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Abstract
We propose an agent model capable of actively and selec-
tively communicating with other agents to predict its envi-
ronmental state efficiently. Selecting whom to communicate
with is a challenge when the internal model of other agents is
unobservable. Our agent learns a communication policy as a
mapping from its belief state to with whom to communicate
in an online and unsupervised manner, without any reinforce-
ment. Human activity recognition from multimodal, multi-
source and heterogeneous sensor data is used as a testbed to
evaluate the proposed model where each sensor is assumed
to be monitored by an agent. The recognition accuracy on
benchmark datasets is comparable to the state-of-the-art even
though our model uses significantly fewer parameters and in-
fers the state in a localized manner. The learned policy re-
duces number of communications. The agent is tolerant to
communication failures and can recognize unreliable agents
through their communication messages. To the best of our
knowledge, this is the first work on learning communication
policies by an agent for predicting its environmental state.

I. Introduction
This paper investigates how anagent can optimally use other
agents for predicting the state of its environment. The as-
sumption is that, interacting agents might have distinct goals
but can still benefit from each other’s knowledge. We pro-
pose an agent model that learns to communicate selectively
with other agents to predict its environmental state.1

We model communication as active perception (Bajcsy,
Aloimonos, and Tsotsos 2018). This allows an agent to ac-
tively and selectively sample (or communicate with) other
agents. Communication makes causal knowledge acquistion
efficient by allowing to: (1) share causal knowledge regard-
ing the same event even though the observations are from
different sensors in space, time or modality, and (2) acquire
high-level causal knowledge directly from another agent in-
stead of from the low-level sensory environment. Hence,
communication by an agent is inevitable for predicting its
environmental state efficiently.

Learning with whom to communicate is crucial. Full com-
munication does not scale well with the number of agents
(Hoshen 2017). Predefined protocols cannot adapt to envi-
ronmental changes or capture dynamic changes in agents’
Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Analysis of the properties of multiagent interaction to achieve
a common goal using our proposed model, albeit interesting, is be-
yond the scope of this paper.

interactions (Han et al. 2018). Not all agents are equally in-
formative in a situation (Kapourchali and Banerjee 2018a).
Communication with a less-informative agent increases cost
and might reduce the agent’s confidence and accuracy.

Partially-observable Markov decision processes
(POMDPs) have been widely used to learn a state-to-action
mapping, referred to as policy, which requires a reward func-
tion dependent on the agent’s goal. Predictive coding is a
more general framework for modeling an agent, with no ex-
plicit reward function (Friston, Daunizeau, and Kiebel 2009;
Banerjee and Dutta 2014). We propose an agent model in
the predictive coding framework with a unified objective
– minimization of variational free energy (VFE) – for
inference, learning, and action. Using the same objective,
our agent learns a communication policy as a mapping from
its belief state to with whom to communicate.

Human activity recognition from multimodal, multi-
source and heterogeneous sensor data is used as a testbed
to evaluate the proposed model. To test the model for larger
number of agents, we use Kinect skeleton data from UTD-
MHAD (Chen, Jafari, and Kehtarnavaz 2015) and KARD
(Gaglio, Re, and Morana 2015) datasets where each joint in
the skeleton is monitored by an agent. The learned policy
is compared to a myopic policy as well as a decision-level
fusion method where all agents send their messages to a cen-
tral node. When all agents send reliable messages, an offline
and myopic approach performs as good as the learned pol-
icy. However, when the probability of failure of each agent
increases, online decision-making using the learned policy
maintains the same accuracy by increasing the number of
communications. If agents’ behaviors change over time, the
policy adapts to select other agents for communication.

The model is also applied to activity recognition from mu-
timodal UTD-MHAD dataset (Kinect skeleton, inertial and
depth video). Each sensor is assumed to be monitored by an
agent. A policy is learned for each activity class. Communi-
cation enhanced efficiency by using a subset of observations.
The estimation accuracy is comparable to the state-of-the-art
even though our model uses significantly fewer parameters
and infers the state in a localizedmanner (i.e. it communi-
cates neither with a central/global controller nor with all the
agents all the time).

The rest of the paper is organized as follows. Sec. II intro-
duces the necessary concepts. The problem statement and
proposed model are described in Sec. III and IV, respec-
tively. The experimental results are discussed in Sec. V. A
brief literature review is provided in Sec. VI.

4107



II. Background and Notations
This section introduces the relevant terms and concepts.

Table 1: Symbols and notations.

Variable Description
I Number of states.
J Number of agents.
�� (e) � � M Feature vector.
�� (msg ) � � I Communication message.
�µ(v) � � I Belief vector about environmental states.
�µ(u) � � J Belief vector about control states.
�� � ( e) � � M Sensory prediction error.
�� � ( msg ) � � I Communication message prediction error.
�� p( e) � � I Prior prediction error.
�vp � � I Mean of prior density.
� ge � � M × I Parameters for agent•s model ofenviron-
� gA j �

� � I × I ment and other agentAj � respectively.
� g� � � J × I Parameters for encoding optimal policy.
� � Covariances of random ”uctuations

where� = { �� (e) , �� (msg j � ) , �, p (e) } .

De“nition 1. (Agent) An agent is anything that can per-
ceive its environment through sensors and act upon that en-
vironment through actuators (Russell and Norvig 2016). The
agent estimating its environmental state will be referred to as
theprimary agent.

De“nition 2. (Markov decision processes)Sequential
decision problems in uncertain environments, also called
Markov decision processes (MDPs) are de“ned as tuple
(Russell and Norvig 2016):� � , A, Ta, r a � where� is a “-
nite set of states,A is a “nite set of actions.Ta(� � |�, a ) =
P({ � t +1 = � � |� t = �, A t = a} ) is the transition prob-
ability. r a is the reward received at state� � . The goal is
to “nd a policy � : � � A that maximizes the cumula-
tive rewards. The objective of MDP can be expressed as the
Bellman optimality equation (Bellman 1952):V alue(� ) =
r a + max

a� A

�
� � Ta(� � |�, a )V alue(� � ) whereV alue(� ) is

the utility or value of state� .
De“nition 3. (Partially observable MDPs) Partially ob-

servable MDPs (POMDPs) is an extension of MDP when the
states are partially observable. A POMDP can be converted
to a MDP using beliefs about the current state. The belief
can be recursively computed from the observations and ac-
tions using Bayes rule. POMDP based approaches can pro-
vide a closed-loop non-myopic solution for agents• optimal
decision-making problem (Russell and Norvig 2016).

Most of existing POMDP solvers are designed for pur-
poses when reducing uncertainty is a subtask and not a goal.
They fail for active perception due to requiring a long time
for computing policy or underlying assumptions (e.g. piece-
wise linearity) that do not hold for a belief based reward
function required for active perception (Satsangi et al. 2018).

De“nition 4. (Predictive coding) Predictive coding (PC)
is a brain-inspired framework for solving the problem of in-
ferring the causes from sensations (Rao and Ballard 1999).
Inspired by linearly solvable MDPs (Todorov 2007) and path
integral control frameworks (Kappen, Gómez, and Opper

2012), a version of PC proposes an alternative approach for
modeling an agent which is ef“cient and does not require
a reward function to compute optimal policy (Friston, Dau-
nizeau, and Kiebel 2009). By modeling action as inference
and maximizing marginal likelihood of observations under a
generative model, the optimal policy can be computed as a
Kullback-Leibler (KL)-divergence minimization problem. A
formal proof is provided in Friston, Daunizeau, and Kiebel
(2009) to show that thesepolicies are equivalent to the ones
computed using Bellman optimality equation (Def. 2). Hence
PC is a generalization of optimal control or POMDPs.

An agent in PC framework is de“ned as the tuple
� � , A, �, G, Q, R, �) where� is a set of states,A is a set
of actions.� is a set of real valued parameters.G andQ are
generative and recognition densities.R is sampling proba-
bility and � is a set of sensory states (Friston, Samothrakis,
and Montague 2012). The agent•s objective is to minimize
VFE which is a measure of salience based on the diver-
gence between the recognition densityQ(� ) and genera-
tive densityp(�, � ) (Friston, Daunizeau, and Kiebel 2009):
F = Š� ln p(�, � )� Q + � ln Q(� )� Q where� .� Q denotes the
expectation under densityQ.

De“nition 6. (Recognition density) Recognition den-
sity is a probabilistic representation of environmental states
which is encoded by internal statesµ. Probabilistic repre-
sentation of environmental states is the agent•s belief vec-
tor. Assuming a Gaussian density allows Laplace approx-
imation (Friston, Daunizeau, and Kiebel 2009):Q(� ) =
N (� ; µ, 	 ) = 1�

2��
exp(Š(� Š µ)2/ 2	 ). Suf“cient statis-

tics of a Gaussian density are mean and variance.
De“nition 7. (Generative density) Generative density

p(�, � ) is a joint probability density relating environmental
states and observations. It includes a sensory mapping� =
g(�v, �u, 
 g)+ �� 1 and equation of motion��v = f (�v, �u, 
 f )+ �� 2
(Friston, Daunizeau, and Kiebel 2009), where�� i (i = 1 , 2)
are Gaussian noise. The latter contains the policies encoded
in the parameters
 f . It is a joint probability distribution over
states, control states and the learned parameters.v andu are
environmental hidden states and control states, respectively.
�X shows the generalized coordinates of the variables. We

use second order generalized coordinates consisting of state
and change of state.

De“nition 8. (Sampling probability) Sampling proba-
bility R(� � |�, a ) = p({ � t +1 = � � |� t = �, a t = a} ) is
the probability that the observation� � � � follows action
a � A given� (Friston, Samothrakis, and Montague 2012).

III. Problem Statement

State estimation can be formulated as Bayesian inference
(Knill and Richards 1996):p(� t |� 1:t ) � p(� 1:t |� t )p(� t ).
Active perception is de“ned as (Denzler and Brown 2002)
p(� t |A1:t , � 1:t ), in which the previous actions are causes
for the current observation. Such problems are traditionally
solved by POMDPs for non-myopic decision-making. We
consider other agents as active parts of an agent•s environ-
ment so that it can change its control states via communica-
tion which is an action. The problem is formulated as:
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p(Ψt|A1:t,Φ1:t) =
p(Φ1:t|Ψt, A1:t)p(Ψt, A1:t)

p(Φ1:t, A1:t)
(1)

A number of challenges need to be addressed: (1) the
size of action space grows exponentially with the number of
agents, rendering standard POMDP solvers infeasible (Sat-
sangi et al. 2018); (2) since all agents are not equally infor-
mative and their internal models are unobservable and time-
varying, the problem needs to be solved online, without su-
pervision or reinforcement; (3) an agent has to assign a de-
gree of trust to each message received and update its belief
accordingly.

IV. Models and Methods
We consider Ψ as a collection of causal environmental states
that influences observations. It includes V as the uncontrol-
lable aspects of environment and U which can be controlled
by an agent. We model communication as an action using
which an agent changes other agents’ control states. We dis-
tinguish between A and U as an action may fail to control
other agents. The action reveals a new observation, commu-
nication message Φ(msg) that depends on U and V . There-
fore, the random variable Φ collects two types of observa-
tions: Φ(e) generated by the shared environment and Φ(msg)

generated by other agents as controllable parts of environ-
ment. The goal is to infer V at time t , efficiently, by acti-
vating the optimal sequences of U1:t. Obviously, Φt is con-
ditionally independent of action A , given Ψ which consists
both U and V . Accordingly, the problem of with whom to
communicateis converted to inferring the optimal sequence
of control states U1:t. Rewriting the above discussion as
p(Ψ1:t|Φ1:t), the problem is a Bayesian inference where ex-
act computation is intractable for large distributions.

We approximate the posterior belief using variational in-
ference (Fox and Roberts 2012), by minimizing divergence
between a recognition density and the posterior density to
reach DKL(Q(Ψ1:t)||p(Ψ1:t|Φ1:t)) = F +ln p(Φ1:t) where
F is the VFE in Def. 4. Hence we can formulate our agent’s
model in the PC framework (Def. 4). We then provide an
algorithm for sequentially optimizing perception and action,
and updating agents’ model as well as optimal policy. Ψ, Φ
and A are defined above so rest of the elements are defined:
• � represents real valued internal states of the agent which

parameterize a conditional density.
• Generative density G = p(Φ1:t,Ψ1:t) relates environ-

mental states and sensory data. It can be specified in
the form of a likelihood and a prior. In our model, it is
defined as: p(Φ1:t,Ψ1:t) = p(Φ1:t|Ψ1:t)p(Ψ1:t) As in
POMDPs, the Markovian assumption implies that Φt de-
pends only on Ψt, so the likelihood term can be written
as p(Φ1:t|Ψ1:t) =

∏
t p(Φt|Ψt). The transition probabil-

ities depend on the parameters � . They are defined as:
p(Ψ1:t) = p(Ψ0)

∏
t p(Ψt|Ψt−1, � ). The prior expecta-

tions over trajectory of controlled states include policy
(see Def. 7).

• Sampling probability R = p(Φt+1|Φt, at) is agent’s pre-
diction of its action’s consequences. The agent needs to

learn an internal model of other agents to predict their re-
sponses to communication. The received message can be
different from agent’s prediction so the model is updated
using prediction error.

• Recognition density Q(Ψ1:t, � |µ1:t), is an approximate
posterior over states and parameters encoded with its suffi-
cient statistic µ1:t, in the agent’s internal model. The den-
sity is assumed to be Gaussian for Laplace approximation.
The unified objective of each agent for inference (percep-

tion), learning and communication (action selection in gen-
eral) is to minimize the VFE (Def. 5).

Since Q(Ψ1:t) is a Gaussian, with Laplace approximation,
F converts to:

F = Š ln p(µ1:t,Φ1:t) + C (2)

where ln p(µ1:t,Φ1:t) is the generative density in which the
environmental states are approximated by sufficient statis-
tics of recognition density (agent’s belief) and C is a con-
stant which will be eliminated from rest of the equations
for brevity. An intuitive interpretation of the above equation
is that the agent interprets the external states of the envi-
ronment (including both sensory states and hidden environ-
mental states), in terms of its hidden internal states µ1:t. See
(Buckley et al. 2017) for a formal proof.

A block diagram of our model in Fig. 1 provides an
overview. Details of the blocks are as follows.

IV-A. Independent inference by an agent. In our model,
an agent starts with an independent estimation based on its
private sensory signals �� (e). Vector sign indicates that the
observation is multivariate. Since at this time only �� (e) is
available, the objective function is simplified to:

F (e) = Š ln[p( �� (e)|�µ(v))p(�µ(v))] (3)

where p( �� (e)|�µ(v)) = p( �� (e)|�v)+� 1 and p(�µ(v)) = �vp+� 2.
�µ(v) denotes the belief vector regarding the aspect of en-
vironmental states �v, which should be estimated. Gaus-
sian assumptions about error terms wi(i = 1, 2), specify
likelihood and priors as N ( �� (e); ge(�µ(v), � ge

), � ϕ(e)) and
N (�µ(v); �vp, � p(e)), respectively. Mean of likelihood density,
ge(�µ(v), � ge) = � ge �µ(v), is the generative function which
maps agent’s belief to the environmental observations �� (e).
In this paper, it is assumed to be a linear function, however,
there is no limitation for using non-linear functions as long
as they are differentiable. In our model, ge is initialized us-
ing a limited number of samples and updated by observing
each new sample in an online manner (details in Sec. VI).
Plugging the Gaussians in Eq. 3, the best guess can be found
by stochastic gradient descent:

�̇µ(v) =
�F (e)

��µ(v) = Š�� p(v) +
�g e(�µ(v), � ge)

T

��µ(v) ��ϕ(e) (4)

where ��ϕ(e) and �� p(v) are auxiliary variables representing
� −1
ϕ(e)( �� (e) Š ge(�µ(v), � ge)) and � −1

p(e)(�µ(v) Š �vp), respec-
tively. These terms describe prediction errors weighted by
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Figure 4: Sequential decision-making forwith whom to communicate. Red circle denotes the agentAj � selected for communi-
cation. Primary agentAj •s belief vector (probability of each environmental state or activity) after communication is shown.

Figure 5: Advantages of online, non-myopic decision-making, as well as online updating of agents• model are shown in these
“gures. Top and bottom rows are the results from UTD-MHAD and KARD datasets, respectively. The two left plots from each
row shows the accuracy and number of communications when each agent has a probability of failure at each point of time. The
two right plots from each row show the same metrics but a “xed number of agents, sampled from a uniform distribution, change
their behavior and send random messages for a long time. Nonad and VoI stand for Non-adaptive and Value of Information (a
myopic and of”ine planning method) methods, respectively.

3. Results show the bene“t of communication. However, full
communication does not guarantee highest accuracy.

Our model is compared with existing methods that have
used the same cross-subjects setup for training. The results
show that even though our model has signi“cantly fewer
parameters, communicating using a learned policy yields
higher accuracy than most of these methods (see Table 3).
ConvNets (Hou et al. 2016) is slightly (1.86%) more accu-
rate than our model; it has60× 106 parameters as compared
to 67 × 103 in our model. The inertia agent communicated
for 301 and 129 of the test samples with skeleton and depth
respectively, but only three times with both.

VI. Related Work
Prior work on active perception has primarily focused on one
agent controlling its sensors (Butko and Movellan 2009) or
selecting a subset of sensors (Li et al. 2016; Satsangi et al.
2018). Research has been reported on controlling multiple
sensors in which, whom to communicate with is either pre-
de“ned (Zivan et al. 2015; Kapourchali and Banerjee 2019)

or decided by a fusion center (Stachura and Frew 2017). In
other areas, such as distributed AI and multiagent systems,
some recent works (Hoshen 2017) have investigated the im-
portance of learning with whom to communicate where the
goal is coordination between agents. They use a single net-
work for controlling a multiagent system (i.e. communica-
tion policies are globally learned) and lack the ability to
handle heterogeneous agent types (Peng et al. 2017). In our
model, policy is learned and executed locally; the task is ac-
tive perception. Challenges of policy learning for such a task
are discussed in (Satsangi et al. 2018).

VII. Conclusions

We propose an agent model for ef“ciently predicting its en-
vironmental state via selective communication with other
agents. The agent is modeled in the predictive coding frame-
work. It learns a communication policy as a mapping from
its belief state towith whom to communicatein an online and
unsupervised manner, without any reinforcement. The pro-
posed model is evaluated for activity recognition from mul-
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Table 3: Comparison of proposed and existing methods for
recognizing 27 actions in the UTD-MHAD dataset.

Method Accuracy %
ELC-KSVD (Zhou et al. 2014) 76.19

Chen, Jafari, and Kehtarnavaz (2015) 79.10
Cov3DJ (Hussein et al. 2013) 85.58
ConvNets (Hou et al. 2016) 86.97

Dawar and Kehtarnavaz (2018) 86.3
Our model 85.11
No Comm 29.2
Full Comm 84.6

timodal, multisource and heterogeneous sensor data. The
accuracy is comparable to the state-of-the-art even though
our model uses significantly fewer parameters and infers the
state in a localized manner. The learned policy reduces num-
ber of communications and enhances tolerance to communi-
cation failures. To the best of our knowledge, this is the first
work on learning communication policies by an agent for
predicting the state of its environment.
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