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Abstract

Multi-dimensional classification (MDC) assumes heteroge-
nous class spaces for each example, where class variables
from different class spaces characterize semantics of the ex-
ample along different dimensions. Due to the heterogene-
ity of class spaces, the major difficulty in designing margin-
based MDC techniques lies in that the modeling outputs from
different class spaces are not comparable to each other. In
this paper, a first attempt towards maximum margin multi-
dimensional classification is investigated. Following the one-
vs-one decomposition within each class space, the result-
ing models are optimized by leveraging classification margin
maximization on individual class variable and model relation-
ship regularization across class variables. We derive convex
formulation for the maximum margin MDC problem, which
can be tackled with alternating optimization admitting QP or
closed-form solution in either alternating step. Experimental
studies over real-world MDC data sets clearly validate effec-
tiveness of the proposed maximum margin MDC techniques.

Introduction

In multi-dimensional classification, each training example
is represented by a single instance while associated with
multiple class variables (Read, Bielza, and Larrañaga 2014;
Ma and Chen 2018; Jia and Zhang 2019). Here, each class
variable corresponds to one specific class space which char-
acterizes the semantics of an object along one dimension.
Many real-world problems can be naturally formalized un-
der MDC frameworks (Rodrı́guez et al. 2012; Borchani et
al. 2013; Sagarna et al. 2014; Serafino et al. 2015). For
example, a news document can be characterized from the
topic dimension (with possible classes sports, politics, so-
cial, Sci&Tech, etc.), from the mood dimension (with pos-
sible classes good news, neutral news, bad news), and from
the zone dimension (with possible classes domestic, intra-
/inter-continental, etc.).

Formally speaking, let X = R
d be the d-dimensional in-

put (feature) space and Y = C1×C2×· · ·×Cq be the output
space which corresponds to the Cartesian product of q class
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spaces. Here, each class space Cj (1 ≤ j ≤ q) consists
of Kj possible class labels, i.e., Cj = {cj1, cj2, . . . , cjKj

},
among which only one is relevant to the example. Further-
more, let D = {(xi,yi) | 1 ≤ i ≤ N} be the MDC train-
ing set with N training examples, where xi ∈ X is a d-
dimensional feature vector and yi = [yi1, yi2, . . . , yiq]

� ∈
Y is the associated class vector, each of which is one pos-
sible value in the corresponding class space, i.e., yij ∈ Cj .
Then, the task of multi-dimensional classification is to in-
duce a predictive function f : X �→ Y from D which can
assign a proper class vector f(x) ∈ Y for the unseen in-
stance x.

To accomplish the task of learning from MDC examples,
the most intuitive strategy is to induce a number of inde-
pendent multi-class classifiers, one per class space. How-
ever, this strategy completely ignores potential dependen-
cies among class variables which would impact the gener-
alization performance of induced predictive model. There-
fore, most existing approaches try to model class dependen-
cies in different ways, such as specifying chaining order over
class variables (Zaragoza et al. 2011; Read, Martino, and Lu-
engo 2014), assuming directed acyclic graph (DAG) struc-
ture over class variables (Bielza, Li, and Larrañaga 2011;
Batal, Hong, and Hauskrecht 2013; Zhu, Liu, and Jiang
2016; Bolt and van der Gaag 2017; Gil-Begue, Larrañaga,
and Bielza 2018; Benjumeda, Bielza, and Larrañaga 2018),
and partitioning class variables into groups (Read, Bielza,
and Larrañaga 2014), etc.

To derive margin-based techniques for multi-dimensional
classification, the major difficulty lies in that the modeling
outputs from different class spaces are not directly compara-
ble. In this paper, we make a first attempt to adapt maximum
margin technique for multi-dimensional classification, and
propose a novel approach named M3MDC, i.e., MaxiMum
Margin for Multi-Dimensional Classification. Specifically,
based on one-vs-one decomposition within each class space,
the multi-dimensional classification models are optimized
by maximizing classification margin on individual class
variable and regularizing model relationship across class
variables. The resulting convex formulation is solved with
alternating optimization admitting QP or closed-form solu-
tion in either alternating step. Comparative studies against
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other well-established MDC approaches clearly validate the
effectiveness of the proposed approach.

The rest of this paper is organized as follows. Firstly, tech-
nical details of the proposed approach are introduced. Sec-
ondly, related works on MDC are briefly discussed. Thirdly,
experimental results of comparative studies are reported. Fi-
nally, we conclude this paper.

The Maximum Margin MDC Approach

The common premise of margin-based approaches is that
different modeling outputs are comparable. However, due
to MDC’s inherent property that each class variable corre-
sponds to one heterogenous class space, the modeling out-
puts from different class spaces are not directly comparable.
In this section, we present technical details of the M3MDC
approach which considers the margins between each pair of
class labels in the same class space.

Following the same notations given in previous section, it
is easy to know that there are totally m =

∑q
j=1

Kj(Kj−1)
2

pairs of class labels across all class spaces. To obtain mar-
gins between each pair of class labels, one-vs-one (OvO)
decomposition is made accordingly. Without loss of gener-
ality, for the ith pair of class labels li+ and li−, let Di =

{(xi
j , y

i
j) | 1 ≤ j ≤ ni} be the corresponding OvO de-

composition training set. Here, xi
j ∈ X , yij equals +1 when

li+ is relevant and −1 when li− is relevant, ni is the number
of training examples in D for which either li+ or li− is rele-
vant. Assuming that hyperplane (wi, bi) can perfectly clas-
sify examples in Di, the margin of (wi, bi) can be defined
as 2/‖wi‖ by appropriately normalizing (wi, bi) (Cortes and
Vapnik 1995), where ‖·‖ denotes the vector norm. We can
get the maximum margin hyperplane by maximizing 2/‖wi‖
which is equivalent to minimizing ‖wi‖2

/2. Considering all
pairs of class labels, let W = [w1, . . . ,wm] ∈ R

d×m and
b = (b1, . . . , bm)�, and for a more general case that train-
ing examples in each Di can’t be separated perfectly, slack
variables ξ = (ξ11 , . . . , ξ

1
n1
, . . . , ξm1 , . . . , ξmnm

)� can be in-
troduced to model the empirical risk. Then, we can get the
following maximum margin formulation for MDC:

min
W,b,ξ

m∑

i=1

ni∑

j=1

ξij +
λ1

2
tr(WW�) (1)

s.t. yij(〈wi,x
i
j〉+ bi) ≥ 1− ξij ,

ξij ≥ 0, i = 1, . . . ,m, j = 1, . . . , ni

where 〈·, ·〉 denotes inner product of two vectors, tr(·) de-
notes the trace of a square matrix, and λ1 is a regulariza-
tion parameter. The formulation in Eq.(1) just independently
deals with each pair of class labels, i.e., dependencies among
class spaces are ignored. Following the idea in (Zhang and
Yeung 2014; Liu et al. 2016; Ma and Chen 2019), we model
the relationships among all wis in W with the column co-
variance matrix of W. Thereafter, the above optimization

problem turns out to be:

min
W,b,ξ,C

m∑

i=1

ni∑

j=1

ξij +
λ1

2
tr(WW�) (2)

+
λ2

2
tr(WC−1W�)

s.t. C 
 0, tr(C) ≤ 1,

yij(〈wi,x
i
j〉+ bi) > 1− ξij ,

ξij ≥ 0, i = 1, . . . ,m, j = 1, . . . , ni

Here C 
 0 means that C is positive semi-definite which
corresponds to a covariance matrix, and tr(C) ≤ 1 is used
to penalize its complexity. λ2 is another regularization pa-
rameter.

Obviously, the first two terms in objective function are
convex with respect to W and b, and it has been proved in
(Zhang and Yeung 2014) that the third term in the objective
function is also a convex function with respect to W, b and
C. So the optimization problem in Eq.(2) is jointly convex.

However, it is not easy to solve this optimization problem
directly because of the non-linear and non-smooth constraint
C 
 0. Here, we use an alternating method to solve it effi-
ciently. Specifically, the objective function with respect to
W and b is firstly optimized when C is fixed, and then it is
optimized with respect to C when W and b are fixed. These
two steps are repeated until convergence. Technical details
of the two alternating steps are introduced as follows.

Optimizing with respect to W and b when C is fixed.
When C is fixed, we can reformulate the optimization prob-
lem in Eq.(2) as follows:

min
W,b,ξ

m∑

i=1

ni∑

j=1

ξij +
λ1

2
tr(WW�) (3)

+
λ2

2
tr(WC−1W�)

s.t. yij(〈wi,x
i
j〉+ bi) > 1− ξij ,

ξij ≥ 0, i = 1, . . . ,m, j = 1, . . . , ni

The Lagrangian of the above problem is given by:

L(W, b, ξ,α,β) =

m∑

i=1

ni∑

j=1

ξij +
λ1

2
tr(WW�) (4)

+
λ2

2
tr(WC−1W�)

−
m∑

i=1

ni∑

j=1

αi
j [y

i
j(〈wi,x

i
j〉+ bi)− 1 + ξij ]

−
m∑

i=1

ni∑

j=1

βi
jξ

i
j

where αi
j , β

i
j ≥ 0. Then, the gradients of L are calculated

with respected to W, bi and ξij , and we can obtain the fol-
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lowing equations by setting them to be 0:

∂L
∂W

= 0 ⇒

W =
m∑

i=1

ni∑

j=1

αi
jy

i
jx

i
je

�
i C(λ1Im + λ2C)−1 (5)

∂L
∂bi

= 0 ⇒
ni∑

j=1

αi
jy

i
j = 0, (1 ≤ i ≤ m) (6)

∂L
∂ξij

= 0 ⇒ αi
j + βi

j = 1 (7)

where ei is the ith column vector of identity matrix Im.
Plugging Eq.(5)∼Eq.(7) into Eq.(4), the dual problem, i.e.,
maxα minW ,b L(W,b), can be equivalently formulated
as:

min
α

1

2

m∑

i1=1

ni1∑

j1=1

m∑

i2=1

ni2∑

j2=1

αi1
j1
αi2
j2
yi1j1y

i2
j2
Mi1i2〈xi1

j1
,xi2

j2
〉 (8)

−
m∑

i=1

ni∑

j=1

αi
j

s.t.

ni∑

j=1

αi
jy

i
j = 0 (1 ≤ i ≤ m), 0 ≤ αi

j ≤ 1

where M = (λ1Im + λ2C)−�C�, and Mi1i2 denotes
the element in i1th row and i2th column of M. α =
(α1

1, . . . , α
1
n1
, . . . , αm

1 , . . . , αm
nm

)� ∈ R

∑m
j=1 nj×1. Eq.(8)

is a standard quadratic programming (QP) problem with m
equality constraints, but the number of αi

js, i.e.,
∑m

j=1 nj ,
is usually too large making this QP problem difficult to be
solved directly. Here, we decompose it into m sub-QP prob-
lems with only one equality constraint as follows:

min
αi

1

2

ni∑

j1=1

ni∑

j2=1

αi
j1α

i
j2y

i
j1y

i
j2Mii〈xi

j1 ,x
i
j2〉 (9)

−
ni∑

j=1

(1− Si
j)α

i
j

s.t.

ni∑

j=1

αi
jy

i
j = 0, 0 ≤ αi

j ≤ 1

where 1 ≤ i ≤ m, Si
j = yij

∑
i1 �=i

1
2 (Mii1 +

Mi1i)
∑ni1

j1=1 α
i1
j1
yi1j1〈xi

j ,x
i1
j1
〉, and αi = (αi

1, . . . , α
i
ni
)� ∈

R
ni×1. To solve the problem in Eq.(8), we can initialize

α = 0, and then repeatedly solve the m sub-QP problems in
Eq. (9) until all αi

js meet Karush-Kuhn-Tucker (KKT) con-
ditions.

Here, the values of W and b need to be obtained for vali-
dating KKT conditions. For W, it just needs to plug α into
Eq.(5). But for b, the situation is somewhat complicated.
When there are αi

js in (0, 1), we have yij(〈wi,x
i
j〉+bi) = 1,

it’s easy to know that bi = yij − 〈wi,x
i
j〉. However, when

there aren’t αi
js in (0, 1), i.e., either αi

j = 0 or αi
j = 1, we

need to solve the inequalities. In this case, when αi
j = 0, bi

should meet yij(〈wi,x
i
j〉 + bi) ≥ 1, while when αi

j = 1, bi
should meet yij(〈wi,x

i
j〉 + bi) ≤ 1. Then we can get many

upper and lower limits of bi , in which we select the moder-
ate one for bi.

Optimizing with respect to C when W and b are fixed.
When W and b are fixed, the optimization problem in Eq.(2)
for finding C becomes:

min
C

tr(WC−1W�), s.t. C 
 0, tr(C) ≤ 1 (10)

As per the property of tr(XYZ) = tr(YZX) and the con-
straint tr(C) ≤ 1, we can lower-bound the objective in
Eq.(10) as:

tr(WC−1W�) = tr(C−1W�W) (11)

≥ tr(C−1W�W)tr(C)

= tr(C− 1
2A

1
2A

1
2C− 1

2 )tr(C
1
2C

1
2 )

≥ (tr(C− 1
2A

1
2C

1
2 ))2 = (tr(A

1
2 ))2

where A = W�W =
∑m

i1=1

∑ni1
j1=1

∑m
i2=1

∑ni2
j2=1 α

i1
j1

αi2
j2
yi1j1y

i2
j2
Mei1e

�
i2
M�〈xi1

j1
,xi2

j2
〉. The last inequality in

Eq.(11) holds based on the property that both A and C are
symmetric as well as the following Lemma:
Lemma 1. Given U,V ∈ R

�1×�2 , then
tr(U�U)tr(V�V) ≥ (

tr(U�V)
)2

holds. The mini-
mum can be got when U = μ ·V where μ is a constant.

Proof. It is easy to know,

tr(U�U) =

�2∑

i=1

�1∑

j=1

U2
ij = 〈vecU, vecU〉 = ‖vecU‖2

tr(V�V) =

�2∑

i=1

�1∑

j=1

V 2
ij = 〈vecV, vecV〉 = ‖vecV‖2

tr(U�V) =

�2∑

i=1

�1∑

j=1

UijVij = 〈vecU, vecV〉

Here, vecU, vecV denote the results of vectorization for
U,V. As per the property of inner product ‖vecU‖ ·
‖vecV‖ ≥ |〈vecU, vecV〉|, and take the square over
both sides of this inequality, then we have ‖vecU‖2 ·
‖vecV‖2 ≥ (〈vecU, vecV〉)2. The equality relationship
holds only when vecU = μ · vecV, i.e., U = μ ·V.

According to Eq.(11), tr(WC−1W�) attains its mini-
mum value (tr(A

1
2 ))2 when tr(C) = 1 and A

1
2C− 1

2 =

μC
1
2 for some constant μ. Therefore, the closed-form solu-

tion of C can be obtained (Zhang and Yeung 2014) as fol-
lows:

C =
(W�W)

1
2

tr((W�W)
1
2 )

(12)

As the above two alternating optimizing steps converge, we
can get the optimal values of W, b and C. Then, predictions
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Table 1: The pseudo-code of M3MDC.

Inputs:
D: MDC training set {(xi,yi) | 1 ≤ i ≤ N}
λ1, λ2: regularization parameters
x∗: unseen instance
Outputs:
y∗: predicted class vector for x∗
Process:

1: Transform D to a total of m =
∑q

j=1(Kj(Kj − 1))/2
binary classification data sets via OvO decomposition
w.r.t. each class space;

2: Initialize C = 1
mIm and α = 0;

3: repeat
4: while not all α meet KKT conditions do
5: for i = 1 to m do
6: Solve sub-QP problem in Eq.(9);
7: end for
8: end while
9: Calculate C according to Eq.(12);

10: until convergence
11: Calculate m binary predictions yb

∗ for x∗ according to
Eq.(13);

12: Return y∗ via OvO decoding rule based on yb
∗.

for unseen instances can be made accordingly. Specifically,
for test instance x∗, we can get its binary prediction vector
yb
∗ with a total of m elements as follows:

yb
∗ = sign(W�x∗ + b) (13)

= sign(
m∑

i=1

ni∑

j=1

αi
jy

i
jMei〈xi

j ,x∗〉+ b)

where sign(·) is the (element-wise) signed function. The first
K1(K1−1)

2 elements in yb
∗ belong to the first class space, the

K1(K1−1)
2 + 1 ∼ K2(K2−1)

2 elements belong to the second
class space, and so on. Finally, we can make prediction of
each class space for x∗ via OvO decoding rule based on
these binary predictions.

In summary, Table 1 presents the complete procedure of
the proposed M3MDC approach. Firstly, we employ OvO
decomposition for the original MDC problem per class
space (Step 1). After that, an alternating optimizing process
is used to solve the problem in Eq.(2) (Steps 2-10). Finally,
the class vector for unseen instance is predicted based on its
m binary predictions (Steps 11-12).

Computational complexity. Let FQP (r) denote the time
complexity to solve Eq.(9) with r variables, and FSR(s) de-
note the time complexity to solve matrix square root opera-
tion in Eq.(12) with s× s elements.1 M3MDC has computa-
tional complexity O(T1 · T2 ·m · FQP (N) + T1 · FSR(m))
for training phase, where T1 denotes the number of iterations

1MOSEK optimization software (https://www.mosek.com/) is
used to solve Eq.(9), and built-in function sqrtm in Matlab is used
to solve Eq.(12).

of the whole alternating optimizing process and T2 denotes
the number of iterations of m sub-QP problems in Eq.(9).
Moreover, FQP (N) is actually the maximum complexity of
each Eq.(9) because the number of examples in each OvO
decomposition is always less than N .

Related Work

Intuitively, MDC corresponds to a set of traditional multi-
class classification (MCC), one per class space. However,
it is better to solve the set of MCC together rather than
one by one independently, because dependencies among
class variables usually exist due to the fact that all these
MCC problems share the same input space. Therefore, most
existing MDC approaches try to model class dependen-
cies in different ways, such as capturing pairwise inter-
actions between class variables (Arias et al. 2016), spec-
ifying chaining order over class variables (Zaragoza et al.
2011; Read, Martino, and Luengo 2014), assuming directed
acyclic graph (DAG) structure over class variables (Bielza,
Li, and Larrañaga 2011; Batal, Hong, and Hauskrecht 2013;
Zhu, Liu, and Jiang 2016; Bolt and van der Gaag 2017;
Gil-Begue, Larrañaga, and Bielza 2018; Benjumeda, Bielza,
and Larrañaga 2018), and partitioning class variables into
groups (Read, Bielza, and Larrañaga 2014), etc.

Furthermore, MDC can also be regarded as a gener-
alized version of multi-label classification (MLC) (Zhang
and Zhou 2014; Gibaja and Ventura 2015) by not restrict-
ing binary-valued class variable in each class space. How-
ever, the key difference between MDC and MLC is whether
the class space is heterogenous or homogeneous. Generally,
MDC assumes heterogenous class spaces which characterize
objects’ semantics along different dimensions, while MLC
assumes homogeneous class space which characterizes the
relevancy of specific concepts along one dimension. In other
words, the relationship between a pair of class labels from
different class spaces in MDC is different from the relation-
ship between a pair of class labels in MLC. Therefore, it is
unreasonable and will get suboptimal solutions to directly
align class labels from different class spaces when trying to
design MDC approaches.

Maximum margin techniques have been widely used to
solve MCC and MLC problems. For MCC with single-label
assignment, one can derive margin-based classification mod-
els by transforming the MCC problem into a number of
binary classification problems via one-vs-one, one-vs-all,
and many-vs-many decomposition, or directly maximizing
multi-class margins. For MLC with multi-label assignment,
one can also derive margin-based classification models via
binary decomposition, or by maximizing margins between
relevant-irrelevant label pairs (Elisseeff and Weston 2002),
or relevant-relevant label pairs with different importance de-
grees (Xu, Li, and Zhou 2019), or output coding margins
(Liu and Tsang 2015; Liu et al. 2019), etc.

It is worth noting that we adopt the same strategy in
(Zhang and Yeung 2014; Liu et al. 2016; Ma and Chen
2019) by employing the regularization term tr(WC−1W�)
to help induce a set of learners jointly. Nonetheless, M3MDC
differs from those related works which aims to solve the
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MDC problem based on maximum margin formulation. Fur-
thermore, the empirical loss utilized by M3MDC follows
from the one-vs-one decomposition w.r.t. each class space.

Experiments

Experimental Setup

Benchmark data sets. A total of ten benchmark data sets
are employed for performance evaluation. Table 2 summa-
rizes the characteristics of all MDC data sets, including num-
ber of examples (#Exam.), number of class spaces (#Dim.),
number of class labels per class space (#Labels/Dim.),2 and
number of features (#Features).

Comparing approaches. The performance of M3MDC
is compared with four well-established MDC approaches
(Read, Bielza, and Larrañaga 2014) including Binary Rel-
evance (BR), Ensembles of Classifier Chains (ECC), En-
sembles of Class Powerset (ECP), and Ensembles of Su-
per Class classifiers (ESC). BR solves MDC problem by
training a number of independent multi-class classifiers, one
per class space, while ECC, ECP, ESC model dependencies
among class spaces by specifying a chaining order over class
spaces, conducting powerset transformation, and grouping
the MDC class variables into super-classes respectively.

For ensemble approaches ECC, ECP and ESC, a random
cut of 67% examples from the original MDC training set is
used to generate the base MDC model and the number of
base classifiers is set to be 10. Furthermore, predictions of
base MDC models are combined via majority voting. Sup-
port vector machine (SVM) is used to instantiate BR, ECC,
ECP, ESC as base classifier. Specifically, LIBSVM (Chang
and Lin 2011) with linear kernel is used.3 As shown in Ta-
ble 1, the two regularization parameters for M3MDC are set
to be λ1 = 0.1, λ2 = 0.001 respectively.

Evaluation metrics. In this paper, a total of three metrics,
i.e., Hamming Score, Exact Match and Sub-Exact Match, are
utilized to measure the generalization abilities of MDC ap-
proaches. Specifically, let S = {(xi,yi) | 1 ≤ i ≤ p}
denote the test set, where yi = [yi1, yi2, . . . , yiq]

� is the
ground-truth class vector associated with xi. To evaluate the
performance of the MDC predictive function f , let ŷi =
f(xi) = [ŷi1, ŷi2, . . . , ŷiq]

� denote the predicted class vec-
tor of xi, and then we can get the number of class spaces
which f predicts correctly, i.e., r(i) =

∑q
j=1�yij = ŷij�.

Here, the predicate �π� returns 1 if π holds and 0 otherwise.
Concrete metric definitions can be given as follows:

• Hamming Score:

HScoreS(f) =
1

p

p∑

i=1

1

q
· r(i)

2If all class spaces have the same number of class labels, then
only this number is recorded; Otherwise, the number of class labels
in each class space is recorded in turn.

3Due to the margin-based nature of M3MDC, we employ LIB-
SVM as the base classifier for fair comparison between M3MDC
and the comparing approaches.

Table 2: Characteristics of the experimental data sets.

Data Set #Exam. #Dim. #Labels/Dim. #Features†
Edm 154 2 3 16n
Flare1 323 3 3,4,2 10x
Cal500 502 10 2 68n
Music 591 6 2 71n
Song 785 3 3 98n
WQplants 1060 7 4 16n
WQanimals 1060 7 4 16n
WaterQuality 1060 14 4 16n
Yeast 2417 14 2 103n
Voice 3136 2 4,2 19n

† n and x denote numeric and nominal features respectively.

• Exact Match:

EMatchS(f) =
1

p

p∑

i=1

�r(i) = q�

• Sub-Exact Match:

SEMatchS(f) =
1

p

p∑

i=1

�r(i) ≥ q − 1�

In a nutshell, Hamming Score is the average accuracy over
all class spaces, while Exact Match is the accuracy when
considering all class spaces as a single one by conducting
powerset transformation. Sub-Exact Match is a relaxed ver-
sion of Exact Match where at most one incorrect prediction
can be made over all class spaces for each test example. For
all three metrics, the larger the values the better the perfor-
mance. Ten-fold cross-validation is performed on the bench-
mark data sets, where the mean metric value as well as stan-
dard deviation are recorded for each comparing approach.

Experimental Results

Table 3 reports the detailed experimental results of five com-
paring approaches in terms of each evaluation metric, where
the best performance among all comparing approaches is
shown in boldface. Moreover, Wilcoxon signed-ranks test
(Demšar 2006) is used as the statistical test to show whether
M3MDC performs significantly better than BR, ECC, ECP,
ESC respectively. Table 4 summarizes the statistical test re-
sults and the p-values for the corresponding tests are also
shown in the brackets. Here, the significance level is set to
be 0.05.

Based on the reported experimental results, the following
observations can be made:
• Across all the 30 cases (10 data sets × 3 evaluation met-

rics), M3MDC ranks first in 21 cases, ranks second in 3
cases, and never ranks last.

• In terms of Hamming Score, M3MDC is statistically better
than BR, ECC, ECP, ESC.

• ECP can be regarded as an approach which works by max-
imizing Exact Match via class powerset transformation. It
is worth noting that M3MDC still ranks first in 5 out of 10
cases in term of this metric and can achieve comparable
performance against ECP.
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Table 3: Predictive performance of each comparing approach (mean±std. deviation) on experimental data sets. Moreover, the
best performance among all comparing approaches is shown in boldface.

(a) Hamming Score
Data Set Edm Flare1 Cal500 Music Song WQpla. WQani. WQ Yeast Voice
M3MDC .728±.083 .923±.033 .630±.010 .811±.022 .795±.029 .660±.013 .632±.014 .647±.012 .802±.006 .971±.009
BR .689±.070 .922±.034 .628±.011 .808±.023 .793±.023 .657±.016 .630±.014 .644±.013 .801±.006 .964±.007
ECC .695±.065 .922±.034 .625±.015 .814±.025 .790±.024 .654±.016 .630±.014 .643±.013 .797±.007 .961±.008
ECP .721±.082 .921±.036 .616±.015 .799±.032 .786±.029 .647±.015 .629±.013 .628±.015 .795±.007 .955±.013
ESC .701±.079 .923±.033 .616±.019 .809±.022 .790±.030 .651±.016 .630±.014 .641±.013 .800±.006 .961±.008

(b) Exact Match
Data Set Edm Flare1 Cal500 Music Song WQpla. WQani. WQ Yeast Voice
M3MDC .501±.139 .821±.073 .016±.016 .281±.074 .488±.065 .102±.035 .059±.022 .008±.008 .157±.018 .942±.017
BR .442±.125 .821±.073 .016±.016 .272±.075 .479±.059 .097±.033 .058±.022 .007±.008 .151±.017 .929±.014
ECC .454±.123 .817±.078 .020±.016 .346±.079 .481±.057 .093±.037 .061±.023 .006±.008 .207±.014 .923±.016
ECP .559±.136 .817±.078 .026±.028 .343±.076 .484±.054 .093±.028 .065±.018 .001±.003 .252±.012 .912±.025
ESC .513±.122 .821±.073 .014±.013 .330±.069 .480±.067 .094±.038 .062±.021 .006±.008 .236±.019 .924±.016

(c) Sub-Exact Match
Data Set Edm Flare1 Cal500 Music Song WQpla. WQani. WQ Yeast Voice
M3MDC .955±.053 .951±.036 .082±.046 .687±.067 .901±.042 .287±.051 .237±.028 .051±.025 .273±.028 .999±.001
BR .935±.061 .947±.039 .074±.037 .674±.067 .903±.033 .287±.055 .229±.034 .051±.024 .269±.029 .999±.002
ECC .935±.069 .951±.036 .080±.031 .676±.064 .891±.036 .283±.049 .229±.032 .050±.023 .288±.023 .998±.002
ECP .883±.074 .947±.039 .078±.036 .640±.064 .878±.040 .281±.049 .230±.032 .035±.018 .304±.020 .998±.003
ESC .890±.076 .951±.036 .086±.038 .669±.062 .893±.038 .284±.050 .232±.033 .046±.022 .309±.028 .998±.002

Table 4: Wilcoxon signed-ranks test for M3MDC against BR,ECC,ECP,ESC in terms of each evaluation metric (significance
level α = 0.05; p-values shown in the brackets).

Evaluation Metric M3MDC vs BR M3MDC vs ECC M3MDC vs ECP M3MDC vs ESC
Hamming Score win [1.95e-3] win [9.77e-3] win [1.95e-3] win [3.91e-3]
Exact Match win [7.81e-3] tie [7.70e-1] tie [4.32e-1] tie [7.54e-1]
Sub-Exact Match win [2.34e-2] tie [9.77e-2] win [4.88e-2] tie [1.95e-1]

• It is impressive to notice that M3MDC is statistically bet-
ter than BR in terms of all evaluation metrics, which
clearly validates the effectiveness of M3MDC in model-
ing relationships among class spaces.

Further Analysis

Sensitivity analysis. As shown in Eq.(2), λ1, λ2 are used
to make a tradeoff among empirical risk, structural risk
and relationship regularizer. Figure 1 shows how the perfor-
mance of M3MDC changes w.r.t. λ1, λ2 on data sets Music
and Song respectively. Similar results can be obtained on
other data sets which are not reported here due to page limit.
In terms of each evaluation metric, M3MDC can achieve rel-
atively better performance when λ1 = 0.1 and λ2 ≤ 1.
In this paper, we fix λ1 = 0.1, λ2 = 0.001 respectively,
which are also the recommended default parameter settings
for ease of use.

Correlation analysis. By normalizing matrix C in Eq.(2)
with its diagonal elements, we can get correlation matrix R
which represents the relationships among all pairs of class
labels, i.e., Rij =

Cij√
Cii×Cjj

, where Rij (Cij) denotes ele-

ment in ith row and jth column of R (C). We depict the cor-
relation matrix R on data sets Song, WaterQuality and Yeast
in Figure 2. Here, +1 indicates absolutely positive correla-
tion (i.e., red color) while −1 indicates absolutely negative
correlation (i.e., blue color). As shown in Figure 2, there are
indeed some red or blue squares (excluding diagonal ones),
which indicate that dependencies among classes do exist.
However, there are many squares in green which indicate in-
dependencies between classes. These observations show that
class dependencies should indeed be taken into account but
with great care when designing MDC approaches. M3MDC
can model class dependencies automatically as long as de-
pendencies exist which is a desirable property when induc-
ing predictive models.

Convergence analysis. The optimization problem in
Eq.(3) is solved in an alternating way. Although the ob-
jective function is jointly convex, here we also analyze its
convergent characteristics. Specifically, Frobenius norm of
the difference between each pair of Ws in two adjacent it-
erations is recorded. Figure 3 illustrates how the Frobenius
norm changes as the number of iterations increases on data
sets Song and Voice. It is observed that the difference has
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(a) Hamming Score (Music) (b) Exact Match (Music) (c) Sub-Exact Match (Music)

(d) Hamming Score (Song) (e) Exact Match (Song) (f) Sub-Exact Match (Song)

Figure 1: Performance of M3MDC changes as λ1, λ2 range in {10, 1, 0.1, 0.01, 0.001, 0.0001}

(a) Song (b) WaterQuality (c) Yeast

Figure 2: Correlation matrix on data sets Song, WaterQuality, and Yeast

(a) Song (b) Voice

Figure 3: Convergence curves on data sets Song and Voice.

been very small when the number of iterations reaches 5,
which means M3MDC usually converges very quickly.

Conclusion

In this paper, the problem of margin-based multi-
dimensional classification is investigated. Specifically, a
novel approach named M3MDC is proposed which consid-
ers the margin over MDC examples via OvO decomposition
and models the dependencies among class spaces with co-
variance regularization. The resulting convex formulation is
solved via alternating optimization admitting QP or closed-
form solution in either alternating step. Experimental studies
on benchmark data sets clearly validate the effectiveness of
the derived M3MDC approach.
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Rodrı́guez, J. D.; Pérez, A.; Arteta, D.; Tejedor, D.; and
Lozano, J. A. 2012. Using multidimensional bayesian net-
work classifiers to assist the treatment of multiple sclerosis.
IEEE Transactions on Systems, Man, and Cybernetics Part
C: Applications and Reviews 42(6):1705–1715.
Sagarna, R.; Mendiburu, A.; Inza, I.; and Lozano, J. A. 2014.
Assisting in search heuristics selection through multidimen-
sional supervised classification: A case study on software
testing. Information Sciences 258:122–139.
Serafino, F.; Pio, G.; Ceci, M.; and Malerba, D. 2015. Hier-
archical multidimensional classification of web documents
with multiwebclass. In Lecture Notes in Computer Science
9356. Berlin: Springer. 236–250.
Xu, M.; Li, Y.-F.; and Zhou, Z.-H. 2019. Robust multi-label
learning with PRO loss. IEEE Transactions on Knowledge
and Data Engineering , in press.
Zaragoza, J. H.; Sucar, L. E.; Morales, E. F.; Bielza, C.; and
Larrañaga, P. 2011. Bayesian chain classifiers for multi-
dimensional classification. In Proceedings of the 22nd In-
ternational Joint Conference on Artificial Intelligence, vol-
ume 11, 2192–2197.
Zhang, Y., and Yeung, D.-Y. 2014. A regularization ap-
proach to learning task relationships in multi-task learn-
ing. ACM Transactions on Knowledge Discovery from Data
8(3):Article 12.
Zhang, M.-L., and Zhou, Z.-H. 2014. A review on multi-
label learning algorithms. IEEE Transactions on Knowledge
and Data Engineering 26(8):1819–1837.
Zhu, M.; Liu, S.; and Jiang, J. 2016. A hybrid method
for learning multi-dimensional bayesian network classifiers
based on an optimization model. Applied Intelligence
44(1):123–148.

4319


