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Figure 1: A conceptual visualization for our stochastic loss function. Given a main network f(·;w) and a decision network
h(·;v), a group of loss functions are predefined. During the forward propagation, for the input x and output y, the main
network generates the estimated output p = f(x;w), and the loss functions can be selected by the decision network with
Gumbel Softmax. Then, the loss in SLF is obtained by combing these selected loss functions. During the backward propagation,
the standard back-propagation is in a position to calculate the gradients of the network weights w and the loss parameters v.

Loss Function Selection

We establish the excellent Stochastic Loss Function (SLF)
to dynamically and automatically generate appropriate loss
functions to train deep networks in the same round of back-
propagation. However, it is naturally difficult to optimize be-
cause of the nested relationship between loss parameters and
network weights. To handle this issue, the SLF model pa-
rameterizes loss functions with binary codes, and devotes
to jointly learning loss parameters and network weights in
a differentiable way. Intuitively, the main process of SLF is
illustrated in Figure 1.

Before introducing our approach, we first briefly review
the loss function selection. For a specific loss function � ∈
L, it always corresponds to a loss H(�v,w) ∈ R with
loss parameters v and network weights w. Intrinsically, the
goal in the loss function selection is to find a loss func-
tion �v ∈ L that minimizes the loss H(�v,w

� ), where the
network weights w� are obtained by minimizing the loss
w� = arg minw H(�v,w), i.e.,

min
v

H(�v,w
� ), s.t. w� = arg min

w
H(�v,w). (1)

Parameterizing loss functions

For simplicity, we denote stochastic loss function with n or-
dered loss functions as L = {�1, · · · , �n}, including mean
squared error, categorical hinge, cross-entropy, and so on.
With these loss functions, the stochastic loss function can be

formulated as

H(L,w;a,b) =
�

�i�L

ai · bi · �i(f(x;w),y),

s.t.
�n

i=1
ai · bi = 1,

ai ∈ {0, 1}, bi ≥ 0, 1 ≤ i ≤ n,

(2)

where f(·;w) denotes a network with the weights w that
attempts to map the input x to the output y, �i is the i-
th loss function, a = [ai, · · · , an] ∈ {0, 1}n and b =
[bi, · · · , bn] ∈ Rn signify the selective code and the weight-
ing coefficient in the stochastic loss function H, respectively.
For the selective code, ai = 1 signifies a binary weight to in-
dicate whether �i is selected in the stochastic loss function
and ai = 0 otherwise. In contrast, the weighting coefficient
b is a probability vector to generate a more precise loss func-
tion based on such selected loss functions (i.e., ai = 1). For
a network, by such definition, a loss function can be obtained
by learning the selective code a and the weighting coeffi-
cient b, which implies that we can learn the code a to select
the optimal loss from L.

Naturally, the selective code a and the weighting coeffi-
cient b can be treated as a specific decomposition of a prob-
ability vector. However, a major distinction between the tra-
ditional probability vector is that the combining of the selec-
tive code a and the weighting coefficient b is sparse. That is,
the sparsity of such combining is always smaller than ‖a‖0,
which can be readily optimized. Benefiting from such spar-
sity, noisy loss functions can be absolutely omitted to guar-
antee the stability of gradients, leading to an effective and
efficient loss function.
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Continuous Relaxation

For such discrete optimization problem, a straightforward
solution is to use reinforcement learning. However, since the
reinforcement learning is generally established as a Markov
decision process, temporal-difference is employed to take
structural decisions. As a result, the reward will only be ob-
servable until the loss function is selected and the network
is validated for accuracy, which is always subject to delayed
rewards in temporal-difference learning.

To eliminate such deficiency, we manage the problem
from a differentiable angle, i.e., solving the discrete opti-
mization problem in Eq. (2) in a continuous space. For this
purpose, we recast the task of selecting loss function to a
softmax over all possible loss functions, i.e.,

H(L,w) =
�

�i�L

B(pi) · bi · �i(f(x;w),y),

s.t.
�n

i=1
B(pi) · bi = 1,

�n

i=1
pi = 1,

pi ≥ 0, bi ≥ 0, B(pi) ∈ {0, 1}, 1 ≤ i ≤ n,

(3)

where p ∈ Rn is a probability vector, pi ∈ R implies the
credit of selecting the i-th loss function, and the function
B(·) indicates a binary function that can be utilized for se-
lecting loss function discretely.

Decision Network

Inspired by curriculum learning (Bengio et al. 2009; Jiang
et al. 2014), the selective code a and the weighting coeffi-
cient b are generated according to the output of the network
f(x;w). That is, how to choose the loss functions is deter-
mined by the estimated output. For this purpose, a decision
network h(f(x;w);v) is established for guiding the selec-
tion and combination of loss functions. Formally, our SLF
model can be rewritten as:

H(L,w,v) =
�

�i�L

B(pi) · bi · �i(f(x;w),y),

s.t.
�n

i=1
B(pi) · bi = 1,

bi ≥ 0, B(pi) ∈ {0, 1}, 1 ≤ i ≤ n,

p = h(f(x;w);v),

(4)

As mentioned above, such formula implies that we have to
deal with a bi-level optimization problem considering the
nested relationship between loss function parameters and
network weights. To handle this issue, we parameterize loss
functions with binary codes, and devote to jointly learning
loss parameters and network weights in a differentiable way.

Loss Sampling and Gradient Weighting

By introducing the binary function B(·), the discrete se-
lective code and the weighting coefficient can be jointly ob-
tained in a differentiable way. However, two essential prob-
lems require to be handled. First, how to design a binary
function B(·) to yield the discrete selective code, while
maintaining effective gradients. Second, the discrete selec-
tive code and the weighting coefficient for selecting loss

functions and weighting gradients are deeply coupled, be-
cause of the similarity. In the following, we devote to han-
dling such two problems by multiply sampling according to
a single learnable probability vector.

Gumbel-Softmax

A natural formulation for representing discrete variable is
to use the categorical distribution. However, partially due
to the inability to back-propagate information through sam-
ples, it seems rarely applied in deep neural networks. In this
work, we resort to the Gumbel-Max trick (Gumbel 1954) for
enabling back-propagation and representing the process of
taking decision as sampling from a categorical distribution,
in order to perform loss sampling and gradient weighting
in a principled way. Specifically, given a probability vec-
tor p = [p1, · · · , pn] and a discrete random variable with
P (L = k) ∝ pk, we sample from the discrete variable L
by introducing the Gumbel random variables. To be more
specific, we let

L = arg max
k�{ 1,··· ,n}

log pk + Gk, (5)

where {Gk}k� n is a sequence of the standard Gumbel ran-
dom variables, and they are typically sampled from the
Gumbel distribution G = − log(− log(X)) with X ∼
U [0, 1]. An obstacle to directly using such approach in our
problem is that the argmax operation is not really continu-
ous. One straightforward way of dealing with this problem
is to replace the argmax operation with a softmax. Formally,
the Gumbel-Softmax (GS) estimator can be expressed as

L̂k =
exp ((log pk + Gk) /τ)�n
k=1 exp ((log pk + Gk) /τ)

, 1 ≤ k ≤ n, (6)

where L̂k indicates the probability that pk is the maximal en-
try in p, and τ is a temperature. When τ → 0, [L̂1, · · · , L̂n]
converges to an one-hot vector, and in the other extreme it
will become a discrete uniform distribution with τ → +∞.

From the formulation in Eq. (6), we see that the Gumbel-
Softmax estimator pertains solely to deal with the prob-
lems that only one category requires to be determined, i.e.,
the outputs are one-hot vectors not any binary code. In our
stochastic loss function, however, optimal gradients may
be combined from multiple loss functions. One direct way
of managing such issue is to map all possible operation
combinations to a discrete space. Unfortunately, combina-
tion modes between limited loss functions are uncountable,
which indicates that they are not mapped to a discrete space.

Multiple Gumbel-Softmax

For an effective and efficient way to yield appropriate gra-
dients, the Gumbel-Softmax is utilized repeatedly to select
various loss functions and weight gradients jointly, which is
inspired by the following perspective. That is, the output of
Gumbel-Softmax depends on the elements in the probability
vector p = [p1, · · · , pn]. Denoting the Gumbel-Softmax as
a function G(·), it always outputs an one-hot vector p̄i, i.e.,

p̄i = G(p), (7)
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Algorithm 1 Stochastic Loss Function
Require: Dataset D = {(xi,yi)}i=1, loss functions L = {�i}

n
i=1, networks f(·;w) and h(·;v), sampling times K.

Ensure: Trained main network f(·;w� ).
1: Randomly initialize parameters w in the main network f(·;w) and v in the decision network h(·;v);
2: for number of training iterations do
3: for (x,y) ∈ D do
4: p = f(x;w); � the estimated output of the main network with the parameter w
5: for each time step k = 1, 2, · · · ,K do
6: p̂k = G(h(p;v)); � selecting loss functions with the decision network and Gumbel Softmax
7: end for
8: p̂ = 1

K

�K
k=1 p̂k; � weighting and combing the loss functions according to Eq. (10)

9: H(L,w,v) =
�

�i�L p̂i · �i(f(x;w),y); � computing the loss of our SLF according to Eq. (11)
10: Update w and v by minimizing Eq. (11); � updating the parameters w and v with the standard back-propagation
11: end for
12: end for

where p̄i indicates that the i-th element in p̄i is equal to 1,
and the others are 0. Specifically, we have

P (G(p) = p̄i) = pi, (8)

where signifies that the output of the Gumbel-Softmax G(·)
is not deterministic, but variable. Benefiting from this vari-
ability, the selective code and the weighting coefficient can
be jointly obtained.

Given a probability vector p, specifically, the selective
code and the weighting coefficient are simultaneously gen-
erated by multiply sampling with Gumbel-Softmax. Accord-
ing to the Gumbel-Softmax function G(·), a sequence of
one-hot vectors can be obtained as follows

{p̂1, · · · , p̂K} = Repeat{G(p),K}, (9)

where Repeat{G(p),K} means that the Gumbel-Softmax
function G(p) repeatedly performs K times for the number
of K one-hot vectors {p̂1, · · · , p̂K}. By combing these one-
hot vectors, we have

p̂ =
1

K

K�

i=1

p̂i, p̂ ∈ Rn (10)

where p̂i is the i-th element in p̂, and can be treated as an
approximation of B(pi) · bi in Eq. (3). That is, the stochastic
loss function can be rewritten as

H(L,w,v) =
�

�i�L

p̂i · �i(f(x;w),y),

s.t. p̂ =
1

K

�K

i=1
p̂i,

{p̂1, · · · , p̂K} = Repeat{G(p),K},
p = h(f(x;w);v), p ∈ Rn.

(11)

Intrinsically, such formulation in Eq. (11) can be treated as a
general loss function. For example, only a single loss func-
tion will be selected if K = 1 is met. When 1 < K < n,
multiple loss functions may be combined for generating
more superior and precise gradients. Extremely, it will grad-
ually tends to be a softmax, as K increases to infinity.

In summary, we illustrate the stochastic loss function in
Algorithm 1. Given a main network f(·;w) and a deci-
sion network h(·;v), a group of loss functions are prede-
fined. During the forward propagation, for the input x and
output y, the main network generates the estimated output
p = f(x;w), and the loss functions can be selected by the
decision network with the multiple Gumbel Softmax, i.e.,
as described in Eq. (9) and Eq. (10). Then, the SLF loss in
Eq. (11) is obtained by combing these selected loss func-
tions. During the backward propagation, the standard back-
propagation is in a position to calculate the gradients of the
network weights w and the loss parameters v. For mini-
mizing the SLF loss in Eq. (11), the optimization algorithm
(e.g., SGD and ADAM) can be employed to adjust these
weights/parameters simultaneously. Conclusively, the main
network f(·;w) is trained well to fit the samples in D.

Experiments

In this section, we systematically carry out extensive exper-
iments to verify the capability of our SLF on various pat-
tern recognition and machine learning tasks, including im-
age classification, image clustering, neural machine trans-
lation, regressive on non-Euclidean structured signals, and
objection detection. Furthermore, extensive ablation experi-
ments are conducted to systematically and comprehensively
analyze the proposed stochastic loss function.

Experimental Setting

The hyper-parameters in our experiments are set as follows.
In each experiment, our SLF model always inherits the same
setting in the compared baslines, including network archi-
tectures (e.g., activation functions, initilizations, bach sizes,
etc.), learning rates, and the optimizors, except of the loss
functions. For comparison, several popular loss functions are
utilized, such as the cross entropy loss (de Boer et al. 2005),
the large-margin softmax loss (Liu et al. 2016), the smooth
0-1 loss function (Nguyen and Sanner 2013), the adaptive
robust loss function (Barron 2019), and the L2T-DLF loss
function in (Wu et al. 2018). Note that there are tiny dif-
ferents for each specific task, which will be mentioned in
each experiment. For a reasonable evaluation, we carry out
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Table 1: The classification results on MNIST. The best results are highlighted in bold.
Dataset Model C-E Smooth L-M Softmax L2T-DLF ARLF SLF
MNIST MLP 0.9806 0.9811 0.9817 0.9831 0.9814 0.9852
MNIST LeNet 0.9902 0.9906 0.9912 0.9923 0.9906 0.9935

CIFAR-10 ResNet-8 0.8755 0.8792 0.8866 0.8918 0.8646 0.8983
CIFAR-10 ResNet-20 0.9125 0.9147 0.9198 0.9237 0.9153 0.9302
CIFAR-10 ResNet-32 0.9249 0.9258 0.9299 0.9305 0.9224 0.9364
CIFAR-10 WRN 0.962 0.9619 0.9631 0.9658 0.9593 0.9714
CIFAR-10 DenseNet 0.9646 0.9652 0.9663 0.9692 0.9629 0.9763

CIFAR-100 ResNet-8 0.6021 0.6048 0.6107 0.6173 0.6024 0.6265
CIFAR-100 ResNet-20 0.6767 0.6799 0.6835 0.6903 0.6775 0.6992
CIFAR-100 ResNet-32 0.6962 0.6988 0.7044 0.7075 0.6953 0.7145

10 random restarts and the average results are used for com-
prehensive comparisons.

Classification

As an essential machine learning problem, classification is
an indispensable experiment for the stochastic loss function.
To validate its capability, we carry out a series of image clas-
sification tasks on three frequently-used datasets, including
MNIST, CIFAR-10, and CIFAR-100. For each dataset, sev-
eral popular deep neural networks are employed to demon-
strate the capability. Specifically, the classification task can
be treated as an optimization problem to minimize the fol-
lowing formulate

min
w

E(w) =
�

i

L(f(xi;w),yi).

where L(f(xi;w),yi) is a loss function to measure the
loss between the observable label yi and the estimated la-
bel f(xi;w), and w signifies the model parameters in the
function g. In this experiment, the candidate loss functions
in L includes mean squared loss, mean absolute loss, hinge
loss, cosine proximity loss, and binary cross-entropy loss.

In Table 1, we report the quantitative results of the diverse
loss functions on the MNIST, CIFAR-10, and CIFAR-100
datasets. From the table, the results assuredly prove the ca-
pability of our SLF, which can yield better gradients and im-
prove the baselines with a larger margin consistently. Further
analysis, several tendencies can be observed from Table 1.
First, the superiority of each loss function is always consis-
tently exist for every dataset and deep model. This means
that how to choose a loss function is significant for a bet-
ter model, and the impact is uncertainty, but deterministic.
This also shows the necessity for learning a better loss func-
tion. Second, the advantage of the learnable loss functions
are not necessarily better than the handcrafted loss func-
tions, e.g., L-M softmax is always better than the ARLF. It
indicates that the valuable prior knowledge will effectively
elevate the performance of loss functions. Third, the promo-
tions of SLF on each datasets are stable, e.g., the classifica-
tion performance of ResNet (He et al. 2016) will be steadily
improved as the depth increases, which implies that SLF has
outstanding capability to generate appropriate gradients for
various deep networks, not merely limited to tiny networks
(e.g., MLP and LeNet on MNIST).

Clustering

To verify the performance of our stochastic loss function
to manage the deep unsupervised learning, we perform the
clustering tasks on the CIFAR-10 (Krizhevsky and Hinton
2009), ImageNet-10 (Chang et al. 2017), and ImageNet-
Dog (Chang et al. 2017) datasets. These datasets are pop-
ular datasets utilized in the clustering tasks. There are a col-
lections of 60000, 13000, and 19500 color images with the
sizes of 32 × 32 × 3, 96 × 96 × 3, and 96 × 96 × 3. In this
experiment, we follow the previous work DAC in (Chang et
al. 2017) to perform the clustering tasks on these datasets.
Formally, DAC recasts the clustering problem as a binary
pairwise-classification problem, i.e.,

min
w

E(w) =
�

i,j

L(rij , f(xi,xj ;w)).

By iteratively choosing labeled pairwise-samples and train-
ing the network f(·, ·;w) with the label features (Chang
et al. 2017), each sample can learn an one-hot represen-
tation for clustering. Contrary to the binary cross-entropy
loss in (Chang et al. 2017), the stochastic loss function is
utilized to achieve better clustering performance, and the
candidate loss functions in L includes mean squared loss,
mean absolute loss, hinge loss, cosine proximity loss, and
binary cross-entropy loss. For the results, Adjusted Rand In-
dex (ARI), Normalized Mutual Information (NMI) and Ac-
curacy (ACC) are utilized for evaluating, which range in
[0, 1] and higher scores mean more precious results.

The results of the compared methods are illustrated in Ta-
ble 2. From the table, we note that our stochastic loss func-
tion can dramatically improve the performance of DAC with
significant margins on every datasets. It strongly demon-
strates that SLF is capable of yielding more precise gradi-
ents for adjusting weights in deep networks for clustering.
Furthermore, contrary to the classification problem, we ob-
serve that higher improvements are obtained in clustering. A
possible reason is that DAC is sensitive to gradients during
learning. That is, biased gradients always result in choosing
the wrong pairwise-samples. Then, these samples will train
the deep models in a wrong direction. As a result, the clus-
tering performance is degraded.

Regressive on non-Euclidean structured signals

In contrast to the classification and regressive problems,
the regressive task attempts to map a high-dimensional rep-
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Table 2: The clustering results of the methods on the experimental datasets. The best results are highlighted inbold.
Dataset CIFAR-10 CIFAR-10 CIFAR-10 ImageNet-10 ImageNet-10 ImageNet-10 ImageNet-Dog ImageNet-Dog ImageNet-Dog
Metric NMI ARI ACC NMI ARI ACC NMI ARI ACC

AE (Bengio et al. 2006) 0.2393 0.1689 0.3135 0.2099 0.1516 0.3170 0.1039 0.0728 0.1851
SAE (Bengio et al. 2006) 0.2468 0.1555 0.2973 0.2122 0.1740 0.3254 0.1129 0.0729 0.1830
DAE (Vincent et al. 2010) 0.2506 0.1627 0.2971 0.2064 0.1376 0.3044 0.1043 0.0779 0.1903
DeCNN (Zeiler et al. 2010) 0.2395 0.1736 0.2820 0.1856 0.1421 0.3130 0.0983 0.0732 0.1747
SWWAE (Zhao et al. 2015) 0.2330 0.1638 0.2840 0.1761 0.1603 0.3238 0.0936 0.0760 0.1585

CatGAN (Springenberg 2015) 0.2646 0.1757 0.3152 0.2250 0.1571 0.3459 0.1213 0.0776 0.1738
GMVAE (Dilokthanakul et al. 2016) 0.2451 0.1674 0.2908 0.1934 0.1683 0.3344 0.1074 0.0786 0.1788

JULE-SF (Yang, Parikh, and Batra 2016) 0.1919 0.1357 0.2643 0.1597 0.1205 0.2927 0.1213 0.0776 0.1738
JULE-RC (Yang, Parikh, and Batra 2016) 0.1923 0.1377 0.2715 0.1752 0.1382 0.3004 0.0492 0.0261 0.1115
DEC (Xie, Girshick, and Farhadi 2016) 0.2568 0.1607 0.3010 0.2819 0.2031 0.3809 0.1216 0.0788 0.1949

DAC+softmax 0.4065 0.3135 0.5013 0.4253 0.3225 0.5122 0.2253 0.1005 0.2676
DAC+C-E (Chang et al. 2017) 0.3959 0.3059 0.5218 0.3944 0.3019 0.5272 0.2185 0.1105 0.2748

DAC+curriculum learning 0.3793 0.2802 0.4982 0.3693 0.2837 0.5026 0.1815 0.0953 0.2455
DAC+Smooth 0.4349 0.3274 0.4538 0.5742 0.5072 0.6681 0.2174 0.1177 0.2518
DAC+ARLF 0.3987 0.2744 0.4607 0.5121 0.5186 0.6460 0.2316 0.1144 0.1821

DAC+L1 0.4186 0.3367 0.4584 0.5636 0.5121 0.6577 0.2334 0.1157 0.2461
DAC+L2 0.4379 0.3399 0.4778 0.5827 0.5218 0.6737 0.2362 0.1241 0.2644
DAC+L4 0.4062 0.3015 0.4516 0.5813 0.4878 0.6363 0.2091 0.0938 0.2347

DAC+SLF 0.4454 0.3457 0.5400 0.6524 0.5758 0.7345 0.2734 0.1571 0.3156

Table 3: Squared correlations on DPP4. The best results are
highlighted inbold.

Loss / Model C-E RL AC Softmax-M L2T-DLF SLF
LCNs 0.2250 0.2222 0.2106 0.2260 0.2290 0.2429
DFNs 0.2140 0.2085 0.2067 0.2228 0.2188 0.2334
ECC 0.2490 0.2394 0.2370 0.2475 0.2523 0.2620
SCNs 0.2480 0.2384 0.2459 0.2566 0.2482 0.2588
GCNs 0.2580 0.2483 0.2443 0.2508 0.2627 0.2671

ChebNets 0.2650 0.2634 0.2587 0.2703 0.2692 0.2793

resentation into a scalar. For a comprehensively analysis,
in this experiment, the stochastic loss function is utilized
to deal with the regressive tasks on non-Euclidean struc-
tured signals. Speci“cally, graph networks are modeled to
predict the molecular activity on the DPP4 dataset. In the
DPP4 dataset, there are 8193 molecules with 2796 fea-
tures severally. In this experiment, both spatial and spec-
tral graph networks are taken as baselines (Chang et al.
2018; Zhang et al. 2018), including the local connected
networks (LCNs) (Bruna et al. 2013), the dynamic “lters
based networks (DFNs) (Verma, Boyer, and Verbeek 2017),
the edge-conditioned convolution (ECC) (Simonovsky and
Komodakis 2017), the spectral networks (SCNs) (Henaff,
Bruna, and LeCun 2015), the Chebyshev based SCNs
(ChebNets) (Defferrard, Bresson, and Vandergheynst 2016),
and the graph convolution networks (GCNs) (Kipf and
Welling 2016).

The results of the compared methods are illustrated in Ta-
ble 3. Inherently, the results mainly depend on two aspects,
i.e., model and loss. Speci“cally, the former determines the
upper limit of the model, and the latter affects whether the
model can reach the upper limit. From the Table 3, our SLF
achieves the best performance for all the employed models.
It veri“es that SLF enables to generate more appropriate gra-
dients to improve the performance of models. That is, our
SLF is capable of managing the regressive task and the tasks
de“ned on non-Euclidean domains.

Neural Machine Translation

The task of neural machine translation is employed to vali-
date the effectiveness of SLF on deep recurrent neural net-
works. Following the previous work (Wu et al. 2018), the

Table 4: The BLEU scores on IWSLT-14 German-English
task. The best results are highlighted inbold.

Loss / Model C-E RL AC Softmax-M L2T-DLF SLF
LSTM-1 27.28 27.53 27.75 28.12 29.52 31.02
LSTM-2 30.86 31.03 31.21 31.22 31.75 32.14

Transformer 34.01 34.32 34.34 34.46 34.80 35.53

IWSLT-14 dataset is utilized to evaluate the translation tasks
between German and English. For a fair comprehensive,
a single layer LSTM model (i.e., LSTM-1) and a deeper
translation model stacking two LSTM layers (i.e., LSTM-2)
are employed as baselines. Furthermore, as a popular self-
attention mechanism model that achieves superior perfor-
mance on many neural machine translation tasks, the Trans-
former architecture (Lin et al. 2017) is utilized as a typ-
ical baseline. For the loss functions, “ve frequently-used
losses are used in this experiments, including the maximum
likelihood estimation loss (C-E), the reinforcement learning
(RL) loss (Ranzato et al. 2016), the loss speci“ed via actor-
critic (Bahdanau et al. 2017), the softmax-margin loss, and
the loss learned with L2T-DLF (Wu et al. 2018).

We report the experimental results in Table 4. Note that
the results in the table clearly demonstrate that SLF is in a
position to guide the utilized RNNs to achieve the superior
performance, contrary to the compared loss functions. It is
worth mentioning that almost 1 point is improved compared
with the much stronger Transformer model, which strongly
veri“es the effectiveness of our SLF model.

Objection Detection

As a high-level image processing problem, objection detec-
tion consists of two basic tasks,i.e., a regressive task of lo-
cating objects and a classi“cation task of classifying the lo-
cated objects. Because of the high ef“ciency and the end-to-
end learning, the YOLO-v1 model (Redmon et al. 2016) is
utilized as a basic model in this experiment for verifying the
effectiveness of our SLF. Compared with the loss de“ned in
traditional classi“cation tasks, the loss in the YOLO model
is a multi-part loss function,i.e.,

� coord � coord + � pred � pred + � obj � obj + � noobj � noobj ,
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Table 5: Real-Time systems on PASCAL VOC 2007. The
bold subscripts mean the performance improvements.

Real-Time Detectors
Detectors Train mAP FPS

100Hz DPM 2007 16.0 100
30Hz DPM 2007 26.1 30
Fast YOLO 2007+2012 52.7 155

YOLO 2007+2012 63.4 45
Fast YOLO+SLF 2007+2012 55.1+2.4 155

YOLO+SLF 2007+2012 65.4+2.1 45
Less Than Real-Time Detectors

Detectors Train mAP FPS
Fastest DPM 2007 30.4 15

R-CNN Minus R 2007 53.5 6
Fast R-CNN 2007+2012 70.0 0.5

Faster R-CNN VGG 2007+2012 73.2 7
Faster R-CNN ZF 2007+2012 62.1 18
YOLO VGG-16 2007+2012 66.4 21

YOLO VGG-16+SLF 2007+2012 69.6+3.2 21

where �coord and �pred indicate the loss to predict coordi-
nates and classes, �obj and �noobj measure the confidences of
boxes, four hyper-parameters {λcoord, λpred, λobj , λnoobj}
can be always balanced the weights of these losses. In the
work (Redmon et al. 2016), {λcoord = 5, λpred = 1, λobj =
1, λnoobj = 0.5} is set.

In this experiment, we employ SLF to learn these hyper-
parameters for a better detector. From the Table 5, the re-
sults signify that SLF enables to automatically adjust hyper-
parameters for a better performance, contrary to YOLO and
Faster RCNN (Ren et al. 2017). Quantificationally, SLF has
at least +2% improvement with each baseline, which shows
that SLF possesses the prominent superiority on more com-
plex tasks (e.g., detection), not just toy tasks (e.g., classi-
fication). In addition, this experiment also shows that SLF
provides a possible way for automatically adjusting hyper-
parameters during training deep networks.

Ablation study

In this subsection, we perform extensive ablation studies on
diverse datasets to synthetically analyze our SLF. Intuitively,
all the results are illustrated in Figure 2.

Contribution of Gumbel-Softmax In order to empiri-
cally demonstrate the contribution of the Gumbel-Softmax
technical, SLF-Softmax that utilizes softmax to balance the
weights of different loss functions is designed for compari-
son. Different from the Gumbel-Softmax, technically, Soft-
max always selects all the loss functions to generate gra-
dients. From Table 2 and Figure 2 (a), SLF with Gumbel-
Softmax can achieve better performance than SLF-Softmax.
The main reason is some noisy loss functions may be se-
lected in SLF-Softmax, which generates noisy gradients.
In contrast, SLF suffices to filter noisy loss functions, and
achieve high robustness and appropriate gradients.

Impact of sampling times K We carry out experiments
on the MNIST and CIFAR-10 datasets to analyze the sensi-
tivities to the number of sampling time K. The softmax is
utilized as a baseline for comparison. Figure 2 (a) indicates
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Figure 2: Ablation studies for our stochastic loss function.

that the optimal sampling time K is varied with different
datasets. Specifically, on MNIST and CIFAR-10, the best
sampling times are 3 and 4, relying on the same group of loss
functions. Such results are expected, i.e., small number of
loss function may guide the model to select more robust but
necessary losses. High sampling times may introduce some
noisy losses and degrade the performance conclusively.

Performance on Imbalanced Datasets To further study
the performance of SLF on imbalanced datasets, we estab-
lish a series of datasets from MNIST to execute an additional
clustering experiment. Following the previous work (Xie,
Girshick, and Farhadi 2016), a series of subsets can be ran-
domly sampled from MNIST with different minimum reten-
tion rates. For a minimum retention rate r, images of class
0 will be hold with probability r and class 9 with probabil-
ity 1, with the other classes linearly between 0 and 9. From
the Figure 2 (b), we observe that our DAC+SLF model is
more robust than the other clustering methods. Especially,
we improve the clustering accuracy more than 5% point,
with SLF only. A main reason is that Gumbel-Softmax suf-
fices to adaptively select better loss functions for appropriate
gradients and achieves better performance conclusively.

Conclusion

We present a conceptually simple yet powerful stochastic
loss function to achieve more appropriate gradients for train-
ing deep models. Technically, a group of loss functions are
predefined according to the human knowledge. By general-
izing the Gumbel-Softmax, we develop multiple Gumbel-
Softmax, which is in a position to select and combine these
loss functions to generate more appropriate gradients. Ex-
tensive experiments on popular datasets strongly evidence
that our stochastic loss function outperforms current losses
on various tasks, including classification, clustering, regres-
sion, translation, and object detection. It will be interesting
in the future to automatically learn these loss functions, be-
yond the predefined ones, to reduce the perceived interven-
tion and improve the generality of the loss function.
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