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Abstract

Computing derivatives of tensor expressions, also known as
tensor calculus, is a fundamental task in machine learning. A
key concern is the efficiency of evaluating the expressions and
their derivatives that hinges on the representation of these ex-
pressions. Recently, an algorithm for computing higher order
derivatives of tensor expressions like Jacobians or Hessians
has been introduced that is a few orders of magnitude faster
than previous state-of-the-art approaches. Unfortunately, the
approach is based on Ricci notation and hence cannot be
incorporated into automatic differentiation frameworks like
TensorFlow, PyTorch, autograd, or JAX that use the simpler
Einstein notation. This leaves two options, to either change
the underlying tensor representation in these frameworks or to
develop a new, provably correct algorithm based on Einstein
notation. Obviously, the first option is impractical. Hence, we
pursue the second option. Here, we show that using Ricci
notation is not necessary for an efficient tensor calculus and
develop an equally efficient method for the simpler Einstein
notation. It turns out that turning to Einstein notation enables
further improvements that lead to even better efficiency.

1 Introduction

Many problems in machine learning are naturally written
in terms of tensor expressions. Any algorithmic method for
computing derivatives of such expressions is called a ten-
sor calculus. Standard automatic differentiation (deep learn-
ing) frameworks like TensorFlow (Abadi and others 2016),
PyTorch (Paszke et al. 2017), autograd (Maclaurin, Duve-
naud, and Adams 2015), and JAX (Frostig, Johnson, and
Leary 2018) are very efficient when computing derivatives of
scalar-valued functions. However, evaluating the derivatives
of non-scalar-valued functions, for instance, Jacobians or
Hessians, in these frameworks is up to three orders of magni-
tude slower than evaluating the derivatives that are computed
by the approach of (Laue, Mitterreiter, and Giesen 2018).
There have been some recent attempts to alleviate this lack
of efficiency by accelerating the underlying linear algebra
using automatic batching and optimizing the computational
graphs of the derivatives (XLA and TensorFlow teams 2017).
These improvements have been incorporated into TensorFlow
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and JAX. However, the improvements are rather small and
the efficiency gap of up to three orders of magnitude still
persists.

On the other hand, the approach of (Laue, Mitterreiter, and
Giesen 2018) relies crucially on Ricci notation and therefore
cannot be incorporated into standard deep learning frame-
works that use the simpler Einstein notation. Here, we remove
this obstacle and provide an efficient tensor calculus in Ein-
stein notation. Already the simple version of our approach is
as efficient as the approach by (Laue, Mitterreiter, and Giesen
2018). We provide further improvements that lead to an even
better efficiency.

Ricci notation distinguishes between co- and contravariant
indices, that is, upper and lower indices. This distinction is
necessary in order to compute derivatives in a mathemati-
cal correct way. Consider for instance the simple expression
2T Az. If we want to compute the derivative of this expres-
sion with respect to the vector x, then, at some point, we face
the problem of computing the derivative of - | . However, this
derivative in Ricci notation is the delta-tensor ¢;; that cannot
be represented in linear algebra. Note, it is not the identity
matrix which is represented in Ricci notation as 6; Hence,
in order to represent the derivative in a mathematical correct
way, upper and lower indices are necessary. This problem has
its roots in mathematical tensor analysis, where tensors are
used for representing multilinear functions by their values
on a set of basis vectors. These values are stored in a tensor,
that is, a multi-dimensional array. Upper and lower indices
are used to distinguish between vector space and dual vec-
tor space components that transform differently under basis
changes. In the example expression, z is a vector while z '
is a co-vector from the dual vector space.

In machine learning tensors are typically not used for
representing multi-linear functions, but simply as multi-
dimensional arrays for storing data and parameters. Hence,
there is no need to distinguish different types of components.
Indices can just be used for accessing the different tensor
components. This is basically Einstein notation that is used
in all deep learning frameworks.

The contribution of this paper is an efficient and coherent
method for computing tensor derivatives in Einstein nota-
tion together with a correctness proof. In reverse mode auto-



matic differentiation, our method is equivalent to the efficient
approach in (Laue, Mitterreiter, and Giesen 2018) for com-
puting higher order derivatives. Additionally, we show that
reverse mode is not optimal. A combination of reverse and
forward mode, known as cross-country mode, can be more
efficient. Efficiency can be further improved by compressing
higher order derivatives.

For validating our framework we compute Hessians for sev-
eral machine learning problems. It turns out that our method,
because of the additional optimizations, outperforms the ap-
proach of (Laue, Mitterreiter, and Giesen 2018) which is
already a few orders of magnitude more efficient than Ten-
sorFlow, PyTorch, autograd, and JAX.

Related Work. Many details on the fundamentals and
more advanced topics of automatic differentiation can be
found in the book by (Griewank and Walther 2008). (Bay-
din et al. 2018) provide an excellent survey on automatic
differentiation for machine learning.

Computing derivatives of non-scalar-valued functions is
discussed in (Pearlmutter 1994). In this approach, if the func-
tion returns an n-dimensional vector, then its derivative is
computed by treating each entry as a separate scalar-valued
function. The same idea is employed in almost all imple-
mentations for computing derivatives of non-scalar-valued
functions. (Gebremedhin et al. 2009) introduce some opti-
mizations based on graph coloring algorithms.

(Magnus and Neudecker 2007) can compute derivatives
with respect to vectors and matrices. At the core of their ap-
proach, matrices are turned into vectors by stacking columns
of a matrix into one long vector. Then, the Kronecker ma-
trix product is used to emulate higher order tensors. This
approach works well for computing first order derivatives
of scalar-valued functions. However, it is not practicable for
computing higher order derivatives.

(Giles 2008) collects a number of derivatives for matrix
operators, i.e., pushforward and pullback functions for auto-
matic differentiation. Similarly, (Seeger et al. 2017) provide
methods and code for computing derivatives of Cholesky fac-
torizations, QR decompositions, and symmetric eigenvalue
decompositions. However, they all require that the output
function is scalar-valued, and hence, cannot be generalized
to higher order derivatives.

(Kakade and Lee 2018) consider non-smooth functions and
provide a provably correct algorithm that returns an element
from the subdifferential. However, their algorithm is also
restricted to scalar-valued functions.

Another line of research focuses on automatic differen-
tiation from a programming language point of view. The
goal is to incorporate gradient computations into program-
ming languages with the goal of fully general differentiable
programming (LeCun ). Work towards this goal includes the
Tangent package (van Merriénboer, Moldovan, and Wiltschko
2018), the Myia project (van Merriénboer et al. 2018), and
the approach of (Wang et al. 2018). So far this work is again
restricted to scalar-valued functions.

Recently, also second order information has been con-
sidered for training deep nets. For instance, this informa-
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tion can be exploited for escaping one of the many sad-
dle points, but also for turning the final classifier more
robust (Dey et al. 2018). Furthermore, some differences
in the convergence behavior can be explained by look-
ing at the spectrum of the Hessian of the objective func-
tion (Ghorbani, Krishnan, and Xiao 2019; Sagun et al. 2018;
Yao et al. 2018). However, so far it has been prohibitive to
compute the full Hessian even for small networks. Here, in
our experiments, we also compute the Hessian of a small
neural net.

2 Einstein Notation

In tensor calculus one distinguishes three types of multipli-
cation, namely inner, outer, and element-wise multiplication.
Indices are important for distinguishing between these types.
For tensors A, B, and C' any multiplication of A and B can
be written as

Clss]= Y Als1)- Blsal,

(Sl USQ)\S?,

where C' is the result tensor and sq, s3, and s3 are the index
sets of the left argument, the right argument, and the result
tensor, respectively. The summation is only relevant for inner
products that in Ricci calculus are denoted by shared upper
and lower indices. If one does not want to distinguish between
upper and lower indices, then the summation must be made
explicit through the result tensor. The standard way to do
so is by excluding the index for summation from the index
set of the result tensor. Hence, the index set of the result
tensor is always a subset of the union of the index sets of
the multiplication’s arguments, that is, s3 C (s1 U $2). In
the following we denote the generic tensor multiplication
simply as C' = A*(q, s, 5,) B, Where s3 explicitly represents
the index set of the result tensor. This notation is basically
identical to the tensor multiplication einsum in NumPy,
TensorFlow, and PyTorch, and to the notation used in the
Tensor Comprehension Package (Vasilache et al. 2018).

The *(s, 5,,5,)-nOtation comes close to standard Einstein
notation. In Einstein notation the index set s3 of the output is
omitted and the convention is to sum over all shared indices in
s1 and ss. This, however, restricts the types of multiplications
that can be represented. The set of multiplications that can be
represented in standard Einstein notation is a proper subset
of the multiplications that can be represented by our notation.
For instance, standard Einstein notation is not capable of
representing element-wise multiplications directly. Still, in
the following we refer to the *(, s, s,)-notation simply as
Einstein notation as it is standard practice in all deep learning
frameworks.

Table 1 shows examples of tensor expressions in standard
linear algebra notation, Ricci calculus, and Einstein notation.
The first group shows an outer product, the second group
shows inner products, and the last group shows examples
of element-wise multiplications. As can be seen in Table 1,
Ricci notation and Einstein notation are syntactically reason-
ably similar. However, semantically they are quite different.
As pointed out above, Ricci notation differentiates between
co- and contravariant dimensions/indices and Einstein nota-
tion does not. While this might seem like a minor difference,



it does have substantial implications when computing deriva-
tives. For instance, when using Ricci notation, forward and
reverse mode automatic differentiation can be treated in the
same way (Laue, Mitterreiter, and Giesen 2018). This is no
longer the case when using Einstein notation.

vectorized  Ricci Einstein
ya ' YT Y*agin®
y x yir" Y *(i,i,0) T
yox y'zt Y *(iii) T

A-diag(z) Alx' Ak @

Figure 1: Comparison of different linear algebra notations.

We can show that the generic tensor multiplication oper-
ator *(,, s, s4) 1S associative, commutative, and satisfies the
distributive property. Our tensor calculus, that we introduce
in the next section, makes use of all three properties. By
5182 we denote the concatenation of the index sets s; and ss.
Please see the supplemental material for the easy proofs that
follow directly from our definition of Einstein notation.

Lemma 1 (Associativity). Let s, S, S3, and sy be index sets
with s3 C 51U 8o and s4 N (51 U so) = (. Then it holds that

(A *(51,5254,5354) B) *( ) C=

A *(s1,52,83) (B *(s5254,54,52) C) :

5354,54,83

Unlike standard matrix multiplication tensor multiplication
is commutative.

Lemma 2 (Commutativity). It holds that

A x5y 55,55) B = B *(s5,51,55) A

Lemma 3 (Distributive property). Let s1, o, and s3 be index
sets with s3 C s1 U so. It holds that

A *(s1,52,83) B+ A *(s1,52,83) =4 *(s1,82,83) (B + C) .

3 Tensor Calculus

Now we are prepared to develop our tensor calculus. We start
by giving the definition of the derivative of a tensor-valued
expression with respect to a tensor. For the definition, we use
|A|l = \/>_, A[s]? as the norm of a tensor A.

Definition 4 (Fréchet Derivative). Ler f: R™t*"2%- X"k
RmMxmaX--X" he q function that takes an order-k tensor
as input and maps it to an order-l tensor as output. Then,
D e R™ XmaX..XmyXny Xne X Xnk o ~allod the derivative
of f at x if and only if
k)~ f@) Dokl

1 —
no0 1] ’

where o is an inner tensor product.
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Here, the dot product notation D o h is short for the inner
product D (51 50,52,51) h, where s; sy is the index set of D
and s» is the index set of h. For instance, if D € R™1 %1 X"n2
and h € R™*"2 then s; = {4, 7, k} and s2 = {j, k}.

In the following, we first describe forward and reverse
mode automatic differentiation for expressions in Einstein
notation, before we discuss extensions like cross-country
mode and compression of higher order derivatives that are
much easier to realize in Einstein than in Ricci notation. As
can be seen from our experiments in Section 4, the extensions
allow for significant performance gains.

Forward Mode

Any tensor expression has an associated directed acyclic
expression graph (expression DAG). Figure 2 shows the ex-
pression DAG for the expression

X (exp(X-w)+ 1) Oexp(X -w), ()

where © denotes the element-wise multiplication and ~! the
element-wise multiplicative inverse. The nodes of the DAG

Figure 2: Expression DAG for Expression (1)

that have no incoming edges represent the variables of the
expression and are referred to as input nodes. The nodes of
the DAG that have no outgoing edges represent the functions
that the DAG computes and are referred to as output nodes.
Let the DAG have n input nodes (variables) and m output
nodes (functions). We label the input nodes as xg, ..., T,,—1,
the output nodes as yq, ..., Ym—1, and the internal nodes as
Vo, ..., Vgp—1. Bvery internal and every output node repre-
sents either a unary or a binary operator. The arguments of
these operators are supplied by the incoming edges.

In forward mode, for computing derivatives with respect

to the input variable x;, each node v; will eventually store
the derivative gTU; which is traditionally denoted as v;. It is
computed from input to out- put nodes as follows: At the
input nodes that represent the variables x;, the derivatives

gi’] are stored. Then, the derivatives that are stored at the
J




remaining nodes, here called f, are iteratively computed by
summing over all their incoming edges as

o of 0: _ of
f= j Z 0z Ox; Z 9, ©
z:(2,f)EE z:(z,f)EE
where af is the partial derivative of node f with respect to

z and the multiplication is tensorial. The so called pushfor-
wards 2 of the predecessor nodes z of f have been computed
before and are stored at z. Hence, the derivative of each
function is stored at the corresponding output node y of the
expression DAG. Obviously, the updates can be done simul-
taneously for one input variable x; and all output nodes ;.
Computing the derivatives with respect to all input variables
requires 7 such rounds.

In the following we derive the explicit form of the pushfor-
ward for nodes of the expression DAG of a tensor expression.
For such a DAG we can distinguish four types of nodes,
namely multiplication nodes, general unary function nodes,
elementwise unary function nodes, and addition nodes. Gen-
eral unary functions are general tensor-valued functions while
elementwise unary functions are applied to each entry of a
single tensor. The difference can be best explained by the
difference between the matrix exponential function (general
unary function) and the ordinary exponential function applied
to every entry of the matrix (elementwise unary function).
The pushforward for addition nodes is trivially just the sum of
the pushforward of the two summands. Thus, it only remains
to show how to compute the pushforward for multiplication,
general unary functions, and element-wise unary function
nodes. Please refer to the supplemental material for the proofs
of the following three theorems, or see the similar proof of
Theorem 8 for the reverse mode in the next section.

Theorem 5. Let x be an input variable with index set sy
and let C = A x4, s, s,) B be a multiplication node of the
expression DAG. The pushforward of C'is

C=B *(s2,5154,5354) A+ A *(51,5254,5354) B.

Theorem 6. Let x be an input variable with index set ss,
let f be a general unary function whose domain has index
set s1 and whose range has index set ss, let A be a node in
the expression DAG, and let C' = f(A). The pushforward of
the node C' is C' = J'(A) *(s351,5153,5255) A, where f is the
derivative of f.

In case that the general unary function is simply an ele-
mentwise unary function that is applied element-wise to a
tensor, Theorem 6 simplifies as follows.

Theorem 7. Let x be an input variable with index set s, let
f be an elementwise unary function, let A be a node in the
expression DAG with index set s1, and let C = f(A) where
[ is applied element-wise. The pushforward of the node C'is
C=f (A) (51,51 59,5152) A, where f' is the derivative of f.

Reverse Mode

Reverse mode automatic differentiation proceeds similarly to
the forward mode, but from output to input nodes. Each node

v; will eventually store the derivative g% which is usually
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denoted as ¥;, where y; is the function to be differentiated.
These derivatives are computed as follows: First, the deriva-

tives % are stored at the output nodes of the DAG. Then,

the derivatives that are stored at the remaining nodes, here
called z, are iteratively computed by summing over all their
outgoing edges as follows

Oy _ Z

0z f:(z,f)EE

of

Jdy; 2
. f PN
0z

of

- >

f:(z,f)EE

z =

where the multiplication is again tensorial. The so-called
pullbacks f have been computed before and are stored at the
successor nodes f of z. This means the derivatives of the
function y; with respect to all the variables x; are stored at
the corresponding input nodes of the expression DAG. Com-
puting the derivatives for all the output functions requires m
such rounds.

In the following we describe the contribution of unary
and binary operater nodes to the pullback of their arguments.
Here we have only two types of binary operators, namely
tensor addition and tensor multiplication. In the addition case
the contribution of C' to the pullback of both of its arguments
is simply C. In Theorem 8 we derive the explicit form of the
contribution of a multiplication node to the pullback of its
arguments, in Theorem 9 the contribution of a general unary
function, and in Theorem 10 we derive the contribution of an
elementwise unary function node to its argument.

Theorem 8. Let Y be an output node with index set s and let
C = A%(4, s,,55) B be amultiplication node of the expression

DAG. Then the contribution of C' to the pullback B of B is
C *(5453,51,5452) A and its contribution to the pullback A of

A Ls C *(34837 5451) B.

52,

Proof. Here we only derive the contribution of C' to the pull-
back B. Its contribution to A can be computed analogously.
The contribution of C to B i 1s C - By Definition 4 we

have for the derivative C' = of Y w1th respect to C' that

Y(C)—-Co

lim ——

Hyc+m
h—0 || I

W:a

By specializing h = A *(s1,82,85) 1 WE get
Y(C+h)—Y(C)—Coh
=Y (A %5, 50,55) B+ A*(s;,55,85) 1)
— Y (A*(sy,05,55) B) = C 0 (Ak(sy,05,55) 1)
=Y (A (s, 50,55) (B+h)) =Y (Axe, 5,55 B)
—Co(A *(s1,59,53) 1Y)

= Y(A *(51,52,53) (B + h)) - Y(A *(s1,52,53) B)
-C *(5453,53,54) (A *(s1,82,83) h)
:Y(A *(s1,82,53) (B+h)) — (A *(s51,82,53) B)

- (é *(s483,51,5452) A) *(s482,52,54) h)
= Y(A *(s1,52,53) (B + h)) - Y(A *(s1,82,83) B)
A)oh),

- (C *(s453,51,5452)



where the first equality follows from the definitions of C' and
h, the second from Lemma 3, the third from the definition
of o, the fourth from Lemma 1, the fifth from Lemma 2, and

the last again from the definition of o. Hence, we have for
Yy oC

9C " OB that
1 ~ -
o:ymgfquc+m—ywn—cow
o || A
1
= }llli%m : HY(A *(s1,52,83) (B + h))

-Y(A *(s1,52,53) B) — (C *(s483,51,5452) A)o h)H

Thus, the contribution of C' to the pullback Bis

oy oC . o0C
30 35 = C a5 = C *usssisas) A

If the output function Y in Theorem 8 is scalar-valued,
then we have s, = () and the pullback function coincides
with the function implemented in all modern deep learning
frameworks including TensorFlow and PyTorch. Hence, our
approach can be seen as a direct generalization of the scalar
case.

O

Theorem 9. Let Y be an output function with index set ss,
let f be a general unary function whose domain has index
set s1 and whose range has index set ss, let A be a node in
the expression DAG, and let C' = f(A). The contribution of
the node C' to the pullback A is

f*(s;;s%(s‘gsl,si;sl) f/(A)7
where f' is the derivative of f.

In case that the general unary function is simply an ele-
mentwise unary function that is applied element-wise to a
tensor, Theorem 9 simplifies as follows.

Theorem 10. Let Y be an output function with index set ss,
let f be an elementwise unary function, let A be a node in the
expression DAG with index set s1, and let C = f(A) where
f where [ is applied element-wise. The contribution of the
node C to the pullback A is

f*(swl,sl,stl) f/(A)v
where f' is the derivative of f.

The proofs of Theorem 9 and 10 are similar to the proofs
of Theorems 6 and 8. They can be found in the supplemental
material.

Beyond Forward and Reverse Mode

Since the derivative of a function y with respect to an input
variable z is the sum over all partial derivatives along all
paths from z to y (Griewank and Walther 2008), we can
combine forward and reverse mode. Using that v = % and
v = % we get

z,
dy _ .
% - § :U *(5180,5052,5182) Us
veES
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where s, is the index set of node v, s; is the index set of the
output function y, s is the index set of the input node x, and
S is the set of nodes in a cut of the expression DAG. Gen-
eral combinations of forward and reverse mode lead to the
so-called cross-country mode. We will show that the differ-
entiation of tensor expressions becomes even more efficient
by a special instantiation of the cross-country mode and by
compressing higher order derivatives.

Cross-Country Mode. In both forward and reverse mode,
derivatives are computed as sums of products of partial deriva-
tives. In general, the time for evaluating the derivatives de-
pends on the order by which the partial derivatives are mul-
tiplied. The two modes multiply the partial derivatives in
opposite order. Derivatives are multiplied from input to out-
put nodes in forward mode and the other way around in
reverse mode.

If the output function is scalar-valued, then reverse mode is
efficient for computing the derivative with respect to all input
variables. It is guaranteed that evaluating the derivative takes
at most six times the time for evaluating the function itself. In
practice, usually a factor of two is observed (Griewank and
Walther 2008). However, this is no longer true for non-scalar-
valued functions. In the latter case, the order of multiplying
the partial derivatives has a strong impact on the evaluation
time, even for simple functions (Naumann 2004). Reordering
the multiplication order of the partial derivatives is known
as cross-country mode in the automatic differentiation litera-
ture (Bischof, Hovland, and Norris 2002). Finding an optimal
ordering is NP-hard (Naumann 2008) in general.

However, it turns out that significant performance gains
for derivatives of tensor expressions can be obtained by the
re-ordering strategy that multiplies tensors in order of their
tensor-order, that is, multiplying vectors first, then matrices,
and so on. We illustrate this strategy on the following example

f(x) 2

where A and B are two matrices, x is a vector and g(.) and
h(.) are vector-valued functions that also take a vector as in-
put. The derivative in this case is B diag(u) diag(v) A, where
u = ¢'(h(Ax)), v = h'(Az), and diag(u) is the diagonal
matrix with » on its diagonal. Reverse mode multiplies these
matrices from left to right while forward mode multiplies
them from right to left. However, it is more efficient to first
multiply the two vectors » and v element-wise and then to
multiply the result with the matrices A and B.

Actually, the structure of Example 2 is not contrived, but
fairly common in second order derivatives. For instance, con-
sider the expression » | g(h(Ax)), where g and h are as above
and the sum is over the vector components of the vector-
valued expression g(h(Az)). Many machine learning prob-
lems feature such an expression as subexpression, where A
is a data matrix and the optimization variable x is a param-
eter vector. The gradient of this expression has the form of
Example 2 with B = AT. As can be seen in the experiments
in Section 4, reordering the multiplications by our strategy
reduces the time for evaluating the Hessian by about 30%.

B g(h(Az)),



Compressing Derivatives. Our compression scheme
builds on the re-ordering scheme (cross-country mode) from
above and on the simple observation that in forward as well
as in reverse mode the first partial derivative is always a unit
tensor. It is either, in reverse mode, the derivative of the out-
put nodes with respect to themselves or, in forward mode,
the derivative of the input nodes with respect to themselves.
This unit tensor can always be moved to the end of the mul-
tiplications, if the order of multiplication is chosen exactly
as in our cross-country mode strategy that orders the tensors
in increasing tensor-order. Then, the multiplication with the
unit tensor at the end is either trivial, i.e., amounts to a multi-
plication with a unit matrix that has no effect and thus can be
removed, or leads to a compactification of the derivative.
For an example, consider the loss function

oy =|r-uovT|?

of the non-regularized matrix factorization problem. Here,
T € R U,V € R™ ¥ and n is usually large while k is
small. The Hessian of f is the fourth order tensor

H = 2(V %Gijk5k) V) *(lik,ight) T € RV,

where I is the identity matrix. Newton-type algorithms for
this problem solve the Newton system which takes time
in O ((nk)?®). However, the Hessian can be compressed to
2(V' *(4j,ik,jk) V) which is a small matrix of size k x k.
This matrix can be inverted in O(k?) time. The performance
gain realized by compression can be significant. For instance,
solving the compressed Newton system needs only about
10 psec whereas solving the original system needs about
1 sec for a problem of size n = 1000 and k£ = 10. For more
experimental results refer to Section 4.

As another example, consider a simple neural net with
a fixed number of fully connected layers, ReLU activation
functions, and a softmax cross-entropy output layer. The Hes-
sian of each layer is a fourth order tensor that can be written
as A *(jj1,ik,ijk1) 1 for a suitable third order tensor A. In this
case, the Hessian can be compressed from a fourth order
tensor to a third order tensor. We provide expression trees
for both derivatives, compressed and uncompressed, in the
supplemental material. Computing with the compact repre-
sentation of the Hessian is of course more efficient which we
confirm experimentally in the next section.

4 Experiments

We have implemented both modes of the tensor calculus from
the previous section together with the improvements that can
be achieved by cross-country mode and the compactification
of higher order derivatives. State-of-the-art frameworks like
TensorFlow and PyTorch only support reverse mode since
it allows to compute derivatives with respect to all input
variables at the same time. Similarly to all other frameworks,
our implementation performs some expression simplification
like constant folding and removal of zero and identity tensors.
An anonymized version of our implementation can be found
in the supplemental material.
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Experimental Setup. We followed the experimental setup
of (Laue, Mitterreiter, and Giesen 2018). However, we added
one more experiment, a small neural net. We have imple-
mented our algorithms in Python. To evaluate expressions
we used NumPy 1.16 and CuPy 5.1. We compared our
framework with the state-of-the-art automatic differentiation
frameworks TensorFlow 1.14, PyTorch 1.0, autograd 1.2, and
JAX 0.1.27 used with Python 3.6 that were all linked against
the Intel MKL. All these frameworks support reverse mode
automatic differentiation for computing first order derivatives.
For scalar-valued functions the reverse mode of each of these
frameworks coincides with the reverse mode of our approach.
For non-scalar-valued functions all the frameworks compute
the derivative for each entry of the output function separately.
The expression DAGs that are generated by our reverse mode
for general tensor expressions coincide with the derivatives
computed by the approach of (Laue, Mitterreiter, and Giesen
2018). The experiments were run in a pure CPU setting (Intel
Xeon E5-2643, 8 cores) as well as in a pure GPU setting
(NVIDIA Tesla V100), except for autograd that does not
provide GPU support.

We computed function values, gradients, and Hessians for
each set of experiments. We computed Hessians on the CPU
as well as on the GPU. To avoid the issue of sparsity patterns
we generated dense, random data for each experiment. In this
setting the running time does not depend on whether the data
are synthetic or real world.

Logistic Regression. Let X € R™*™ be a data ma-
trix and y € {—1,+1}™ the corresponding binary la-
bel vector. The logistic regression function is f(w) =
> log (exp (—y@ (X@w)) 4+ 1), where w € R™ is the
weight vector, X () is the i-th data point (i-th row of X), and
() its label. We set m = 2n in the experiments.

Matrix Factorization. Let 77 = R™*" be some target
matrix, 2 € {0,1}™*™ be an indicator matrix that defines
which elements of 7" are known, and let U,V € R™*k pe
low-rank factor matrices. Matrix factorization is the problem
of solving mingy |7 — UV "||2,. For the experiments, we
set k = 5 and compute the gradient and Hessian with respect
toU.

Neural Net. We have created a small neural net with ten
fully connected layers, ReLLU activation functions, and a
softmax cross-entropy output layer. The weight matrices for
the different layers all had the same size, n x n. Here, we
report running times for computing the Hessian of the first
layer.

Evaluation. In the case of scalar-valued functions all the
frameworks basically work in the same way. Thus, it is not
surprising that their running times for computing function
values and gradients are almost the same, see Figure 1 in the
supplemental material.

The situation is different for Hessians. First, it can be seen
that the reverse mode in our approach, whose results agree
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Figure 3: Running times on a CPU (top row) and on a GPU (bottom row) for computing the Hessian of the logistic regression
function (left), matrix factorization (middle), and a small neural net (right).

with the results in (Laue, Mitterreiter, and Giesen 2018), is a
few orders of magnitude faster than current state-of-the-art
frameworks like TensorFlow, PyTorch, autograd, and JAX.
This holds true for all experiments on the CPU and on the
GPU, see Figure 3. For the logistic regression problem our
cross-country mode is about 30% faster on the CPU, while its
effect on the GPU is negligible because of the GPU overhead.
The performance gain of our compression scheme can be
seen on the matrix factorization problem and on the neural net
(middle and right column of Figure 3). Computing Hessians
for small neural nets has now become feasible.

In our experiments, the effect of recent efforts in speeding
up deep learning frameworks turned out to be rather small.
Actually, enabling XL A for TensorFlow on the CPU slowed
the computation down by a factor of two. Hence, we omit
these running times in Figure 3. Enabling XLLA on the GPU
provided only marginal improvements. JAX which relies on
XLA did not finish computations but raised memory errors
indicating that it went out of main memory. These errors
seem to be caused by the automatic batching function vmap
that is used by JAX for auto-vectorization when computing
Hessians. This was surprising to us since JAX is meant to
be more memory efficient than TensorFlow. There is one
exception, on the GPU, JAX finished the computation for
the logistic regression problem. However, as can be seen in
Figure 3, even in this case it is not significantly more efficient
than the other deep learning frameworks. This was to be
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expected since JAX relies on XLA and the authors of XLA
report a speed-up of only 15% in the GPU setting (XLA
2019).

5 Conclusion

We have developed a simple, efficient and provably correct
framework for computing derivatives of general tensor ex-
pressions that is much simpler than previous approaches.
Furthermore, it can be easily integrated into state-of-the-
art frameworks like TensorFlow and PyTorch that use the
same tensor representation, but are a few orders of mag-
nitude slower than our approach when computing higher
order derivatives. We have also demonstrated that reverse
mode automatic differentiation is not optimal for comput-
ing higher order derivatives. Significant speed ups can be
achieved by a special instantiation of the cross-country mode
and by compressing higher order derivatives. The algorithms
presented here also form the basis of an online tool for com-
puting derivatives of matrix and tensor expressions which is
accessed by more than 30,000 users per year.
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