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Abstract

We consider the problem of learning predictive models from
longitudinal data, consisting of irregularly repeated, sparse
observations from a set of individuals over time. Such data of-
ten exhibit longitudinal correlation (LC) (correlations among
observations for each individual over time), cluster correlation
(CC) (correlations among individuals that have similar char-
acteristics), or both. These correlations are often accounted
for using mixed effects models that include fixed effects and
random effects, where the fixed effects capture the regression
parameters that are shared by all individuals, whereas random
effects capture those parameters that vary across individuals.
However, the current state-of-the-art methods are unable to se-
lect the most predictive fixed effects and random effects from
a large number of variables, while accounting for complex cor-
relation structure in the data and non-linear interactions among
the variables. We propose Longitudinal Multi-Level Factoriza-
tion Machine (LMLFM), to the best of our knowledge, the first
model to address these challenges in learning predictive mod-
els from longitudinal data. We establish the convergence prop-
erties, and analyze the computational complexity, of LMLFM.
We present results of experiments with both simulated and
real-world longitudinal data which show that LMLFM out-
performs the state-of-the-art methods in terms of predictive
accuracy, variable selection ability, and scalability to data with
large number of variables. The code and supplemental material
is available at https://github.com/junjieliang672/LMLFM.

Introduction

Longitudinal data consist of repeated observations from
a set of individuals over time. Such data are common in
many areas, including health sciences, social sciences and
economics. Consider for example, the scenario shown in
Fig. 1. To predict an individual xi’s health status at the
age of 38, we should take into account both xi’s history
of physical examinations, as well as those of other indi-
viduals who are similar to xi in age and other character-
istics. Clearly, such longitudinal data often exhibit longitu-
dinal correlation (LC) (correlations among observations for
each individual over time), cluster correlation (CC) (corre-
lations among individuals that have similar characteristics),
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or both (multi-level correlation) (Finch, Bolin, and Kelley
2016), and hence are not independent and identically dis-
tributed. Analysis that does not account for such correlations
can lead to misleading statistical inferences (Gibbons and
Hedeker 1997). To account for data correlations, state-of-the-
art longitudinal data analysis (Gibbons and Hedeker 1997;
Lozano and Swirszcz 2012; Groll and Tutz 2014) often re-
lies on mixed effects models that include fixed effects and
random effects, where the fixed effects capture the regres-
sion parameters that are shared by all individuals, whereas
random effects capture those parameters that vary across in-
dividuals. In practice, the design of mixed effects models
relies on expert input to decide which variables are subject
to random effects as opposed to fixed effects, or a process of
trial and error. However, existing mixed effects models are
very computationally intensive, with the computational cost
scaling with O(q3), where q is the number of variables that
are subject to random effects which limits their applicability
to relatively low-dimensional data. While with the advent of
big data, variants of dimensionality reduction methods such
as LASSO have been explored in the longitudinal setting
(Schelldorfer, Bühlmann, and van de Geer 2011; Lozano and
Swirszcz 2012; Groll and Tutz 2014; Xu, Sun, and Bi 2015;
Ratkovic and Tingley 2017; Marino, Buxton, and Li 2017;
Lu et al. 2017; Finch and others 2018), most such meth-
ods are limited to selecting only fixed effects. There is lim-
ited work on jointly selecting fixed and random effects,
e.g., penalized likelihood methods (Ibrahim et al. 2011;
Bondell, Krishna, and Ghosh 2010; Hui, Müller, and Welsh
2017b) and Bayesian models (Chen and Dunson 2003;
Yang, Wang, and Dong 2019). However, their applicabil-
ity is limited by their high computational cost and reliance
on linear models.

Contributions. This paper aims to address the urgent need
for effective models that can handle high-dimensional longi-
tudinal data where the number of variables is very large
compared to the size of the population, the interactions
among variables can be nonlinear, the fixed and random ef-
fects are a priori unspecified, and the data exhibit correlation
structure (LC, CC, or both). Specifically, we introduce Lon-
gitudinal Multi-Level Factorization Machine (LMLFM), a
novel, efficient, provably convergent extension of Factoriza-
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Figure 1: An example of longitudinal data. Note that the type of correlation behind the data is unknown. Hence, a predictive
model should not only learn to accurately predict the outcome, but also exploit and identify the type of data correlation.

tion Machines (FM) (Rendle 2012) for predictive modeling
of high-dimensional longitudinal data. LMLFM inherit the
advantages of FM, e.g., the ability to reliably estimate the
model parameters from high-dimensional data and model
non-linear interactions. Further, LMLFM can automatically
select fixed and random effects even in the presence of multi-
level correlation, and greatly reduce the need for hyper-
parameter tuning using a novel hierarchical Bayesian for-
mulation. Specifically, LMLFM adopts two layers of Laplace
prior, one for sparsifying the latent representation and one
for identifying fixed effects and random effects. We solve
the LMLFM using the iterated conditional modes (ICM) al-
gorithm (Besag 1986) which offers efficient optimization
with strong convergence guarantees. Experimental results
with simulated data show that LMLFM can readily handle
longitudinal data with over 5000 variables whereas the ex-
isting mixed effects models fail when the number of vari-
ables exceeds 100. Experiments with two real-world data sets
show that LMLFM (i) compares favorably with the state-of-
the-art baselines in terms of predictive accuracy; (ii) yields
sparse and easy-to-interpret predictive models; and (iii) ef-
fectively selects the relevant variables, which are consistent
with the published findings (Bromberger and Kravitz 2011;
Dolan, Peasgood, and White 2008).

Related Work

Popular longitudinal data analysis methods include Gener-
alized Estimating Equations (GEE) (Liang and Zeger 1986)
and Generalized Mixed Effects Models (GMEM) (Fitzmau-
rice, Laird, and Ware 2012). GEE are marginal models which
only estimate the average outcome (or fixed effects) over
the population (Liang and Zeger 1986). In contrast, GMEM
are conditional models that provide the expectation of the
conditional distribution of the outcome given the random
effects.

There is much interest in the problem of variable selection
in longitudinal data (Schelldorfer, Bühlmann, and van de
Geer 2011; Groll and Tutz 2014). Existing techniques fo-
cus on selecting only the fixed effects, under the assump-
tion that the type of correlation is correctly specified and
the random and fixed effects are correctly identified. Their
high computational cost limits their applicability to data with
small numbers of variables (Chen, Xu, and Bi 2018). There

is limited work on the more challenging problem of select-
ing both fixed effects and random effects. Existing methods
typically rely on adding a sparsity inducing penalty, e.g.,
LASSO or its variants, to the GMEM objective function
(Bondell, Krishna, and Ghosh 2010; Ibrahim et al. 2011;
Müller et al. 2013; Hui, Müller, and Welsh 2017a; 2017b).
While Bayesian methods, e.g., (Chen and Dunson 2003;
Yang, Wang, and Dong 2019), offer a conceptually attractive
alternative to penalized likelihood methods for variable selec-
tion, they are currently applicable only to 2-level data which
exhibit only LC or only CC but not both. Furthermore, most
assume a linear mixed model, and hence cannot accommo-
date non-linear interactions among variables. Because they
rely on matrix decomposition and matrix inversion for pa-
rameter estimation, their computational complexity is O(q3),
making them unsuitable for high-dimensional longitudinal
data.

While there have been a few attempts at applying factor-
ization techniques (Zhou et al. 2014; Stamile et al. 2017;
Kidzinski and Hastie 2018), and deep representation learning
techniques (Xu et al. 2019a; 2019b), their primary focus is
to improve the predictive accuracy. These techniques do not
explicitly account for the complex correlation structure in the
data or distinguish between random effects and fixed effects.
In contrast, LMLFM efficiently accounts for complex cor-
relation structure in the data and selects the most predictive
fixed and random effects.

Preliminaries

Notation. Scalars are denoted by lowercase letters and vec-
tors by bold lowercase letters. All vectors are column vectors.
|θ| refers to the length of θ and ‖θ‖p is the �p norm of θ.
Matrices are denoted by uppercase letters, e.g., Θ and a set
of objects by a bold uppercase letter, e.g., Θ = {a,θ}. The
calligraphic letters I and O denote information related to the
individuals and the observations respectively. For example,
ΘI refers to the sub-matrix of Θ associated to the individuals.
We use the letters i, o to denote an arbitrary individual and
observation respectively. We use diag(A) to denote the vec-
tor of diagonal components of a square matrix A. Because
observations occur at discrete time points, we use observation
and time point interchangeably.
Factorization Machines (FM). Given a real-valued design
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Figure 2: Model structure. Sub-graph with grey nodes en-
codes the structure of standard 1-level regression models;
Sub-graph with grey and black nodes encodes the structure
of 2-level LC models; Sub-graph with grey and white nodes
denotes the structure of 2-level CC models; and the entire
graph encodes the structure of multi-level models.

feature vector xio ∈ R
p corresponding to an individual i and

observation o, factorization machines (FM) (Rendle 2012)
model all nested interactions up to order d. For example, the
prediction of FM of order d = 2 is given by:

ŷio = xᵀ
iow +

1

2
xᵀ
ioMxio (1)

where M is a squared matrix with zeros on the diagonal. The
off-diagonal component mqt ∈ M is parameterized as a dot
product of two low dimensional embeddings θq,θt. FM can
be readily solved by coordinate descent (Rendle 2012). The
time and space complexity are O(k |S|) and O(|y|) respec-
tively where |y| and |S| denote the total number of obser-
vations across all individuals, and the data size (i.e., p |y|),
respectively.
Linear Mixed Model (LMM). We introduce LMM to mo-
tivate the design of LMLFM. Let yio ∈ R denote the scalar
outcome of individual i = 1, · · · , n measured at observation
o = 1, · · · ,m. Let xio ∈ R

p, zio ∈ R
q ⊆ xio be variables

associated with fixed effects (denoted by β) and random ef-
fects (denoted as γi) respectively. LMM assumes that the
outcome is predicted by1:

ŷio = xᵀ
ioβ + zᵀ

ioγi (2)

The random effects matrix (γ1, ...,γn)
ᵀ captures the time-

invariant patterns for each individual. For all i ∈ I,
γi∼N(0, Q), where Q ∈ R

q×q is the covariance matrix. The
random effects γi serve two purposes: (i) regularizing the
effects (similar to the �2 norm); and (ii) inducing correlation
between the longitudinal observations, i.e., cov(yio, yij) =
zᵀ
ioQzij .

Longitudinal Multi-Level Factorization

Machine (LMLFM)

The structures of multi-level models are shown in Fig. 2. Stan-
dard regression models assume that given the variables and
regression parameters, the outcomes are i.i.d. and hence yield

1We omit the error term since it can be readily incorporated into
the random effects.
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Figure 3: The hierarchical Bayesian structure of LMLFM. L
stands for the objective function as presented in Eq. (4).

biased estimates of parameters in the presence of LC or CC.
2-level models account for the LC or CC by either directly
or indirectly specifying a correlation matrix that models the
corresponding correlations. Mixed effects models introduce
individual (or observation) specific random effects as proxies
for the relevant information (see Fig. 2). A natural approach
to extend this design is to incorporate both individual factors
θi and observation factors θo, as proxies for the individual
and observation specific information.2 The pairwise interac-
tions between such factors in the latent space (see Eq. (1)) are
shown by arrows in Fig. 2. However, in its current form, the
model does not provide a way to relate latent factors to the
random effects or to explicitly accommodate complex corre-
lation structures. Given the observed design matrix X and
outcomes y, our goals are to: (i) predict the unknown out-
comes ŷ, (ii) jointly select both fixed and random effects
and (iii) recover the correlation structure from the data.

Prediction

The prediction layer of LMLFM (see Fig. 3) is inspired by
both LMM and FM. With a Bayesian framework, all variables
are first assumed random. Hence, the LMM prediction in
Eq. (2) reduces to ŷio = xᵀ

ioγio with γio∼N(β, Q). Further,
to accommodate multi-level correlation, we decompose the
random effects as the summation of two subsets of latent
factors γio = θi + θo, where θi,θo denote the individual
factors and observation factors respectively. Considering the
interaction between individual and observation factors, we
introduce the following prediction function:

ŷio = xᵀ
io (θi + θo) + θᵀ

i θo (3)

Recall that in FM, the design feature vector xio includes
individual one-hot encoding, observation one-hot encoding
and observed features. The original design of FM as in Eq. (1)
embeds each component of the design feature vector into a
latent vector. In contrast, LMLFM (Eq. (3)) embeds only the
individuals and observations into latent vectors, and considers
only the interactions among individuals, observations, and
the design feature vector, thus simplifying the model. Instead

2It is worth noting that individual/observation factors are distinct
from individual/observation random effects, in this work, we use
the former to estimate the latter.
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of setting the latent dimension empirically as in the case of
a FM, we initially let the latent dimension k to be as large
as the feature dimension p, and then apply variable selection
to identify the relevant subset of latent factors (see below).
This makes the proposed model almost as interpretable as
a simple linear model while making use of factorization to
accommodate nonlinear interactions among variables.

Hierarchical Bayesian Model

The hierarchical Bayesian structure of LMLFM is shown in
Fig. 3. We decompose the task of joint selection of fixed and
random effects into two sub-tasks: (i) identifying fixed and
random effects by shrinking the variance of some variables
towards 0; and (ii) selecting the relevant latent factors by
shrinking some components towards 0. We handle the first
sub-task by imposing a Laplace prior on μk and bk, respec-
tively (see Laplace layer 2 in Fig. 3). For the second sub-task,
we enforce sparsity in θ·k by imposing Laplace prior on θ·k
(see Laplace layer 1 in Fig. 3). We denote the model parame-
ters and hyper-priors of LMLFM by Θ = {α,Θ,μ, b} and
Θ0 = {α0, β0, bμ0 , bb0} respectively, yielding the following
generative model:

(yio|xio, θi, θo, α)∼N(yio|ŷio, α−1
) (α|α0, β0)∼Gamma(α|α0, β0)

(θik|μI
k , b

I
k )∼Laplace(θik|μI

k , b
I
k ) (θok|μO

k , b
O
k )∼Laplace

(θok|μO
k , b

O
k )

(μ
I
k |bμ0

)∼Laplace(μ
I
k |0, bμ0

) (μ
O
k |bμ0

)∼Laplace(μ
O
k |0, bμ0

)

(b
I
k |bb0 )∼Laplace(b

I
k |0, bb0 ) (b

O
k |bb0 )∼Laplace(b

O
k |0, bb0 )

Unlike Bayesian FM (Rendle 2012), to accommodate differ-
ent degrees of sparsity in relation to the numbers of individu-
als and observations, we allow different hierarchical priors
for different latent factors for individuals (ΘI) and for obser-
vations (ΘO) (See the grey nodes for ΘI and black nodes for
ΘO in Fig. 3). We use μᵀ = (μI

k , μ
O
k )

p
k=1, b

ᵀ = (bIk , b
O
k )

p
k=1

to denote the mean and scale of the Laplace distribution
respectively. The choice of the distribution of yio can be
application-dependent. For the ease of exposition, we assume
that the outcome variable follows a Gaussian distribution.

We adopt the iterated conditional modes (ICM) algorithm
(Besag 1986) to estimate the parameters of LMLFM. ICM
updates blocks of parameters with the modes of their con-
ditional posterior while keeping the remaining parameters
fixed. Our choice of priors permits the analytical closed-form
derivation of the modes of the conditional posterior density,
yielding substantial speedup. Specifically, we consider the
Maximum A Posteriori (MAP) formulation:

argmax
Θ

L = π (Θ|y, X,Θ0) (4)

Due to space constraints, we include only the update equa-
tions for ΘI =

{
α,ΘI ,μI , bI

}
here, omitting the super-

script I to minimize notational clutter.
Update of α. The posterior of α is a
Gamma distribution, whose mode is given by(
β0 + ‖y − ŷ‖22 /2

)−1

(α0 + |y| /2− 1).
Update of Θ. For each model parameter θi ∈ Θ, the predic-
tion is a linear combination of two functions g(i) and h(i)

that are independent of the value of θi:

ŷi = g(i) + h(i)θi (5)

with g(i) = diag(Xi ·ΘO
i

ᵀ
) and h(i) = Xi+ΘO

i . Here ΘO
i

is the matrix of latent factors constructed by the observations
associated with i. Hence, we have:

θik = μk + (hᵀ
ikhik)

−1 sgn (rik)
(|rik| − 1/αbIk

)
+

(6)

where (·)+ is the ReLU function; rik = hᵀ
ik(yi − g(i) −∑

q∈{1:p}\k θiqhiq − hikμk), with {1 : p}\k denoting the
set of integers ranging from 1 to p excluding k and hik

is the k-th column of h(i). Clearly, sparsity is achieved if
|rik| ≤ 1/αbIk and μk = 0.
Update of μ. The problem of finding the optimal μk

(k = 1, · · · , p) reduces to finding the weighted median of the
vector θ·k ∪ {0} with the weights {bk}ni=1 ∪ {bμ0}, yielding
a linear-time algorithm (Gurwitz 1990).
Update of b. The optimal bk (k = 1, · · · , p) is updated by
2bb0

(√
n2 + 4

bb0
‖θ·k − μk‖1 − n

)
.

We note that the computational complexity of LMLFM for
one complete iteration is O(|S|), which is linear in the size
of the training data. Our approach is more efficient than FM
(Rendle 2012), whose computational complexity is O(k |S|)
(k is the latent dimension). The space complexity of LMLFM
is the same as that of FM, i.e., O(|y|).
Effects and Outcome Estimation

We proceed to describe how to estimate random effects,
fixed effects and outcomes for seen and unseen individ-
ual/observation from the model.
Temporal Individual-Specific Random Effects (TISE).
As shown in Eq. (3), we can rewrite the prediction function
of LMLFM in a form resembling ordinary linear regression
where ŷio = xᵀ

ioγio + εio with coefficients γio = θi + θo
and error εio = θᵀ

i θo. Hence, we let γio be the estimator of
TISE.
Averaged Individual-Specific Random Effects (AISE).
AISE is computed by integrating out the observation effects:

γi = Eπ(θo|y,X,Θ0)[γio] = θi + Eπ(θo|y,X,Θ0) [θo]

Solving Eπ(θo|y,X,Θ0) [θo] is non-trivial. Hence, we ap-
proximate it using the estimated observation factors, where
Eπ(θo|y,X,Θ0) [θo] ≈ 1

m

∑
o∈O θo.

Temporal Population Averaged Random Effects (TPAE).
Similar to solving AISE, TPAE is solved by integrating
out the individual factors: γo = Eπ(θi|y,X,Θ0)[γio] ≈
θo +

1
n

∑
i∈I θi.

Fixed Effects. We say that a variable k has fixed effect if
and only if bIk = bOk = 0. The fixed effect for variable k is
computed by βk = μI

k + μO
k .

Outcomes. The outcome yio for seen individual i and ob-
servation o is computed using Eq. (3). In the case of unseen
individuals, we replace the posterior of the latent factors with
their prior. Thus, for an unseen individual i, the outcome yio
is given by:

E[yio|xio,θi,θo, α] = xᵀ
io(μ

I + θo) + θᵀ
oμ

I
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Convergence Analysis

We establish two important properties in LMLFM: Ascent
property and Convergence.3 Let Z+ denotes the set of all
positive integers and θ(t) denotes the value of θ at the t-th
iteration. We denote π (θ|) as the full conditional posterior
of θ.
Proposition 1 Ascent property. π

(
Θ(t+1)|) ≥ π

(
Θ(t)|)

holds for all iterations t ∈ Z
+.

The proof of Proposition 1 follows from the observation that
the joint posterior density of LMLFM is non-decreasing with
the update of each component of Θ.

Proposition 2 Convergence. If π
(
Θ(t)|) is bounded above,

there exists an iteration t ∈ Z
+, such that ∀i ∈

Z
+,
∣∣π (

Θ(t+i)|)− π
(
Θ(t)|)∣∣ < ε holds for ε > 0.

We prove Proposition 2 by contradiction, i.e., the negation of
the proposition implies that lim

t→∞π
(
Θ(t)|) → ∞, yielding a

contradiction.

Experimental Evaluation

Experiments with Simulated Data

We report results of experiments with simulated data to an-
swer the following questions: (RC1) Can LMLFM handle
high-dimensional data? (RC2) Can LMLFM accurately select
the relevant variables? (RC3) How does LMLFM perform in
the presence of LC and CC?
Simulated data. Following (Hui, Müller, and Welsh 2017b),
we construct simulated longitudinal data sets with 40 individ-
uals and 40 observations per individual. We consider several
choices of p from {50, 100, 500, 1000, 5000}. We consider
three types of correlation, i.e., pure LC, pure CC and both
(See supplemental material for details.).
Methods compared. We compare LMLFM with several
baseline methods: (i) State-of-the-art multi-level linear mixed
model (M-LMM) (Bates et al. 2015); (ii) State-of-the-art
2-level models: LMMLASSO, a linear mixed model with
adaptive LASSO penalty on the fixed effects (Schelldorfer,
Bühlmann, and van de Geer 2011); GLMMLASSO, a gen-
eralized linear mixed model with standard LASSO penalty
on the fixed effects (Groll and Tutz 2014) and rPQL (Hui,
Müller, and Welsh 2017b), a joint selection mixed model
with adaptive LASSO penalty on the fixed effects and group
LASSO penalty on the random effects; and (iii) Factorization-
based multi-level Lasso (MLLASSO),4 which factorizes the
fixed effects as a product of global effects and individual
effects, both regularized by �1 norm (Lozano and Swirszcz
2012); and (iv) the standard LASSO regression (LASSO)
(Tibshirani 1996). We report performance statistics obtained
from 100 independent runs. Hyper-parameters are selected
using cross validation on the training data. Evaluation scores
are computed on the held-out data set. We report execution
failure if an algorithm fails to converge within 48 hours or
generates an execution error.

3See supplemental material for detailed proofs.
4Despite its name, MLLASSO works only as a 2-level model

and does not provide a simple way to associate the latent factors
with random effects.

Table 1: Performance comparison on simulated data in the
presence of multi-level correlation. We use ‘-’ to denote
execution failure.

Method p = 100 p = 5000

R2 (%) f.p. f.n. R2 (%) f.p. f.n.

LMLFM 92±1 0.2 0.8 88±2 2.2 4.2
rPQL 88±2 20.6 0 - - -
M-LMM 90±1 92 0 - - -
GLMMLASSO 83±4 91 0 - - -
LMMLASSO 88±2 92 0 - - -
LASSO 88±1 42.4 0 84±4 415.8 0.4
MLLASSO 40±8 23.8 0.8 1±1 0 6.2

Evaluation Measures. We evaluate the performance of all
methods in terms of both predictive accuracy and the ability
to select random and fixed effects. We measure the predictive
accuracy using the r-squared (R2) score. To assess a method’s
ability to select the relevant variables, we consider a variable
to be selected if the corresponding coefficient is non-zero.
We use false positive (f.p.), the number of variables that are
incorrectly selected, and false negative (f.n.), the number of
variables that are incorrectly discarded, to assess the models.
Results. A subset of our results summarized in Table 1 an-
swer RC1-RC3. RC1: the performance of the state-of-the-art
mixed effects models are highly sensitive to the number of
random effects, i.e., M-LMM, LMMLASSO and GLMM-
LASSO fail when p exceeds 100 due to execution error; Only
LMLFM, LASSO and MLLASSO ran to completion. RC2:
Selecting random effects is more challenging compared to
selecting fixed effects. Among all models, only LMLFM and
rPQL are designed to select random effects. To enforce model
sparsity, say on variable k, LMLFM and rPQL shrink the vec-
tor θ·k to 0 whereas other methods shrink a scalar βk to 0.
Our results show that LMLFM achieves the best terms of f.p.
score. Although LASSO has attractive R2 when p = 5000,
LASSO is unable to select variables with random effects,
leading to very high f.p. in the presence of LC, CC and both.
RC3: Our results (omitted due to space constraints) show
that 2-level models work poorly when a CC model is used on
data with LC or vice versa. In contrast, multi-level models
(M-LMM and LMLFM) achieve better fit on the data that
exhibit LC, CC, or both. LMLFM consistently outperforms
M-LMM in terms of accuracy, variable selection ability and
computational efficiency. We conclude that LMLFM is the
only method among those compared in this study, that can
effectively model high-dimensional longitudinal data, and
select the relevant variables, regardless of whether they are as-
sociated with random effects or fixed effects, in the presence
of LC, CC, or both.

Experiments with Real-World Data

We compare LMLFM with the state-of-the-art baselines on
two real-world longitudinal data sets: (i) Study of Women’s
Health Across the Nation (SWAN) 5 (Sutton-Tyrrell et al.
2005) (on predicting depression); and (ii) General social

5https://www.swanstudy.org/
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(a) SWAN data (b) GSS data

Figure 4: Comparison of population averaged effects on the selected variables for SWAN and GSS data. The Top 5, middle 5 and
bottom 5 variables have positive, negative and neutral effects respectively.

Table 2: Comparison of predictive accuracy on two real-life data sets. We use subscript ‘−’ and ‘+’ to denote the score on data
with the 15 selected variables and all variables, respectively. We use ‘-’ to denote execution failure.

Method SWAN GSS

R2
−(%) f.p.− f.n.− R2

+(%) R2
−(%) f.p.− f.n.− R2

+(%)

LMLFM 30±4 0 0 49±2 17±2 2 0 55±2
M-LMM 29±2 1 5 - 16±1 2 1 -
GLMMLASSO 19±3 0 2 - - - - -
LMMLASSO 26±3 2 2 - - - - -
PGEE 25±4 2 5 - 3±1 1 0 -
LASSO 21±4 1 2 47±1 0±1 1 0 47±1
FM 29±3 0 5 45±2 12±4 4 2 31±2
RF 23±5 10 0 47±1 4±1 10 0 55±2
MLLASSO 0±2 10 0 20±2 -42±10 4 0 -2±1

survey (GSS)6 (Smith et al. 2017) (on predicting general
happiness). We chose these two data sets because they have
attracted much interest in the field of social sciences. We use
the same settings of hyper-parameters for LMLFM as in our
experiments with simulated data. We exclude rPQL because
it fails on all of the experiments due to memory issue. In
addition to the aforementioned baselines, we include some
popular 1-level models in our comparison: Random Forest
(RF), FM and Penalized GEE (PGEE) (Inan and Wang 2017).

We seek answers to the following question: (RC4) How
does LMLFM compare with the state-of-the-art baselines
with respect to its ability to correctly identify the fixed and
random effects and predictive accuracy? To answer RC4, for
each data set, we choose as ”ground truth”, 5 ”positive”, 5
”negative” variables identified in the existing literature (see
below for specifics) and add 5 additional variables that are
believed to be relatively uninformative.
Evaluation on SWAN Data. In the case of SWAN data, we
consider the task of predicting the CESD score (Dugan et
al. 2015), which is used for screening for depression. The
variables of interest include aspects of physical and mental
health, and demographic factors, such as race and income.
The data set includes 3,300 individuals, with 1-22 observa-
tions per individual, and 137 variables. The outcome we aim
to predict is defined by yio = CESDio − 15 (i is individual
and o is the age of the individual) since CESD ≥ 16 has
been observed to be highly indicative of depression. Existing

6http://gss.norc.org/

research (Dugan et al. 2015; Prairie et al. 2015) suggests that
hispanic ethnicity, depressed or fluctuating mood and low
household income are highly positively correlated with de-
pression, whereas Caucasian/white ethnicity, stable mood and
high income are negatively correlated with depression. The
variables used to answer RC4 and the experimental results
are summarized in Fig. 4(a) and Table 2 respectively. We note
that LMLFM outperforms all other methods in R2 score and
correctly recovers the relevant variables. Performance of the
factorization baselines (FM, MLLASSO) is unsatisfactory.
This is because of the lack of intuitive way to relate estimated
latent factors to the corresponding effects. Note that the vari-
ables related to depressed mood are generally selected by our
baselines (not shown), which is consistent with the findings
in (Prairie et al. 2015). FM renders menopausal status as
strong factors to depression, a finding supported by existing
literature (Bromberger and Kravitz 2011; Prairie et al. 2015).
However, we argue that depressed and fluctuated mood is
more likely to be direct causes to depressive symptoms be-
cause menopausal status usually causes abnormal hormone
level, which could further affect the mood of the patients.
Results of LMLFM show that μI = 0 and the sparsity rate
of ΘI (i.e., the number of zero components in ΘI divided by∣∣ΘI∣∣) is 98.3%, which further implies that the random effects
related to the individuals are less predictive. Nonetheless, the
analysis on μO reveals a different story: 59 out of 136 μO
are non-zero and the sparsity rate of ΘO is 56.4%. This sug-
gests that the depressive symptoms for multiple individuals
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with similar age are correlated (CC) as are the depressive
symptoms for a single individual across time (LC), with CC
dominating LC.
Evaluation on GSS Data. In our experiments with the GSS
data, we consider the problem of predicting the self-reported
happiness. We define yio = 1 by individual i reports happy at
year o and yio = −1 as the opposite. The GSS data consists of
4,510 individuals, 1-30 observations per individual and 1,553
variables. Existing research (Dolan, Peasgood, and White
2008; Oishi, Kesebir, and Diener 2011) indicates that, being
married, good physical and psychological health, satisfactory
with financial situation, having strong religious beliefs and be-
ing trusted are positively correlated with happiness, whereas
the absence of these characteristics and unemployment are
negatively correlated with happiness. The variables used to
answer RC4 and the results of our experiments are shown
in Fig. 4(b) and Table 2 respectively. Though we see that
PGEE and LASSO have the lowest f.p., their R2 is relatively
low. They tend to shrink the negative effects to zero, and per-
form poorly even on the training set, which strongly suggests
that they underfit the data. LMLFM is competitive with the
best performing methods in recovering the relevant variables,
while significantly outperforming them in predictive perfor-
mance. We note that variable selection with the GSS data is
far more challenging than with the SWAN data because of
the substantially larger number of variables and collinearity
of the variables. The low R2 of FM and MLLASSO indicate
that they significantly underfit the data. Though RF has a
high R2 score, variables selected by RF are harder to explain
compared to that of the other baselines (not shown). In con-
trast, LASSO achieves lower R2, but selects variables that
are consistent with those selected by LMLFM. We further
find that all of the variables selected by LMLFM are con-
sistent with the findings reported in (Dolan, Peasgood, and
White 2008). We find that ΘI = 0, thus ruling out LC. This
is perhaps explained by the huge gap between consecutive
observations (the survey is taken once per one to three years)
within which many unobserved factors could potentially af-
fect subjective happiness. We find that the sparsity rate of
ΘO is 84.9%. Our analysis of the fixed effects shows that
126 out of 1199 effects are non-zero and among which, only
6 features have absolute effects greater than 0.1, thus vast
majority of variables are uninformative.
Summary of Experimental Results. We conclude that
LMLFM outperforms all the baselines and is the only multi-
level mixed effects model that can reliably select variables
associated with fixed as well as random effects from high-
dimensional longitudinal data.

Conclusions
We have introduced LMLFM, for predictive modeling from
longitudinal data when the number of variables is large com-
pared to the population size, the fixed and random effects
are a priori unspecified, the interactions among variables are
nonlinear, and the data exhibit complex correlation (LC, CC,
or both). LMLFM, a natural generalization of FM to lon-
gitudinal data setting, adopts a novel hierarchical Bayesian
model with two layers of Laplace prior, where the first layer
induces a sparse latent representation and the second layer

identifies fixed effects and random effects. We train LMLFM
using iterated conditional modes algorithm which offers both
computational efficiency and strong convergence guarantee.
Compared to the state-of-the-art alternatives, LMLFM yields
more compact, easy-to-interpret, rapidly trainable, and hence
scalable, models with minimal need for hyper-parameter tun-
ing. Our experiments with simulated data with thousands of
variables, and two widely studied real-world longitudinal data
sets have shown that LMLFM outperforms the 1-level base-
lines and state-of-the-art 2-level and multi-level longitudinal
models in terms of predictive accuracy, variable selection
ability, and scalability to data with large number of variables.
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