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Abstract

The Combined Algorithm Selection and Hyperparameter op-
timization (CASH) is one of the most fundamental problems
in Automatic Machine Learning (AutoML). The existing
Bayesian optimization (BO) based solutions turn the CASH
problem into a Hyperparameter Optimization (HPO) problem
by combining the hyperparameters of all machine learning
(ML) algorithms, and use BO methods to solve it. As a re-
sult, these methods suffer from the low-efficiency problem
due to the huge hyperparameter space in CASH. To allevi-
ate this issue, we propose the alternating optimization frame-
work, where the HPO problem for each ML algorithm and the
algorithm selection problem are optimized alternately. In this
framework, the BO methods are used to solve the HPO prob-
lem for each ML algorithm separately, incorporating a much
smaller hyperparameter space for BO methods. Furthermore,
we introduce Rising Bandits, a CASH-oriented Multi-Armed
Bandits (MAB) variant, to model the algorithm selection in
CASH. This framework can take the advantages of both BO
in solving the HPO problem with a relatively small hyper-
parameter space and the MABs in accelerating the algorithm
selection. Moreover, we further develop an efficient online
algorithm to solve the Rising Bandits with provably theoret-
ical guarantees. The extensive experiments on 30 OpenML
datasets demonstrate the superiority of the proposed approach
over the competitive baselines.

Introduction

Machine learning (ML) has made great strides in many
application areas, e.g., recommendation, computer vision,
financial market analysis, etc (Goodfellow, Bengio, and
Courville 2016; He et al. 2017; Ma et al. 2019; Zhao, Shen,
and Huang 2019). However, given a practical application,
it is usually knowledge-intensive and labor-intensive to de-
velop customized solutions with satisfied learning perfor-
mance, where the exploration may include but is not lim-
ited to selecting ML algorithms, configuring hyperparam-
eters and network architecture searching. To facilitate the
deployment of ML applications and democratize the usage
of machine learning, it is of vital importance to reduce hu-
man efforts during such exploration. Naturally, automatic
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machine learning (Quanming et al. 2018; Zöller and Huber
2019) has attracted lots of interest from both industry and
academia.

Given a learning problem, the first thing is to decide
which ML algorithm should be applied – from SVM, Ad-
aboost, GBDT (Jiang et al. 2018; 2017) to deep neural net-
works. According to the No Free Lunch theorem (Ho and
Pepyne 2001), no single ML algorithm can achieve the best
performance for all the learning problems; and there is of-
ten no golden standard to predict which ML algorithm per-
forms the best. As a result, we typically spend computational
resources across all reasonable ML algorithms, and choose
the one with the best performance after the optimization of
their hyperparameters and network architectures. However,
solving the algorithm selection problem after sufficiently op-
timizing the hyperparameters of each ML algorithm leads
to inefficient usage of computational resources. Resources
consumed by the poor-performing algorithms are greatly
wasted. To this end, the Combined Algorithm Selection and
Hyperparameter optimization (CASH) problem (Feurer et
al. 2015; Kotthoff et al. 2017) is proposed to jointly optimize
the selection of algorithm and its hyperparameters, which is
the core focus of this paper.

To solve the CASH problem, a class of methods (Komer,
Bergstra, and Eliasmith 2014; Feurer et al. 2015; Kotthoff
et al. 2017) transform the CASH problem into a unified hy-
perparameter optimization (HPO) problem by merging the
hyperparameter space for all ML algorithms and treating the
selection of algorithm as a new hyperparameter. Then clas-
sical Bayesian optimization (BO) methods (Shahriari et al.
2015) are utilized to solve this HPO problem. Consequently,
these methods incorporate a huge optimization space with
high-dimensional hyperparameters for BO methods. Past
works (Eggensperger et al. 2013) show that BO methods
perform well for relatively low-dimensional hyperparame-
ters. However, for high-dimensional problems, standard BO
methods perform even worse than random search (Wang et
al. 2013). Thus, such a huge hyperparameter space greatly
hampers the efficiency of Bayesian optimization.

To alleviate the above issue, it is natural to consider an-
other paradigm where the BO methods are used to solve
the HPO problem for each ML algorithm separately, and
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the algorithm selection is responsible for determining the
allocation of resources to each ML algorithm’s HPO pro-
cess. Based on this idea, we propose the alternating op-
timization framework, where the HPO problem for each
ML algorithm and the algorithm selection problem are opti-
mized alternately. Benefiting from solving the HPO prob-
lem for each ML algorithm individually, this framework
brings a much smaller hyperparameter space for BO meth-
ods. Furthermore, within this framework, the resources can
be adaptively allocated to the HPO process of each al-
gorithm based on their performance. Intuitively, spending
too many resources in tuning the hyperparameters of poor-
performing algorithms should be avoided; instead, more re-
sources should be allocated to the more promising ML algo-
rithms that can achieve the best performance. Unfortunately,
which algorithm is the best is unknown unless enough re-
sources are allocated to its HPO process. Therefore, solving
the CASH problem efficiently requires to trade off the well-
celebrated Exploration vs. Exploitation (EvE) dilemma dur-
ing algorithm selection: should we explore the HPO of dif-
ferent ML algorithms to find the optimal algorithm (Explo-
ration), or give more credit to the best algorithm observed
so far to further conduct HPO (Exploitation)?

Since the EvE dilemma has been intensively studied in the
context of Multi-Armed Bandits (MAB), here we propose to
solve the algorithm selection problem in the framework of
MAB. In this setting, each arm is associated with the corre-
sponding HPO process of an ML algorithm. Pulling an arm
means that a unit of resource is assigned to the HPO process
of the corresponding algorithm, and the reward corresponds
to the result from the HPO process. However, the existing
MABs cannot be directly applied to model the algorithm se-
lection problem for two reasons: 1) the well-studied objec-
tives of MABs (e.g., accumulated rewards) are not consis-
tent with the target of CASH problem that aims to maximize
the observed reward; 2) because the HPO results will be im-
proved with the increase of the HPO resource, the reward
distribution of each arm is not stationary over time.

The main contributions of this paper are the following:
• We propose the alternating optimization framework to

solve the CASH problem efficiently, which optimizes the
algorithm selection problem and the HPO problem for
each ML algorithm in an alternating manner. It takes
the advantages of both BO methods in solving the HPO
problem with a relatively small hyperparameter space and
MABs in accelerating the algorithm selection.
• We introduce a novel, CASH-oriented MAB formulation,

termed Rising Bandits, where each arm’s expected reward
increases as a function of the number of times it has been
pulled. To the best of our knowledge, this is the first work
that models the algorithm selection problem in the frame-
work of non-stationary MABs.
• We present an easy-to-follow online algorithm for the Ris-

ing Bandits, accompanied with provably theoretical guar-
antees.
• The empirical studies on 30 OpenML datasets demon-

strate the superiority of the proposed method over the
state-of-the-art baselines in terms of final accuracy and

efficiency. Our method can achieve an order of magnitude
speedups compared with BO based solutions.

Preliminaries and Related Works

We first introduce the basic notations for the CASH problem.
There are K candidate algorithms A = {A1, ..., AK}. Each
algorithm Ai has a corresponding hyperparameter space Λi.
The algorithm Ai with a hyperparameter λ is denoted by
Ai

λ. Given the dataset D = {Dtrain, Dvalid} of a learning
problem, the CASH problem is to find the joint algorithm
and hyperparameter configuration A�

λ� that minimizes the
loss metric (e.g., the validation error on Dvalid):

A∗
λ∗ = argmin

Ai∈A,λ∈Λi

L(Ai
λ, D). (1)

Hyperparameter optimization (HPO) is to find the hyper-
parameter configuration λ� of a given algorithm Ai, which
has the best performance on the validation set,

λ� = argminλ∈Λi
L(Ai

λ, D). (2)

Bayesian optimization (BO) has been successfully applied to
solve the HPO problem. Sequential Model-based Algorithm
Configuration (SMAC) (Hutter, Hoos, and Leyton-Brown
2011), Tree-structure Parzen Estimator (TPE) (Bergstra et
al. 2011), and Spearmint (Snoek, Larochelle, and Adams
2012) are three well-established methods. It is important
to note that these approaches can be executed in a sequen-
tial manner. That is, the HPO process is iterative. Recently,
many approaches develop some elaborated mechanisms to
allocate the HPO resources adaptively (Huang et al. 2019;
Falkner, Klein, and Hutter 2018; Sabharwal, Samulowitz,
and Tesauro 2016). In addition, multi-fidelity optimization
has been deeply studied in the framework of BO to accel-
erate the HPO problem (Swersky, Snoek, and Adams 2013;
Klein et al. 2017; Kandasamy et al. 2017; Poloczek, Wang,
and Frazier 2017; Hu et al. 2019).

In the algorithm selection problem, the objective is to
choose a parameterized algorithm A�

λ� , which is the most
effective with respect to a specified quality metric Q(.). This
sub-problem can be stated as a minimization problem:

A�
λ� = argmini∈[1,...,K] Q(Ai

λ� , D). (3)

In practice, all candidate algorithms with some fixed hyper-
parameters are evaluated on the validation dataset, and the
algorithm with the best performance is chosen. However,
this method suffers from the “low accuracy” issue due to
the lack of the HPO: the fixed hyperparameters cannot ac-
curately reflect the performance of the algorithm across dif-
ferent problems. Moreover, many methods select algorithms
according to some theoretical decision rules, meta-learning
methods (Abdulrhaman et al. 2015) and supervised learning
techniques (Sun and Pfahringer 2013).

To solve the CASH problem effectively in the ML appli-
cations, it is necessary to select the algorithm and its hy-
perparameters simultaneously. Auto-Weka is the first work
devoted to the CASH problem, which takes the BO based
solutions. Then Auto-Sklearn and Hyperopt-Sklearn also
adopt the same BO based framework. In addition, tree-
based pipeline optimization tool (TPOT) (Olson and Moore
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2019) uses genetic programming to address the CASH prob-
lem. Recently, Reinforcement learning method (Efimova,
Filchenkov, and Shalamov 2017) and MAB based meth-
ods (Liu et al. 2019) have been studied to solve the CASH
problem. They model the rewards in the stationary environ-
ment and ignore the objective’s difference between MABs
and CASH. In the community of MAB, several works (Bes-
bes, Gur, and Zeevi 2014; Jamieson and Talwalkar 2016;
Heidari, Kearns, and Roth 2016; Levine, Crammer, and
Mannor 2017) focus on the non-stationary bandits, but none
of them match the settings in CASH.

The Proposed Method

In this section, we introduce the alternating optimization
framework, give the formulation of Rising Bandits, and de-
scribe the online algorithm to solve this bandit problem.

The Alternating Optimization Framework

We reformulate the CASH problem into the following
bilevel optimization problem:

min
i∈[1,...,K]

Q(Ai
λ∗ , D)

s.t. λ∗ = argminλ∈Λi
L(Ai

λ, D).
(4)

Here the CASH problem is decomposed into two kinds
of sub-problems: algorithm selection problem (the upper-
level sub-problem) and the HPO problem for each ML al-
gorithm (the lower-level sub-problem). We propose to solve
this bilevel optimization problem by optimizing the upper-
level and lower-level sub-problems alternately. We name
it the alternating optimization framework. In this frame-
work, Bayesian Optimization (BO) methods are used to con-
duct HPO for each ML algorithm individually; MAB based
method is utilized to solve the algorithm selection problem.
This framework brings two benefits:
• Since the hyperparameter space for each ML algorithm is

relatively small, BO methods can solve the corresponding
HPO problem efficiently.
• The resources can be adaptively allocated to the HPO of

each ML algorithm according to its HPO performance in
the MAB framework.

As a result, the poor-performing ML algorithms will be
equipped with few HPO resources (e.g., the number of tri-
als), and more resources are allocated to the promising algo-
rithms that can achieve better learning performance.

Non-stationary Rewards from Bayesian
Optimization

Before introducing the Rising Bandits, we first investigate
the rewards (HPO results) from BO methods. Given more
HPO resources, the expected rewards (i.e., the best-observed
validation accuracy) will increase. Figure 1 provides an in-
tuitive example. Six ML algorithms are equipped with 200
trials to conduct HPO. The rewards r(.) correspond to the
best-observed validation accuracy in each trial. As the num-
ber of HPO trial increases, this validation accuracy improves
gradually, and then gets saturated. Further, we can summa-
rize the following observations about the rewards from BO:
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Figure 1: The HPO results of 6 ML algorithms. BO method –
SMAC is used to tune the hyperparameters of each algorithm
50 times, and the average validation accuracy across trials is
reported.

• For each ML algorithm Ak, the reward sequence
rk(1), ..., rk(n) is increasing and bounded, and the limit
limn→∞ rk(n) exists.

• The reward sequence satisfies the decreasing marginal re-
turns approximately. Here we abuse the terminology and
refer to this as “concavity”.

Since the rewards increase monotonically across trials, it is
evident that the rewards are not identically distributed, but
are generated by a non-stationary stochastic process.

The Definition of Rising Bandits

Based on the observations about the HPO results, we give
the formulation of Rising Bandits to model the algorithm
selection problem with non-stationary rewards. In this bandit
variant, the agent is given K arms, and at each time step
t = 1, 2, ..., T one of the arm must be pulled. Each arm k
is associated with the HPO process of an ML algorithm Ak.
Pulling an arm means that a unit of resource (e.g., an HPO
trial) is assigned to the HPO process of an algorithm, and the
reward corresponds to the non-stationary HPO results.

In Rising Bandits, we model the non-stationary reward
sequences of the arms as follows: each arm k has a fixed
underlying reward function denoted by rk(.). All the reward
functions are bounded within [0, 1]. When the agent pulls
arm k for the nth time, he receives an instantaneous reward
rk(n). We denote the arm that is pulled at time step t as
i(t) ∈ [K] = [1, ...,K]. Let Nk(t) be the number of pulls of
arm k at time step t, not including this round’s choice, that’s,
Nk(1) = 0, and Π the set of all sequence i(1), i(2), ...,
where i(t) ∈ [K], ∀t ∈ . i.e., π ∈ Π is a sequence of
actions (arms), also referred to as a policy. We denote the
arm that is chosen by policy π at time step t as π(t).

Instead of maximizing the accumulated rewards
∑T

t=1 rπ(t)(Nπ(t)(t) + 1), the objective of the agent
in CASH is to maximize the observed reward within T ,
defined for policy π ∈ Π by,

J(T ;π) = max
t=1:T

rπ(t)(Nπ(t)(t) + 1). (5)

We consider the equivalent objective of minimizing the re-
gret within T defined by,

R(T ;π) = max
π̃∈Π
{J(T ; π̃)} − J(T ;π). (6)
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Based on the observations about the non-stationary re-
wards, we introduce the following assumption:
Assumption 1. (Rising) ∀k ∈ [K], rk(n) is bounded, in-
creasing, and concave in n.
According to this assumption, the original objective in (5) is
equivalent to,

J(T ;π) = max
k

rk(Nk(T + 1)). (7)

In the CASH problem, it is clear that the reward function
r(n) is bounded and increasing; but the concavity assump-
tion may not always hold. We will discuss the two situations
in the following sections. Then we investigate an offline so-
lution for the Rising Bandits. The offline setting means that
the optimal arm is known to the agent before the game. Let
πmax be a policy defined by,

πmax(t) ∈ argmax
k∈[K]

rk(T ). (8)

Lemma 1. πmax is the optimal policy for the Rising Bandits
problem in the offline setting.
Proof: See Appendix A.1 of the supplementary material.
If the best arm is known to the agent, the optimal policy must
pull the best arm repeatedly.

Online Solution for Rising Bandits

The CASH problem falls into the online setting, where the
best arm is unknown to the agent. In this circumstance, the
above Lemma 1 fails. However, it guides us to derive an ef-
ficient policy in the online setting: 1) first identify the best
arm by using as few time steps as possible, and then 2) pull
the best arm until the time step T meets. That is, solving the
best arm identification problem first and then fully exploit-
ing the best arm can efficiently optimize the objective in (7).

Based on the Assumption 1, we can obtain an interval that
bounds the final reward of an arm. The reward function is
concave, that’s, for any n > 2, we have r(n) − r(n − 1) ≥
r(n+1)−r(n). Suppose the arm k has been pulled n times,
and n rewards rk(1), ..., rk(n) are observed. Given that rk(.)
is increasing, bounded and concave, we have for any t > n,

rk(t) ≤ min(rk(n) + (t− n)ωk(n), 1), (9)

where ωk(n) equals rk(n)− rk(n− 1), and we name ω(n)
as the growth rate at the nth step. We refer to the right-hand
side of Inequality 9 as the upper bound uk(t) of rk(t). Nat-
urally, the lower bound lk(t) of rk(t) is rk(n). If the arm
i has the lower bound li(t) that is no less than the upper
bound uk(s) of the arm k, the arm k cannot be the optimal
arm. By using this elimination criterion, we can gradually
dismiss the arm that cannot be the optimal arm. After find-
ing the best arm, this arm will be pulled repeatedly until the
game ends.

Algorithm 1 illustrates both the pseudo-code of the pro-
posed online algorithm and its usage in the alternating op-
timization framework. It operates as follows: it maintains a
set of candidate arms (ML algorithms) in which the best arm
is guaranteed to lie (Line 1). At each round, it pulls all the
arms in the candidate set once, and it means that each corre-
sponding algorithm in the candidate set is given one unit of

Algorithm 1 Online algorithm for Rising Bandit
Input: ML algorithm candidates A = {A1, ..., AK}, the to-
tal time steps T , and one unit of HPO resource b̂.

1: Initialize Scand = {1, 2, ...,K}, t = 0.
2: while t < T do
3: for each k ∈ Scand do
4: t = t+ 1.
5: Pull arm k once: Hk ← Iterate HPO(Ak, b̂).
6: Calculate ωk(t) according to Hk.
7: Update ut

k(T ) = min(yk(t) + ωk(t)(T − t), 1).
8: Update ltk(T ) = yk(t).
9: end for

10: for i �= j ∈ Scand do
11: if lti(T ) ≥ ut

j(T ) then

12: Scand = Scand\{j}
13: end if
14: end for
15: end while
16: return the corresponding ML algorithm A� and its best

hyperparameter configuration.

resource to tune its hyperparameters with BO methods. Then
both the upper bound and lower bound of the final reward at
time step T are updated (Line 5-10). If the upper bound of
the final reward of an arm k (algorithm Ak) is less than or
equal to the lower bound of another arm’s in the candidate
set, then the arm k will be eliminated from the candidate set
(Line 11-15). The above process iterates until the time step
T meets. Finally, the best algorithm along with the corre-
sponding hyperparameter configuration is returned.

Rising Bandits with “Loose” Concavity

As stated previously, the concavity in Assumption 1 may not
always hold in the CASH problem. In this case, the prob-
lematic growth rate ωk(t) = rk(t) − rk(t − 1) may lead to
a wrong upper bound. To alleviate this issue, we propose to
use the following growth rate calculated by,

ωk(t) =
yk(t)− yk(t− C)

C
, (10)

where C is a constant. Intuitively, by averaging the latest C
growth rates, this smooth growth rate is more robust to the
case with “loose” concavity. In the next section, we provide
theoretical guarantees for the proposed methods.

Theoretical Analysis and Dissussions

For the coming theorem, we define a quantity that captures
the time steps required to distinguish the optimal arm from
the others. More precisely, we define γ(T ) = maxk γk(T ),
where

γk(T ) = argmin
t
{ut

k(T ) ≤ ltkT∗
(T )} (11)

and kT∗ is the optimal arm in the given T . Thus γk(T ) spec-
ifies the smallest number of time steps needed to pull both
arm k and the optimal arm so that the sub-optimal arms can
be distinguished from the optimal arm.
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We prove that the upper bound of the policy regret of the
proposed algorithm exists.
Theorem 1. Suppose Assumption 1 holds. The proposed al-
gorithm achieves regret bounded by,

R(T ; π̄) ≤ rkT∗ (T )− rkT∗ (T − (n− 1)γ(T )). (12)

Proof: See Appendix A.2 of the supplementary material.
This bound contains a problem-dependent term γ(T ). If
identifying the optimal arm is easier, γ(T ) will be smaller.

Compare with Average Policy

An intuitive policy πuni is to pull each arm T
K times. The

regret of this policy is,

R(T ;πuni) = rkT∗ (T )−max
k

rk(
T

K
). (13)

We now establish the regret connection between the pro-
posed algorithm and the average policy.
Corollary 1. When the problem-dependent term γ(T ) satis-
fies: γ(T ) ≤ KT−T

K(K−1) , the regret of the proposed algorithm
will not be worse than the average strategy’s.

R(T ; π̄) ≤ R(T ;πuni). (14)

Proof: See Appendix A.3 of the supplementary material.

Theoretical Guarantee for “Loose” Concavity

Here we provide a theoretical guarantee for the smooth
growth rate. For any reward sequence yk(1), ..., we can
find a reward function rk(.) that satisfies the Assumption
1. At each time step t, rk(t) ≥ yk(t), and they have the
same limit. We denote the bias between rk(.) and yk(.) by
Δk(t) = rk(t)− yk(t).
Theorem 2. If the following condition holds, the proposed
algorithm with smooth growth rate can be used to identify
the optimal arm without any loss,

Δk(t)

Δk(t− C)
≤ T − t

T − t+ C
. (15)

Proof: See Appendix A.4 of the supplementary material.

Towards Cost-Aware CASH

In the previous sections, the limited resource is the num-
ber of HPO trials, and here we consider the time B as the
limited resource. Both the algorithm’s performance and its
HPO evaluation cost in runtime should be taken into consid-
eration. In CASH, conducting an HPO trial for different ML
algorithms usually takes a different time cost. For example,
for large datasets, training linear models is much faster than
the tree-based model such as gradient boosting. To solve the
cost-aware CASH, we develop a variant of Algorithm 1. For
each ML algorithm, we first compute its average time over-
head ck in each HPO trial; then we predict the upper bound
of the final reward within the given time B by,

ut
k(B) = rk(t) + ωk

B
′

ck
, (16)

where B
′

is the time left, and ωk is the growth rate at time t.

Relationship and Comparison with Previous Works

Our approach takes an adaptive resource allocation scheme.
From a theoretical perspective, our method is similar,
in spirit, to some previous works (Huang et al. 2019;
Falkner, Klein, and Hutter 2018; Sabharwal, Samulowitz,
and Tesauro 2016). In addition, one work (Heidari, Kearns,
and Roth 2016) also supports concave reward functions.
Compared with these works, our main contribution is to ap-
ply a similar methodology to a new application, i.e., CASH.
In the CASH problem, we find some additional structures
that we can use, e.g., CASH has the concave structure in
the reward function. Furthermore, instead of optimizing the
accumulated regrets in Heidari, Kearns, and Roth, CASH
focuses more on identifying the best arm. These additional
structures allow us to perform significantly better over sim-
ply applying these previous approaches to CASH.

Compared with BO based solutions, our method explic-
itly reduces the hyperparameter space in the CASH problem
by dismissing the poor algorithms successively. Without any
modification, this method can also be used to solve the re-
gression tasks by mapping the loss into [0, 1]. In addition, the
proposed approach can handle the cost-aware CASH; how-
ever, the existing solutions for the CASH problem do not
take the evaluation cost into consideration.

Experiments and Results

In the evaluation of the proposed method, we demonstrate
its superiority from the following three perspectives: 1) the
efficiency compared with the state-of-the-art BO based solu-
tions, 2) the empirical performance compared with all con-
sidered baselines in terms of final accuracy and efficiency,
and 3) practicability and effectiveness in the AutoML sys-
tems.

We compared our method with the following baselines,
including the BO based methods and the traditional bandit
based methods in the MAB community:
AVG The average policy that allocates the same HPO re-

sources to each ML algorithm.
SMAC BO based method that uses a modified random for-

est as the surrogate model to conduct BO.
TPE BO based method that utilizes the tree-structured

Parzen density estimators as the surrogate model.
CMAB Bandit based method that models the stationary

reward and maximizes the accumulated rewards with
Thompson sampling (Russo et al. 2018; Liu et al. 2019).

UCB UCB policy is used to solve the traditional MAB.
Softmax Softmax policy (Sutton and Barto 2018) is lever-

aged to solve the traditional MAB.
BOHB This method takes an adaptive strategy to conduct

HPO (Falkner, Klein, and Hutter 2018).
In addition, to investigate its practicability and the empiri-
cal performance in the AutoML systems, we also take the
following AutoML systems into account:
Auto-Sklearn (ASK) The state-of-the-art AutoML system.

It utilizes the BO based solution – SMAC to solve the
CASH problem.
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Figure 2: Performance comparison between BO based solutions and the proposed method on PC4 dataset.

Hyperopt-Sklearn (HPSK) Similar to Auto-Sklearn, it
also adopts the BO based solution, and it uses TPE to con-
duct HPO instead.

TPOT It leverages the genetic algorithm to solve CASH.

CASH space, Datasets and Basic Settings In all experi-
ments, the optimization space of the CASH problem is the
same as the one in Auto-Sklearn. It comprises 16 ML clas-
sification algorithms with 78 hyperparameters. More details
about the space can be found in Appendix B of the supple-
mental materials. We considered 30 classification datasets
from the OpenML repositories. These datasets are widely
used in the related works (Feurer et al. 2015; Efimova,
Filchenkov, and Shalamov 2017; Olson and Moore 2019;
Liu et al. 2019), and the details are listed in Appendix C.
For each run, the original dataset will be partition into three
subsets: training set, validation set and test set, in the pro-
portion of 64%, 16%, 20%. Accuracy is used as the metric
of the objective. We repeated each method 10 times on each
dataset and reported the average accuracy. For the sake of
fairness, we assured that all compared methods use the data
with the same preprocessing operations. That is, we pro-
cessed the raw datasets with the necessary operations only
(e.g., label encoder, one-hot encoding); and we disabled the
original preprocessing module in Auto-Sklearn and TPOT.
Like Auto-Sklearn and Auto-Weka, the proposed method
leverages SMAC to solve the HPO problem for each ML al-
gorithm individually. In the following experiments, we used
the initial version of our method (in Algorithm 1) by default
(except when specified the concrete version). The parame-
ter C for computing the smooth growth rate is set to 7. Our
method is not sensitive to the choice of C, and the detailed
sensitivity analysis can be found in Appendix D.

More Results about the Concave Rewards We ran ex-
periments on 5 datasets, and analyzed the reward functions
for different ML algorithms. Ten figures in the supplemen-
tary materials illustrate the rewards functions for each algo-
rithm in details. We found that the concave behavior about
the reward function is largely consistent with the result we
showed in Figure 1.

Comparison with BO based Methods

The empirical evaluation of BO methods shows that SMAC
performs best on the benchmarks with the high-dimensional
hyperparameter space, closely followed by TPE. In this ex-
periment, we evaluated the performance of both the pro-
posed method and SMAC on the CASH problem.

High-dimensional Hyperparameter Space. Here we
demonstrated that the proposed method still works well
when the hyperparameter space becomes large. We evalu-
ated the following three methods on OpenML PC4 dataset
with 500 trials: average policy (AVG), SMAC and our ap-
proach (OURS). The hyperparameter space of CASH prob-
lem is gradually augmented by adding more and more ML
algorithms into the algorithm candidate A with |A| = K.
The performance of each method is tested with different Ks:
K = [1, 2, 4, 8, 12, 16]. When K equals to 1, the hyperpa-
rameter space only includes the hyperparameters of the op-
timal algorithm; if K is set to 16, the hyperparameter space
contains the hyperparameters of all ML algorithms and the
algorithm selection hyperparameter. As illustrated in Table
1, SMAC suffers from the low-efficiency issue. With the in-
crease of K, it is infeasible for BO methods to learn a sur-
rogate model that models this huge optimization space ac-
curately within 500 trials. Consequently, the validation ac-
curacy drops from 95.02% to 93.63%. In contrast, the pro-
posed method utilizes the elimination criterion to dismiss
the poor-performing algorithms from the candidate set, thus
decreasing the dimension of hyperparameter space automat-
ically. Hence our method still can achieve the best accuracy
- 95.02% when K equals to 16.

K AVG SMAC OURS

1 95.02 95.02 95.02
2 94.68 94.79 95.01
4 94.31 94.06 95.02
8 93.91 93.60 95.02
12 93.50 93.48 95.01
16 93.39 93.63 95.02

Table 1: The validation accuracy (%) with different Ks in
the CASH problem.

Resource Allocation Figure 2 (a) depicts the validation
accuracy of three methods across trials, where 500 trials are
used to solve the CASH problem with K = 16. In the first
100 trials, SMAC and the proposed method behave simi-
larly, and both of them explore the performance distribution
over the optimization space. Then our method starts to iden-
tify and dismiss the poor-performing algorithms by lever-
aging the known HPO results. More resources (trials) are
allocated to the more promising algorithms, and this pro-
cedure brings significant performance improvement. Due to
the huge hyperparameter space, SMAC cannot model the
performance for each ML algorithm effectively. Therefore,
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Dataset ID
Validation Performance (%) Test Performance (%)

TPE SMAC UCB CMAB SFMX OURS TPE SMAC UCB CMAB SFMX OURS

1049 94.02 93.85 94.27 94.20 94.10 95.26 90.42 90.64 90.75 90.92 90.98 91.13
917 94.62 95.00 94.38 94.81 94.19 95.00 84.35 84.25 84.50 84.50 84.35 85.40
847 87.42 87.41 87.43 87.39 87.38 87.49 86.27 86.23 86.20 86.20 86.36 86.30
54 86.10 85.96 86.03 86.03 85.81 86.18 86.00 85.7 86.00 86.06 86.06 86.47
31 79.88 79.94 79.81 79.94 80.06 80.06 72.95 73.65 73.45 73.45 74.35 74.35
181 57.18 56.93 57.02 56.72 56.85 57.23 60.03 59.93 59.83 59.33 59.56 59.63
40670 97.76 97.73 97.90 97.98 97.84 98.10 96.55 96.60 96.63 96.69 96.68 96.77
40984 99.20 99.16 99.19 99.22 99.08 99.24 96.80 97.25 96.80 97.14 97.23 97.14
46 97.63 97.48 97.24 97.32 97.36 97.44 95.44 95.27 95.11 95.56 95.44 95.44
772 60.95 60.20 60.49 61.03 60.46 61.20 53.19 53.76 54.06 54.36 54.01 53.85
310 99.00 98.97 98.97 98.98 99.00 99.02 98.67 98.71 98.75 98.65 98.67 98.71
40691 70.76 70.66 71.05 71.02 70.74 71.95 66.50 66.09 65.03 65.97 66.00 66.66
1501 95.25 95.22 94.98 94.86 95.02 95.33 96.71 95.49 96.43 96.30 96.43 96.80
1557 67.49 67.52 67.37 67.58 67.22 67.85 61.71 62.05 62.09 61.99 61.99 62.68
182 91.99 92.14 92.03 91.95 91.90 92.04 91.33 91.40 91.25 91.52 91.32 91.50
823 98.53 98.50 98.56 98.54 98.55 98.60 98.08 98.04 98.01 98.03 98.04 98.10
1116 99.75 99.73 99.72 99.51 99.72 99.87 99.36 98.98 99.36 99.44 99.44 99.50
151 93.51 93.41 93.28 93.42 93.31 94.01 93.31 93.32 93.26 93.27 93.08 93.95
1430 85.72 85.69 85.75 85.62 85.69 85.85 85.09 85.02 85.13 85.01 85.06 85.17
32 99.55 99.53 99.45 99.42 99.47 99.63 99.30 99.25 99.55 99.41 99.34 99.60
354 84.80 84.95 79.18 80.80 79.06 87.93 85.00 80.87 80.98 79.12 79.37 87.99
60 86.81 86.88 86.74 86.65 86.76 86.90 86.54 86.52 86.55 86.44 86.28 86.65
846 90.14 90.12 90.15 90.05 90.16 90.19 89.01 89.00 88.74 88.90 89.04 89.07
28 98.85 98.81 98.77 98.59 98.78 98.87 98.84 98.73 98.84 98.84 98.81 98.85
1471 97.99 97.93 97.84 97.50 97.93 98.28 97.75 97.38 98.08 97.83 97.74 97.61
9976 87.02 87.02 86.54 86.97 85.82 86.83 85.85 86.62 85.65 85.46 85.58 86.60
23512 72.96 73.12 72.96 72.80 72.90 73.20 72.60 72.29 72.55 72.46 72.60 72.86
41082 97.89 97.74 97.65 97.10 97.74 98.10 97.54 97.10 97.56 97.54 97.55 97.62
389 87.73 86.60 86.80 86.66 86.60 87.70 87.56 86.37 86.98 87.22 87.38 87.51
184 89.33 89.12 89.23 89.17 89.19 89.65 88.34 88.20 88.21 88.18 88.22 88.78

Table 2: Average validation accuracy and test accuracy for all considered methods on 30 OpenML datasets.

its performance improves very slowly, and it is even worse
than the average policy. To further compare our method with
SMAC, Figure 2 (b) illustrates their percentages of the HPO
trials for each ML algorithm respectively. In this problem
(dataset), Adaboost is the optimal algorithm. As can be seen,
our method identifies and terminates 13 unpromising ML al-
gorithms by using 20% trials. Another 30% of trials are used
to dismiss the left two algorithms that have a near-optimal
performance. Almost 50% of trials are spent on tuning the
optimal algorithm – Adaboost. In contrast, most of the trials
in SMAC are used to tune the poor-performing algorithms.

Speedups We evaluated the achievable speedups of our
method against the baseline - SMAC on 10 OpenML
datasets. Continued with the previous settings, 5000 trials
in total are given to SMAC. The speedup is measured with
the number of trials (#) that each method needs to reach the
same validation accuracy (%). Table 3 depicts the speedup
results. As can be seen, our method is more efficient than
SMAC in terms of the number of trials one needs to reach
the same validation accuracy. To derive a more clear illus-
tration about this, we plotted the validation accuracy curve
of these two methods across trials on the PC4 dataset. As
shown in Figure 2 (c), the final validation accuracy of SMAC
is still worse than the one that our approach achieves within
250 trials. The empirical results demonstrate that the pro-
posed method can outperform the existing CASH algorithm
- SMAC by over an order of magnitude speedups.

Dataset ID Val Acc #SMAC #OURS Speedups

1049 94.81 5000 250 20.0x
40691 71.38 5000 395 12.7x
40670 97.86 5000 230 21.7x
847 87.48 5000 480 10.4x
32 99.61 5000 450 11.1x
151 93.94 5000 350 14.3x
184 89.63 4000 500 8.00x
354 87.53 5000 427 11.7x
1471 98.20 5000 500 10.0x
41082 98.10 3000 500 6.20x

Average - - - 12.6x

Table 3: Speedup results on 10 OpenML datasets.

Comparison with All Considered Methods

In this experiment, we compared the proposed method with
all considered baselines in terms of two perspectives: 1) fi-
nal accuracy, and 2) the efficiency, i.e., the number of trials
one needs to reach the same validation accuracy. In the first
part, each method is given 500 trials, and the average accu-
racy across 10 runs is reported. Table 2 lists both the aver-
age validation accuracy and the average test accuracy on 30
OpenML datasets. In order to evaluate the generalization of
the corresponding model, we also compared the accuracy on
the test set. As can be seen, the proposed method achieves
the best validation accuracy on 26 out of 30 datasets, and
it also reaches the highest test accuracy on 20 out of 30
datasets. This gives that the ML models obtained by our
method generalize well. Although our method does not get
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Dataset ID Heidari et al BOHB OURS Speedups against BOHB

1049 94.26 94.31 95.25 8.0x
40691 71.05 71.06 71.95 7.5x
40670 97.82 97.79 98.10 8.6x
847 87.35 87.42 87.49 2.4x
32 99.42 99.52 99.63 3.9x
151 93.25 93.64 94.01 5.3x
184 89.18 89.40 89.65 4.5x
354 80.79 85.18 87.90 15.7x
1471 97.99 97.87 98.28 5.7x
41082 97.69 97.96 98.12 3.5x

Table 4: Average validation accuracy (%) and speedups
compared with the considered methods.

the highest accuracy on a few datasets, its result is very close
to the best one. It is worth noting that, on most datasets, our
method outperforms both the existing bandit-based meth-
ods (CMAB, UCB, and Softmax) and BO-based methods
in terms of the final accuracy in solving the CASH problem.

In the second part, we took another two related works
into consideration: Heidari et al. (Heidari, Kearns, and Roth
2016) and BOHB (Falkner, Klein, and Hutter 2018). First
we ran these two methods on 10 datasets with 500 trials,
and the result is reported in Table 4. Although Heidari et al.
(2016) leverage the concave reward function, this method
cannot outperform the solution found by our approach be-
cause it tries to maximize the accumulated rewards. As men-
tioned previously, the objective in CASH focuses more on
identifying the optimal arm, instead of optimizing the accu-
mulated rewards. Similar to our approach, BOHB adopts an
adaptive mechanism to conduct hyperparameter optimiza-
tion. The reason why this method cannot beat our method is
that it does not use the structure information about the con-
cave rewards in CASH. By contrast, our method, with the
Rising Bandits, absorbs the advantages of these two kinds
of methods, and avoids their drawbacks successfully. Fur-
thermore, similar to the last section about speedups, we gave
the baseline - BOHB enough trials, enabling it to reach the
same validation accuracy that our method gets within 500
trials (that is, the fourth column in Table 4). Finally, we ob-
tained the speedups against BOHB, and illustrated the result
in Table 4. It exhibits that the CASH-oriented Rising Ban-
dits are more efficient than the existing adaptive method in
solving the CASH problem.

Comparison with AutoML Systems

To investigate the practicality and effectiveness of our
method in the AutoML systems, we implemented the pro-
posed method based on the components of Auto-Sklearn and
compared it with three popular AutoML systems. Each sys-
tem is given 2 hours, and the average test accuracy across
10 runs is reported. The cost-aware variant of our method
is used to solve the CASH problems. Because the three Au-
toML systems do not take the evaluation cost into account,
they only optimize the performance, instead of optimizing
both efficiency and performance together. As a result, given
a limited time, these AutoML systems suffer from the low-
efficiency problem. The empirical results in Table 5 demon-
strate that the proposed method is more efficient than the
existing AutoML systems on the 12 OpenML datasets.

Dataset ASK HPSK TPOT OURS

AMAZON 72.33 73.67 75.45 82.60
POKER 84.91 84.83 81.59 85.92
WINE 65.69 65.61 65.54 66.76
FBIS-WC 86.17 86.21 86.61 87.30
OPTDIGITS 98.79 98.78 99.16 99.10
SEMEION 96.55 96.57 96.36 96.99
HIGGS 71.98 71.81 71.58 72.20
PC4 91.16 91.07 90.94 91.21
USPS 96.42 96.57 97.47 97.66
MUSK 99.29 99.20 99.63 99.73
ELEVATORS 88.64 88.71 88.86 89.01
ELECTRICITY 93.11 92.98 90.16 93.84

Table 5: Average test accuracy (%) of compared AutoML
systems on 12 OpenML datasets.

Conclusion

In this paper, we proposed an alternating optimization
framework to accelerate the CASH problem, where a novel
MAB variant is introduced to conduct algorithm selection
and the Bayesian optimization methods are used to conduct
HPO for each ML algorithm individually. Moreover, we pre-
sented an online algorithm to solve the Rising Bandits prob-
lem with provably theoretical guarantees. We evaluated the
performance of the proposed method on a number of Au-
toML tasks and demonstrated its superiority over the com-
petitive baselines. In the future work, we plan to leverage the
meta-learning techniques to speed up the CASH problem.

Acknowledgments

This work is supported by the National Key Research and
Development Program of China (No.2018YFB1004403),
NSFC (No.61832001, 61702015, 61702016, 61572039),
Beijing Academy of Artificial Intelligence (BAAI), and
Alibaba-PKU joint program. Jiawei Jiang is the correspond-
ing author.

References

Abdulrhaman, S. M.; Brazdil, P.; Van Rijn, J. N.; and Van-
schoren, J. 2015. Algorithm selection via meta-learning and
sample-based active testing. Algorithm Selection Workshop
ECMLPKDD.
Bergstra, J. S.; Bardenet, R.; Bengio, Y.; and Kégl, B. 2011.
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