long-term inter-
ests, we incorporate a gating mechanism within the GNN
framework to adaptively combine these two kinds of hid-
den representations.

• To explicitly model the item co-occurrence patterns, we
use a bilinear function to capture the feature correlations
between items.

• Experiments on five real-world datasets show that the
proposed MA-GNN model significantly outperforms the
state-of-the-art methods for sequential recommendation.

Related Work

General Recommendation

Early recommendation studies largely focused on explicit
feedback (Koren 2008). The recent research focus is shifting
towards implicit data (Tran et al. 2019; Li and She 2017).
Collaborative filtering (CF) with implicit feedback is usu-
ally treated as a Top-K item recommendation task, where the
goal is to recommend a list of items to users that users may
be interested in. It is more practical and challenging (Pan
et al. 2008), and accords more closely with the real-world
recommendation scenario. Early works mostly rely on ma-
trix factorization techniques (Hu, Koren, and Volinsky 2008;
Rendle et al. 2009) to learn latent features of users and
items. Due to their ability to learn salient representations,
(deep) neural network-based methods (He et al. 2017) are
also adopted. Autoencoder-based methods (Ma et al. 2018;
2019) have also been proposed for Top-K recommendation.
In (Lian et al. 2018; Xue et al. 2017), deep learning tech-
niques are used to boost the traditional matrix factorization
and factorization machine methods.

Sequential Recommendation

The sequential recommendation task takes as input the
chronological item sequence. A Markov chain (Cheng et al.
2013) is a classical option for modelling the data. For ex-
ample, FPMC (Rendle, Freudenthaler, and Schmidt-Thieme
2010) factorizes personalized Markov chains in order to

capture long-term preferences and short-term transitions.
Fossil (He and McAuley 2016a) combines similarity-based
models with high-order Markov chains. TransRec (He,
Kang, and McAuley 2017) proposes a translation-based
method for sequential recommendation. Recently, inspired
by the advantages of sequence learning in natural language
processing, researchers have proposed (deep) neural net-
work based methods to learn the sequential dynamics. For
instance, Caser (Tang and Wang 2018) applies a convolu-
tional neural network (CNN) to process the item embedding
sequence. Recurrent neural network (RNN)-based methods,
especially gated recurrent unit (GRU)-based methods (Hi-
dasi and Karatzoglou 2018; Hidasi et al. 2016; Li et al. 2017)
have been used to model the sequential patterns for the task
of session-based recommendation. Self-attention (Vaswani
et al. 2017) exhibits promising performance in sequence
learning and is starting to be used in sequential recom-
mendation. SASRec (Kang and McAuley 2018) leverages
self-attention to adaptively take into account the interac-
tions between items. Memory networks (Chen et al. 2018;
Huang et al. 2018) are also adopted to memorize the items
that will play a role in predicting future user actions.

However, our proposed model is different from previ-
ous models. We apply a graph neural network with external
memories to capture the short-term item contextual informa-
tion and long-term item dependencies. In addition, we also
incorporate an item co-occurrence module to model the re-
lationships between closely related items.

Problem Formulation
The recommendation task considered in this paper takes se-
quential implicit feedback as training data. The user prefer-
ence is represented by a user-item sequence in chronolog-
ical order, Su = (I1, I2, ..., I|Su|), where I∗ are item in-
dexes that user u has interacted with. Given the earlier sub-
sequence Su

1:t(t < |Su|) of M users, the problem is to rec-
ommend a list of K items from a total of N items (K < N )
to each user and evaluate whether the items in Su

t+1:|Su| ap-
pear in the recommended list.

Methodology
In this section, we introduce the proposed model, MA-GNN,
which applies a memory augmented graph neural network
for the sequential recommendation task. We introduce four
factors that have an impact on the user preference and inten-
tion learning. Then we introduce the prediction and training
procedure of the proposed model.

General Interest Modeling

The general or static interest of a user captures the inherent
preferences of the user and is assumed to be stable over time.
To capture the general user interest, we employ a matrix fac-
torization term without considering the sequential dynamics
of items. This term takes the form

p�
u · qj ,

where pu ∈ R
d is the embedding of user u, qj ∈ R

d is the
output embedding of item j, and d is the dimension of the
latent space.
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Figure 1: The model architecture of MA-GNN. ⊕ denotes element-wise addition and � denotes element-wise multiplication.

Short-term Interest Modeling

A user’s short-term interest describes the user’s current pref-
erence and is based on several recently accessed items in a
short-term period. The items a user will interact with in the
near future are likely to be closely related to the items she
just accessed, and this property of user behaviors has been
confirmed in many previous works (Tang and Wang 2018;
Hidasi and Karatzoglou 2018; He and McAuley 2016a).
Therefore, it is very important in sequential recommenda-
tion to effectively model the user’s short-term interest, as
reflected by recently accessed items.

To explicitly model the user short-term interest, we con-
duct a sliding window strategy to split the item sequence
into fine-grained sub-sequences. We can then focus on the
recent sub-sequence to predict which items will appear next
and ignore the irrelevant items that have less impact. For
each user u, we extract every |L| successive items as input
and their next |T | items as the targets to be predicted, where
Lu,l = (Il, Il+1, ..., Il+|L|−1) is the l-th sub-sequence of
user u. Then the problem can be formulated as: in the user-
item interaction sequence Su, given a sequence of |L| suc-
cessive items, how likely is it that the predicted items accord
with the target |T | items for that user. Due to their ability
to perform neighborhood information aggregation and local
structure learning (Battaglia et al. 2018), graph neural net-
works (GNNs) are a good match for the task of aggregating
the items in Lu,l to learn user short-term interests.

Item Graph Construction. Since item sequences are not
inherently graphs for GNN training, we need to build a graph
to capture the connections between items. For each item in
item sequences, we extract several subsequent items (three
items in our experiments) and add edges between them. We
perform this for each user and count the number of edges of
extracted item pairs across all users. Then we row-normalize
the adjacency matrix. As such, relevant items that appear
closer to one another in the sequence can be extracted. An

example of how to extract item neighbors and build the adja-
cency matrix is shown in Figure 2. We denote the extracted
adjacency matrix as A, where Ai,k denotes the normalized
node weight of item k regarding item i. And the neighboring
items of item i is denoted as Ni.

…
…

Figure 2: Item adjacent matrix construction example.

Short-term Interest Aggregation. To capture the user
short-term interest, we use a two-layer GNN to aggregate
the neighboring items in Lu,l for learning the user short-
term interest representation. Formally, for an item j in the
l-th short-term window Lu,l, its input embedding is repre-
sented as ej ∈ R

d. The user short-term interest is then:

hi = tanh(W(1) · [
∑

k∈Ni

ek Ai,k; ei ]) , ∀i ∈ Lu,l , (1)

pS
u,l = tanh(W(2) · [ 1

|L|
∑

i∈Lu,l

hi;pu ]) , (2)

where [· ; ·] ∈ R
2d denotes vertical concatenation,

W(1),W(2) ∈ R
d×2d are the learnable parameters in the

graph neural network, and the superscript S denotes that the
representation is from the user short-term interest. By aggre-
gating neighbors of items in Lu,l, pS

u,l represents a union-
level summary (Tang and Wang 2018; Yu et al. 2019) indi-
cating which items are closely relevant to the items in Lu,l.
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Based on the summarized user short-term interest, the items
that a user will access next can be inferred.

However, directly applying the above GNN to make pre-
dictions clearly neglects the long-term user interest in the
past Hu,l = (I1, I2, ..., Il−1). There may be some items
outside the short-term window Lu,l that can express the user
preference or indicate the user state. These items can play an
important role in predicting items that will be accessed in the
near future. This long-term dependency has been confirmed
in many previous works (Liu et al. 2018; Xu et al. 2019;
Belletti, Chen, and Chi 2019). Thus, how to model the long-
term dependency and balance it with the short-term context
is a crucial question in sequential recommendation.

Long-term Interest Modeling

To capture the long-term user interest, we can use external
memory units (Sukhbaatar et al. 2015; Zhang et al. 2017)
to store the time-evolving user interests given the user ac-
cessed items in Hu,l = (I1, I2, ..., Il−1). However, main-
taining the memory unit for each user has a huge memory
overhead to store the parameters. Meanwhile, the memory
unit may capture information that is very similar to that rep-
resented by the user embedding pu. Therefore, we propose
to use a memory network to store the latent interest repre-
sentation shared by all users, where each memory unit rep-
resents a certain type of latent user interest, such as the user
interest regarding different categories of movies. Given the
items accessed by a user in the past Hu,l, we can learn a
combination of different types of interest to reflect the user
long-term interest (or state) before Lu,l.

Instead of performing a summing operation to generate
the query as in the original memory network (Sukhbaatar et
al. 2015), we apply a multi-dimensional attention model to
generate the query embedding. This allows discriminating
informative items that can better reflect the user preference
to have a greater influence on the positioning of the corre-
sponding external memory units. Formally, we denote the
item embeddings in Hu,l as Hu,l ∈ R

d×|Hu,l|. The multi-
dimensional attention to generate the query embedding zu,l
is computed as:

Hu,l := Hu,l + PE(Hu,l) ,

Su,l = softmax
(
W

(3)
a tanh(W

(1)
a Hu,l + (W

(2)
a pu)⊗ 1φ)

)
,

Zu,l = tanh(Su,l ·H�
u,l) ,

zu,l = avg(Zu,l) ,

(3)
where PE(·) is the sinusoidal positional encoding func-
tion that maps the item positions into position embeddings,
which is the same as the one used in Transformer (Vaswani
et al. 2017). φ equals to |Hu,l|, ⊗ denotes the outer prod-
uct. W(1)

a ,W
(2)
a ∈ R

d×d and W
(3)
a ∈ R

h×d are the learn-
able parameters in the attention model, and h is the hyper-
parameter to control the number of dimensions in the atten-
tion model. Su,l ∈ R

h×|Hu,l| is the attention score matrix.
Zu,l ∈ R

h×d is the matrix representation of the query, and
each of the h rows represents a different aspect of the query.

Finally, zu,l ∈ R
d is the combined query embedding that

averages the different aspects.
Given the query embedding zu,l, we use this query to

find the appropriate combination of the shared user latent
interest in the memory network. Formally, the keys and
values of the memory network (Sukhbaatar et al. 2015;
Miller et al. 2016) are denoted as K ∈ R

d×m and V ∈
R

d×m, respectively, where m is the number of memory units
in the memory network. Therefore, the user long-term inter-
est embedding can be modeled as:

si = softmax(z�u,l · ki) ,

ou,l =
∑

i

si vi ,

pH
u,l = zu,l + ou,l ,

(4)

where ki,vi ∈ R
d are the i-th memory unit and the super-

script H denotes the representation is from the user long-
term interest.

Interest Fusion

We have obtained the user short-term interest representation
and the long-term interest representation. The next aim is
to combine these two kinds of hidden representations in the
GNN framework to facilitate the user preference prediction
on unrated items. Here, we modify Eq. 2 to bridge the user
short-term interest and long-term interest.

Specifically, we borrow the idea of LSTM (Hochreiter and
Schmidhuber 1997) that uses learnable gates to balance the
current inputs and historical hidden states. Similarly, we pro-
pose a learnable gate to control how much the recent user
interest representation and the long-term user interest rep-
resentation can contribute to the combined user interest for
item prediction:

gu,l = σ

⎛
⎝W

(1)
g · 1

|L|
∑

i∈Lu,l

hi +W
(2)
g · pH

u,l +W
(3)
g · pu

⎞
⎠ ,

pC
u,l = gu,l �

1

|L|
∑

i∈Lu,l

hi + (1d − gu,l)� pH
u,l ,

(5)
where W

(1)
g ,W

(2)
g ,W

(3)
g ∈ R

d×d are the learnable param-
eters in the gating layer, � denotes the element-wise mul-
tiplication, and gu,l ∈ R

d is the learnable gate. The super-
script C denotes the fusion of long- and short-term interests.

Item Co-occurrence Modeling

Successful learning of pairwise item relationships is a key
component of recommender systems due to its effective-
ness and interpretability. This has been studied and exploited
in many recommendation models (Deshpande and Karypis
2004; Ning, Desrosiers, and Karypis 2015). In the sequen-
tial recommendation problem, the closely related items may
appear one after another in the item sequence. For exam-
ple, after purchasing a mobile phone, the user is much more
likely to buy a mobile phone case or protector. To capture
the item co-occurrence patterns, we use a bilinear function
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to explicitly model the pairwise relations between the items
in Lu,l and other items. This function takes the form

e�i Wr qj ,

where Wr ∈ R
d×d is a matrix of the learnable parameters

that captures the correlations between item latent features.

Prediction and Training

To infer the user preference, we have a prediction layer to
combine the aforementioned factors together:

r̂u,j = p�
u · qj + pC�

u,l · qj +
1

|L|
∑

i∈Lu,l

e�i Wr qj . (6)

As the training data is derived from the user implicit
feedback, we optimize the proposed model with respect to
the Bayesian Personalized Ranking objective (Rendle et al.
2009) via gradient descent. This involves optimizing the
pairwise ranking between the positive (observed) and neg-
ative (non-observed) items:

argmin
U,Q,E,Θ

∑

u

∑

l

∑

(Lu,l,Hu,l,j,k)

− log σ(r̂u,j − r̂u,k)+

λ(||P||2 + ||Q||2 + ||E||2 + ||Θ||2) .
(7)

Here j denotes the positive item in Tu,l, and k denotes the
randomly sampled negative item, σ is the sigmoid function,
Θ denotes other learnable parameters in the model, and λ is
the regularization parameter. p∗, q∗ and e∗ are column vec-
tors of P, Q and E, respectively. When minimizing the ob-
jective function, the partial derivatives w.r.t. all parameters
are computed by gradient descent with back-propagation.

Evaluation

In this section, we first describe the experimental set-up. We
then report the results of conducted experiments and demon-
strate the effectiveness of the proposed modules.

Datasets

The proposed model is evaluated on five real-world datasets
from various domains with different sparsities: MovieLens-
20M (Harper and Konstan 2016), Amazon-Books and
Amazon-CDs (He and McAuley 2016b), Goodreads-
Children and Goodreads-Comics (Wan and McAuley 2018).
MovieLens-20M is a user-movie dataset collected from the
MovieLens website; the dataset has 20 million user-movie
interactions. The Amazon-Books and Amazon-CDs datasets
are adopted from the Amazon review dataset with different
categories, i.e., CDs and Books, which cover a large amount
of user-item interaction data, e.g., user ratings and reviews.
The Goodreads-Children and Goodreads-Comics datasets
were collected in late 2017 from the goodreads website with
a focus on the genres of Children and Comics. In order to
be consistent with the implicit feedback setting, we keep
those with ratings no less than four (out of five) as positive
feedback and treat all other ratings as missing entries on all
datasets. To filter noisy data, we only keep the users with at
least ten ratings and the items with at least ten ratings. The
data statistics after preprocessing are shown in Table 1.

For each user, we use the earliest 70% of the interactions
in the user sequence as the training set and use the next 10%
of interactions as the validation set for hyper-parameter tun-
ing. The remaining 20% constitutes the test set for reporting
model performance. Note that during the testing procedure,
the input sequences include the interactions in both the train-
ing set and validation set. The learning of all the models is
carried out five times to report the average results.

Table 1: The statistics of the datasets.

Dataset #Users #Items #Interactions Density
CDs 17,052 35,118 472,265 0.079%

Books 52,406 41,264 1,856,747 0.086%
Children 48,296 32,871 2,784,423 0.175%
Comics 34,445 33,121 2,411,314 0.211%
ML20M 129,797 13,649 9,921,393 0.560%

Evaluation Metrics

We evaluate all the methods in terms of Recall@K and
NDCG@K. For each user, Recall@K (R@K) indicates what
percentage of her rated items emerge in the top K recom-
mended items. NDCG@K (N@K) is the normalized dis-
counted cumulative gain at K, which takes the position of
correctly recommended items into account. K is set to 10.

Methods Studied

To demonstrate the effectiveness of our model, we compare
to the following recommendation methods: (1) BPRMF,
Bayesian Personalized Ranking based Matrix Factorization
(Rendle et al. 2009), a classic method for learning pair-
wise item rankings; (2) GRU4Rec, Gated Recurrent Unit
for Recommendation (Hidasi et al. 2016), which uses recur-
rent neural networks to model item sequences for session-
based recommendation; (3) GRU4Rec+, an improved ver-
sion of GRU4Rec (Hidasi and Karatzoglou 2018), which
adopts an advanced loss function and sampling strategy;
(4) GC-SAN, Graph Contextualized Self-Attention Net-
work (Xu et al. 2019), which uses a graph neural net-
work and self-attention mechanism for session-based rec-
ommendation; (5) Caser, Convolutional Sequence Embed-
ding Recommendation, (Tang and Wang 2018), which cap-
tures high-order Markov chains via convolution operations;
(6) SASRec, Self-Attention based Sequential Recommen-
dation (Kang and McAuley 2018), which uses an atten-
tion mechanism to identify relevant items for prediction; (7)
MARank, Multi-order Attentive Ranking model (Yu et al.
2019), which unifies individual- and union-level item in-
teractions to infer user preference from multiple views; (8)
MA-GNN, the proposed model, which applies a memory
augmented GNN to combine the recent and historical user
interests and adopts a bilinear function to explicitly capture
the item-item relations.

Experiment Settings

In the experiments, the latent dimension of all the models is
set to 50. For the session-based methods, we treat the items
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Table 2: The performance comparison of all methods in terms of Recall@10 and NDCG@10. The best performing method is
boldfaced. The underlined number is the second best performing method. * indicates the statistical significance for p <= 0.01
compared to the best baseline method based on the paired t-test.

Methods CDs Books Children Comics ML20M
R@10 N@10 R@10 N@10 R@10 N@10 R@10 N@10 R@10 N@10

BPRMF 0.0269 0.0145 0.0260 0.0151 0.0814 0.0664 0.0788 0.0713 0.0774 0.0785
GRU4Rec 0.0302 0.0154 0.0266 0.0157 0.0857 0.0715 0.0958 0.0912 0.0804 0.0912
GRU4Rec+ 0.0356 0.0171 0.0301 0.0171 0.0978 0.0821 0.1288 0.1328 0.0904 0.0946
GC-SAN 0.0372 0.0196 0.0344 0.0256 0.1099 0.0967 0.1490 0.1563 0.1161 0.1119
Caser 0.0297 0.0163 0.0297 0.0216 0.1060 0.0943 0.1473 0.1529 0.1169 0.1116
SARSRec 0.0341 0.0193 0.0358 0.0240 0.1165 0.1007 0.1494 0.1592 0.1069 0.1014
MARank 0.0382 0.0151 0.0355 0.0223 0.1092 0.0980 0.1325 0.1431 0.1002 0.1031
MA-GNN 0.0442* 0.0214* 0.0432* 0.0279* 0.1215 0.1137* 0.1617* 0.1655 0.1236* 0.1272*
Improvement 15.7% 9.2% 20.7% 9.0% 4.3% 12.9% 8.23% 4.0% 5.7% 13.7%

in a short-term window as one session. For GRU4Rec and
GRU4Rec+, we find that a learning rate of 0.001 and batch
size of 50 can achieve good performance. These two meth-
ods adopt Top1 loss and BPR-max loss, respectively. For
GC-SAN, we set the weight factor ω to 0.5 and the number
of self-attention blocks k to 4. For Caser, we follow the set-
tings in the author-provided code to set |L| = 5, |T | = 3,
the number of horizontal filters to 16, and the number of
vertical filters to 4. For SASRec, we set the number of self-
attention blocks to 2, the batch size to 128, and the max-
imum sequence length to 50. For MARank, we follow the
original paper to set the number of depending items as 6
and the number of hidden layers as 4. The network architec-
tures of the above methods are configured to be the same as
described in the original papers. The hyper-parameters are
tuned on the validation set.

For MA-GNN, we follow the same setting in Caser to
set |L| = 5 and |T | = 3. Hyper-parameters are tuned by
grid search on the validation set. The embedding size d is
also set to 50. The value of h and m are selected from
{5, 10, 15, 20}. The learning rate and λ are set to 0.001 and
0.001, respectively. The batch size is set to 4096.

Performance Comparison

The performance comparison results are shown in Table 2.
Observations about our model. First, the proposed

model, MA-GNN, achieves the best performance on all five
datasets with all evaluation metrics, which illustrates the
superiority of our model. Second, MA-GNN outperforms
SASRec. Although SASRec adopts the attention model to
distinguish the items users have accessed, it neglects the
common item co-occurrence patterns between two closely
related items, which is captured by our bilinear function.
Third, MA-GNN achieves better performance than Caser,
GC-SAN and MARank. One major reason is that these three
methods only model the user interests in a short-term win-
dow or session, but fail to capture the long-term item depen-
dencies. On the contrary, we have a memory network to gen-
erate the long-term user interest. Fourth, MA-GNN obtains
better results than GRU4Rec and GRU4Rec+. One possible
reason is that GRU4Rec and GRU4Rec+ are session-based
methods that do not explicitly model the user general inter-

ests. Fifth, MA-GNN outperforms BPRMF. BPRMF only
captures the user general interests, and does not incorporate
the sequential patterns of user-item interactions. As such,
BPRMF fails to capture the user short-term interests.

Other observations. First, all the results reported on
MovieLens-20M, GoodReads-Children and GoodReads-
Comics are better than the results on other datasets. The
major reason is that the other datasets are sparser and data
sparsity negatively impacts recommendation performance.
Second, MARank, SASRec and GC-SAN outperform Caser
on most of the datasets. The main reason is that these meth-
ods can adaptively measure the importance of different items
in the item sequence, which may lead to more personal-
ized user representation learning. Third, Caser achieves bet-
ter performance than GRU4Rec and GRU4Rec+ in most
cases. One possible reason is that Caser explicitly inputs
the user embeddings into its prediction layer, which allows
it to learn general user interests. Fourth, GRU4Rec+ per-
forms better than GRU4Rec on all datasets. The reason is
that GRU4Rec+ not only captures the sequential patterns
in the user-item sequence but also has a superior objective
function—BPR-max. Fifth, all the methods perform better
than BPR. This illustrates that a technique that can only per-
form effective modeling of the general user interests is inca-
pable of adequately capturing the user sequential behavior.

Table 3: The ablation analysis. S denotes the short-term in-
terest module, H denotes the long-term interest module, con-
cat denotes the concatenation operation.

Architecture CDs Books

R@10 N@10 R@10 N@10
(1) MF 0.0269 0.0145 0.0310 0.0177
(2) MF+S 0.0306 0.0158 0.0324 0.0185
(3) MF+S+H+gating 0.0401 0.0191 0.0351 0.0208
(4) MF+S+H+concat 0.0295 0.0148 0.0296 0.0206
(5) MF+S+H+GRU 0.0268 0.0147 0.0306 0.0204
(6) MA-GNN 0.0442 0.0214 0.0432 0.0279

5050



Ablation Analysis

To verify the effectiveness of the proposed short-term in-
terest modeling module, long-term interest modeling mod-
ule, and item co-occurrence modeling module, we conduct
an ablation study in Table 3. This demonstrates the contri-
bution of each module to the MA-GNN model. In (1), we
utilize only the BPR matrix factorization without other com-
ponents to show the performance of modeling user general
interests. In (2), we incorporate the user short-term interest
by the vanilla graph neural network (Eq. 1 and 2) on top of
(1). In (3), we integrate the user long-term interest with the
short-term interest via the proposed interest fusion module
(Eq. 3, 4 and 5) on top of (2). In (4), we replace the inter-
est fusion module in (3) with the concatenation operation to
link the short-term interest and long-term interest. In (5), we
replace the concatenation operation with a gated recurrent
unit (Cho et al. 2014) (GRU). In (6), we present the over-
all MA-GNN model to show the effectiveness of the item
co-occurrence modeling module.

From the results shown in Table 3, we make the following
observations. First, comparing (1) and (2)-(6), we can ob-
serve that although the conventional BPR matrix factoriza-
tion can capture the general user interests, it cannot effec-
tively model the short-term user interests. Second, from (1)
and (2), we observe that incorporating the short-term inter-
est using the conventional aggregation function of the GNN
slightly improves the model performance. Third, in (3), (4)
and (5), we compare three ways to bridge the user short-term
interest and long-term interest. From the results, we can ob-
serve that our proposed gating mechanism achieves consid-
erably better performance than concatenation or the GRU,
which demonstrates that our gating mechanism can adap-
tively combine these two kinds of hidden representations.
Fourth, from (3) and (6), we observe that by incorporating
the item co-occurrence pattern, the performance further im-
proves. The results show the effectiveness of explicitly mod-
eling the co-occurrence patterns of the items that a user has
accessed and those items that the user may interact with in
the future. The item co-occurrence pattern can provide a sig-
nificant amount of supplementary information to help cap-
ture the user sequential dynamics.

Influence of Hyper-parameters

The dimension h of the multi-dimensional attention model
and the number m of the memory units are two impor-
tant hyper-parameters in the proposed model. We investigate
their effects on CDs and Comics datasets in Figure 3.

From the results in Figure 3, we observe that both the
multi-dimensional attention and the memory network con-
tribute to capturing the long-term user interests. These two
components lead to a larger improvement in performance for
the CDs dataset compared to the Comics dataset, indicating
that they may help to alleviate the data sparsity problem.

Memory Visualization

To validate whether each memory unit can represent a cer-
tain type of user interests, we conduct a case study on the
MovieLens dataset to verify how each memory unit func-
tions given different movies. We randomly select a user and
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Figure 3: The variation of h and m.
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Figure 4: The attention visualization of memory networks.

several movies she watched. For simplicity, we treat each
selected item as a query to visualize the attention weight si
computed by Eq. 4. In this case, we set the number of mem-
ory units m to 10.

From Figure 4, we observe that our memory units per-
form differently given different types of movies, which may
illustrate that each memory unit in the memory network can
represent one type of the user interest. For example, the
Three Colors trilogy has quite similar attention weights in
the memory network, since these three movies are loosely
based on three political ideals in the motto of the French Re-
public. Die Hard is an action thriller movie, which is distinct
from any other movies in the case study, explaining why it
has a different weight pattern.

Conclusion

In this paper, we propose a memory augmented graph neural
network (MA-GNN) for sequential recommendation. MA-
GNN applies a GNN to model items’ short-term contextual
information, and utilize a memory network to capture the
long-range item dependency. In addition to the user interest
modeling, we employ a bilinear function to model the fea-
ture correlations between items. Experimental results on five
real-world datasets clearly validate the performance advan-
tages of our model over many state-of-the-art methods and
demonstrate the effectiveness of the proposed modules.
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